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To extend our understanding of the organization and expression of the mouse
mammary tumor virus genome, we determined the nucleotide sequence of large
regions of a cloned mouse mammary tumor virus strain C3H provirus that appears
to be a DNA copy of env mRNA. In conjunction with analysis of several
additional clones of integrated and unintegrated mouse mammary tumor virus
DNAs, we came to the following conclusions: (i) the mRNA for env is generated
by splicing mechanisms that recognize conventional eucaryotic signals at donor
and acceptor sites with a leader of at least 289 bases in length; (ii) the first of three
possible initiation codons for translation of env follows the splice junction by a
single nucleotide and produces a signal peptide of 98 amino acids; (iii) the amino
terminal sequence of the major virion glycoprotein gp52env is confirmed by
nucleotide sequencing and is encoded by a sequence beginning 584 nucleotides
from the 5' end of env mRNA; (iv) the final 17 amino acids at the carboxyl
terminus of the primary product of env are encoded within the long terminal
repeat by the 51 bases at the 5' end of the U3 domain; and (v) bases 2 through 4 at
the 5' end of the long terminal repeat constitute an initiation codon that
commences an open reading frame capable of directing the synthesis of a 36-
kilodalton protein.

The strategies used by retroviruses to express
their polycistronic genomes are now well estab-
lished. Viral genes are perpetuated in infected
cells as a provirus integrated within a host
chromosome, viral RNA is synthesized by host
RNA polymerase II beginning at a site within the
long terminal repeat (LTR) in proviral DNA,
subgenomic mRNAs are generated by cellular
splicing mechanisms, and mature viral proteins
are produced from polyprotein precursors by
proteolytic cleavage (see reference 29 for a
review). Nevertheless, many important aspects
of this scheme have yet to be fully elucidated.
We were interested in the mechanisms of gene

expression employed by the mouse mammary
tumor virus (MMTV), a retrovirus regulated at
the transcriptional level by glucocorticoid hor-
mones (23, 31) and capable of inducing mamma-
ry adenocarcinomas in susceptible mice. To
explore the genetic content, organization, and
expression of the MMTV genome, we used
molecularly cjoned viral DNAs as substrates for
DNA sequence analysis. MMTV is known to
encode at least three primary protein products,
each of whose synthesis is probably directed by
a separate mRNA: a 77-kilodalton (kd) polypro-
tein (Pr77sar) that is cleaved to form the viral

core proteins, a 180-kd polyprotein (Prl80g9asP'l)
that is precursor to virion reverse transcriptase,
and a protein of ca. 70 kd that is processed by
cleavage and glycosylation to form the viral
glycoproteins gp52e"v and gp36env (4, 24). A
fourth gene product could be synthesized from
an open reading frame situated within the LTR
(5-8, 11, 13).

In this report, we present evidence for the
structure of the env mRNA which is based in
part upon the fortuitous finding of a provirus
that constitutes a reverse transcript of env
mRNA. We determined the leader sequence of
this mRNA, the donor and acceptor splice sites
used to generate it from genomic RNA, the
sequence of the entire env gene, with the unusu-
al finding that the 3' terminus of the gene ex-
tends 51 nucleotides into the LTR, and the
sequence of the long open reading frame from
the U3 domain of the LTR, also present at the 3'
end of env mRNA.

MATERIALS AND METHODS

Cloning and fragment isolation. The proviral sub-
strate was generated by low-multiplicity infection of
rat XC cells with the C3H strain ofMMTV. Single cell
clones were screened for MMTV DNA, and those
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containing single proviruses were analyzed (17). Cell
line 8 harbored a truncated provirus, recovered within
a single EcoRI fragment. Molecular cloning of that
proviral EcoRI fragment in Charon 4A has been de-
scribed previously (16, 17). Subclones for sequence
analysis were made by digesting recombinant bacterio-
phage DNA with either ClaI or PstI, followed by
ligation to plasmid pBR322 that was cleaved with the
appropriate enzyme and treated with bacterial alkaline
phosphatase (18). Fragments for sequencing were iso-
lated either by electrophoresis through Seaplaque
(Marine Colloids) agarose gels (18) or polyacrylamide
gels. Fragments were extracted from Seaplaque ag-
arose by suspending the gel slice in two volumes of 0.3
M NaCl-20 mM Tris-hydrochloride (pH 7.5)-l mM
EDTA and heating to 68°C for 5 min, followed by two
extractions with phenol and precipitation with ethanol.
Fragments were isolated from polyacrylamide by the
"crush and soak" method of Maxam and Gilbert (20).
End labeling and sequencing. Fragments for se-

quencing were labeled with 32P at their 3' ends with
avian myeloblastosis virus reverse transcriptase and
32P-nucleotide triphosphates as described previously
(17). Fragments were labeled wtih 32P at their 5' ends
with T4 polynucleotide kinase and [32P]ATP as de-
scribed by Maxam and Gilbert (20). Sequencing was
carried out by the chemical cleavage method of
Maxam and Gilbert (19, 20). Sequencing gels were 8%
acrylamide buffered with 90 mM Tris-borate (pH 8.3)-
1 mM EDTA (20).

RESULTS AND DISCUSSION
Strategies for cloning and sequencing. The mo-

lecular cloning of wild-type genomes of milk-
borne MMTV was confounded by our inability
to clone sequences from a small region within or
near the gag gene (Fig. 1). However, in a set of
clonal rat cell lines containing single MMTV
C3H proviruses, we were fortunate to find one
line, designated line 8, that harbors a provirus
lacking both the gag-pol region and the single

EcoRI site in the wild-type genome. This provi-
rus, which appears to have arisen by reverse
transcription of env mRNA (see below), was
cloned intact with flanking cellular DNA as an
EcoRI fragment (17) and was used for determin-
ing the nucleotide sequences of regions indicat-
ed in Fig. 2A. These include the entire 5' LTR,
the sequences downstream from the LTR, in-
cluding sequences from both sides of the missing
gag and pol genes, the entire env gene, and
sequences extending beyond env into the 3'
LTR. (In addition, we previously determined the
sequences at the host-viral junctions in this
clone [17].) We also determined the sequences
of selected regions of other cloned, integrated,
and unintegrated MMTV C3H and MMTV RIII
DNAs to define the 5' end of env and the gp52env
coding region, to determine sequences in wild-
type DNA at the boundaries of the region absent
in the line 8 provirus, and to compare env and
LTR sequences between strains. One of the
substrates for these sequencing exercises is dia-
grammed in Fig. 2B, and others will be de-
scribed below. The sequence determined from
the line 8 provirus is presented in Fig. 3 in the
form of the sequence of the MMTV C3H env
mRNA.
The information derived from this sequence

and ancillary sequences is pertinent to three
issues to be discussed separately: (i) the struc-
ture and function of the MMTV env gene prod-
uct, (ii) the location of the splice donor and
acceptor sites for env mRNA, and (iii) the extent
of the long open reading frame in U3.

(i) Structure and function of env proteins. Cell
line 8 contains apparently normal 24S env
mRNA, env glycoprotein precursor, and the
mature env products, gpS2env and gp36en,' (un-

env 1pol
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env -LKLA.
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FIG. 1. Genesis and structure of the 24S MMTV env mRNA. (A) A wild-type MMTV provirus with sites for
the restriction enzymes PstI (Ps) and EcoRI (RI) and the approximate location of the poison sequence (large
arrow). (B) 35S genomic RNA with the splice donor (Sd) and acceptor (Sa) sites. (C) The processed 24S env
mRNA with S denoting the splice junction. (D) Structure of proviral copy of env mRNA as in line 8. Boxes
labeled 3 and 5 represent U3 and U5 domains, respectively. Flanking host sequences are denoted by an h.
Polyadenosine in mRNAs is denoted by an A,.
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published data; D. Robertson, personal commu-
nication); thus, we concluded that the single
provirus from this line contains an intact env
gene. As a landmark within the region of the
genome previously shown to encode the env
glycoproteins (9), we sought a nucleotide se-
quence that matched the recently determined
amino terminus of gp52en' (2). This polypeptide,
known to be a processed product of env (2-4,
24), begins with the sequence Glu-Ser-Tyr; the
corresponding nucleotide sequence was located
584 bases downstream from the probable start-
ing site for transcription in the 5' LTR of the
truncated line 8 provirus (amino acids 1, 2, and
3; Fig. 3) and lies within a continuous open
reading frame of 2,064 base pairs (bp). Since
gp52ele' is thought to be generated by proteolytic
removal of a signal sequence from the amino
terminus of the primary product of env (2, 3; D.
Robertson, personal communication), the nucle-
otide sequence on the 5' side of the gpS2en'
coding domain was scanned for possible initia-
tion sites for translation. Three AUG codons
were present, each of which was in frame with
the coding sequence for gpS2enl, with no inter-
rupting termination codons. Use of these initia-
tion sites would produce signal peptides 98, 63,

A t'ff it 7 rIt

or 53 amino acids in length. Attempts to measure
the length of the signal sequence by comparing
the size of the in vitro translation product of env
RNA with the unglycosylated, cleaved product
of env in vivo have yielded ambiguous results,
with estimates varying from 5 to 9 kd (2-4, 9; D.
Robertson, personal communication). Hence,
initiation at any of the three sites would produce
a protein consistent with the available measure-
ments. The amino terminal sequence of the env
protein precursor must be determined directly to
identify the initiation site unambiguously. Appli-
cation of the rules of preferential use of transla-
tion initiation sites (based on the appearance of
adenosine or guanosine at the -3 position and
guanosine at the +4 position of known initiation
sites [15]) provides little basis for choice. With
the exception of a cytosine at the +4 position of
the first AUG codon, all other positions are
occupied by favored bases. Examination of the
predicted amino acid sequence for signal se-
quence signatures is also not illuminating. Most
signal sequences have hydrophilic amino termi-
nal regions followed by a hydrophobic core
which immediately precedes the cleavage site
(10). As expected, we found such a hydrophobic
region (amino acids -1 to -26). The preceding
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FIG. 2. (A) Strategy of sequencing line 8 proviral DNA. Sequenced regions are shown as arrows pointing
away from the site of labeling. The upper segment of panel A shows the 5' host-viral junction, with the open
reading frame (ORF) and U5 domains (5); the lower segment shows a region of the line 8 provirus including U5
(5) and the coding domains for gp52 and gp36. The splice junction is denoted S. Sites indicated are: H, HaeIIl; L,
AluI; T, TaqI; C, CluI; A, AvaIl; S, Sau3a; P, HpaII; F, Hinf; R, EcoRII; D, Dde(I); B, Bg1II; and V, AvaI. Only
sites used in sequencing are shown; this is not a restriction site map. (B) Substrate for determining the splice
donor site. The donor sequence was derived from a clone of unintegrated MMTV C3H circular DNA with
rearrangements at the sites marked by arrows. The clone was an analog of a two-copy circle. Rearrangement (1)
is a small deletion around the PstI site at the left end of the LTR. Rearrangement (2) can be viewed as an aberrant
circle junction. Rearrangement (3) is a small deletion, approximately 300 bp, in the 0.9-kb PstI fragment which
probably removes the poison sequence. The acceptor site sequence was derived from a 4-kb PstI fragment
cloned directly into plasmid pBR322 from unintegrated C3H circular DNA (data not shown).
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amino acids were generally hydrophilic (extend-
ing to the first AUG codon). Because each of the
initiation sites results in a signal sequence which
has the typical signatures, although longer than
normal, we were left with no reason for choosing
one over the others.

Within the open reading frame we found two
sequences in addition to the amino terminus of
gp52env which demonstrated it to be the correct
one for the MMTV env gene. The DNA se-
quence predicts that the carboxyl terminal ami-
no acid sequence of the primary gene product is
Arg-Val-Ser-Tyr-Thr. S. Oroszlan (personal
communication) has shown directly that the
carboxyl terminal amino acid sequence of
gp36env is Arg-Val-Ser-Tyr/Thr-Thr/Tyr, con-
firming the DNA sequence and demonstrating
that the carboxyl terminus is unprocessed.
Oroszlan (personal communication) has also de-
termined the NH2 terminus of gp36 to be Phe-
Val-Ala-Ala. We found the sequence encoding
this oligopeptide at position 1669 in the nucleo-
tide sequence, preceded by codons for Lys and
Arg. The gp36 domain of env encodes 232 amino
acids with a molecular weight of 25,500, and the
gp52 domain encodes 357 amino acids with a
molecular weight of 41,000. Several additional
features of the env gene products are worth
noting.

(i) gp36en' is thought to serve as a membrane
anchor (4). Consistent with this function we
found an extremely hydrophobic domain (amino
acids 523 through 548), extending to within 24
residues of the carboxyl terminus of the protein,
that may be involved in the anchor function.

(ii) The deduced amino acid sequence of the
gp52:gp36 cleavage site is Lys-Arg:Phe-Val. The
equivalent sites in the env genes of the Prague C
strain of Rous sarcoma virus and the Moloney
strain of murine leukemia virus are Lys-Arg:Ser-
Val (25) and Lys-Arg:Glu-Pro (26), respectively,
suggesting that the signal for cleavage includes
the dipeptide Lys-Arg.

(iii) Both gp52 and gp36 are glycoproteins (4).
An analysis of partially glycosylated env precur-
sors suggests that the precursor gp73 contains
five mannose-rich, asparagine-linked oligosac-

charides (4).. Consistent with this, we find five
Asn-X-Ser/Thr sites, three within gp52 se-
quences and two within gp36 sequences (Fig. 3).

(iv) Redmond and Dickson (22) recently deter-
mined the env gene sequence of the GR strain of
MMTV. The existence of type-specific antigens
which distinguish the gp52s and gp36s of the GR
and C3H strains has been demonstrated (1, 4).
Figure 3 shows points at which the env gene
nucleotide sequences of the two strains diverge.
We found 30 single base changes, some of which
result in amino acid changes. Five of these are
single base insertions and deletions, the most
significant of which lie between amino acids 79
and 87 within the gp52 coding region. There,
three extra base pairs in the MMTV C3H se-
quence result in divergence for a stretch of
seven amino acids. This substitution may be
sufficient to account for the type-specific differ-
ences between the gp52s of the two strains. The
only other concerted change lies at amino acid
positions 259 through 260, where a single base
pair insertion followed 3 bp later by a single base
pair deletion results in a single amino acid sub-
stitution.

(v) Finally, we observed that, unique among
retroviruses, the termination site for the env
gene lies within the LTR. Moreover, because
MMTV is also unique in possessing a long open
reading frame in its LTR, commencing close to
the 5' boundary (see below), the 3' end of env
overlaps another potential coding domain in
another reading frame. Overlapping reading
frames have been demonstrated in several retro-
virus genomes, but MMTV is the only one for
which the overlapping region includes the LTR.
As a result, both the polypurine tract, which is
presumably involved in (+) strand priming, and
the 5' terminus of the LTR, which is involved in
integration, are included within the sequence
coding for gp36.
Because the sequence encoding the hydropho-

bic anchor region precedes the LTR by 63 bp
and lies upstream from the overlapping se-
quences, we speculate that that part of the gp36
amino acid sequence encoded by the LTR may
not be of great functional significance.

FIG. 3. Deduced sequence of the MMTV C3H env mRNA. The bases are numbered with respect to the
predicted start site of transcription. The translation product of env is numbered such that the first amino acid of
mature gp52 is + 1. The translation product of the LTR open reading frame is numbered from the first methionine
residue. Several restriction enzyme cleavage sites and functional landmarks (primer binding site, splice sites,
polypurine tract, and signals for transcriptional initiation [TATA] and polyadenylation) are included for
convenience. Positions at which the MMTV C3H env sequence varies from that ofMMTV GR (as determined by
Redmond and Dickson [22]) are shown with the base from the GR sequence written below. Within the sequences
derived from the LTR (R and U3), sites at which the MMTV GR and MMTV RIII sequences differ from the
MMTV C3H sequence are similarly indicated; bases from the MMTV RIII sequence are in italics. Differences
shared by MMTV GR and MMTV RIII are indicated by an asterisk. Deletions are indicated by A. The RIII
sequence covers bases 2430 through 2830 and 3370 through 3513. At potential glycosylation sites, the Asn-X-Ser/
Thr amino acid sequence is overlined.

VOL. 47, 1983



502 MAJORS AND VARMUS

(ii) Splice sites for env mRNA. Because the
structure of the line 8 provirus suggested that it
might be the product of DNA synthesis from a
template of env mRNA, we pursued the possibil-
ity that we had been fortuitously provided with
the necessary reagents for precisely determining
a retroviral splice junction. This was accom-
plished by comparing the sequence from the
provirus that lies between the 5' LTR and the
env coding domain with sequences upstream
from env and downstream from an LTR in
clones of unintegrated MMTV DNA. Like all of
our clones of unintegrated circular DNA, the
clone used to obtain the viral sequence down-
stream from the LTR exhibits a rearrangement
(e.g., deletion) in the gag region (Fig. 2B) within
the 0.9-kilobase (kb) PstI fragment. We mapped
and sequenced the 5' end of this aberrant frag-
ment and will argue shortly that the abnormality
in the cloned DNA lies beyond the region perti-
nent to the present work.
A comparison of the relevant sequences is

presented in Fig. 4. The sequences on the 3' side
of the 5' LTR in line 8 DNA and in the uninte-
grated DNA are identical for 154 nucleotides; at
the point of divergence, the unintegrated DNA
exhibits a sequence closely related to the con-
sensus sequence for a splice donor site (21). At
the other end of the genome, the wild-type and
line 8 proviral sequences diverge 1 bp on the 5'
side of the first of the three ATG codons that
could serve as initiation sites for translation of
env (see above; Fig. 4). The wild-type sequence
5' to the point of divergence also shows a strong
similarity to a consensus sequence for a splice
acceptor site (21). Notably, the domain absent
from the provirus does not contain direct repeats
at its boundaries, suggesting that the region was
probably not removed by homologous recombi-
nation between DNA sequences. Instead, it is
likely that the sequences were removed by splic-
ing of a primary transcript of genomic-sized
RNA, forming an env mRNA that was then
reverse transcribed during the round of infection

Donor consensus

Donor

mRNA

that established the line. Evidence of a different
sort for the synthesis of proviral DNA from env
mRNA has been published by Stacey (27), who
showed that Rous-associated virus env mRNA
microinjected into cells infected with the env-
deficient Bryan strain of Rous sarcoma virus not
only would complement that deficiency but also
could be packaged into virion particles, which
were able to infect new cells and incorporate
their genetic information into those cells in the
form of an env provirus.

Si nuclease mapping experiments, performed
with labeled DNA from wild-type and line 8
proviral DNA, are consistent with the conclu-
sion that the provirus is a copy of an env mRNA.
DNA from a restriction fragment from the provi-
rus which spans the putative splice site is fully
protected by 24S env mRNA from cells bearing
wild-type proviral DNA (D. Robertson, personal
communication). Mapping with wild-type DNA
annealed to env mRNA indicates a splice accep-
tor site approximately 180 bp on the 5' side of
the PstI site near the 5' end of env (D. Ucker,
Ph.D. thesis, University of California, San Fran-
cisco; D. Robertson, personal communication).
We conclude that the proviral DNA is a reverse
transcript of a spliced env mRNA and that the
splice sites conform to conventions established
for eucaryotic genes, as expected from the use
of host mechanisms for processing. Other retro-
viral splice sites estimated by the S1 mapping
procedure also map near consensus sequences
for donor or acceptor sites (12, 28).

Further inspection of the sequences adjacent
to the splice site reveals information about the
leader sequence of env mRNA and about the
possible start site for gag. Transcription of
MMTV RNA is thought to begin approximately
135 nucleotides from the 3' end of the LTR, ca.
25 nucleotides downstream from the TATAAA
sequence at positions 3466 through 3472 in the
LTR (Fig. 3). The first 10 to 15 nucleotides in
this sequence (R) are present at both ends of
virion RNA (14); R is presumably present at the

£AGGU!AGUiA G

MetGlyValSerGly
GCAGUCCCGCCUACGGAGAAGA A CGGUGAGCCAUUGGAAAUGGGGGUCUCGGGC...

GCAGUCCCGCCUACGGAGAAGAGGAUGCCGAAUCA

Acceptor GCUAUGCUUGUGUUUUUCCACAGAUGCCGAAUCA

Acceptor consensus (f)11 N6AGG

FIG. 4. Demonstration that the line 8 provirus is probably derived from a spliced env mRNA. The donor
sequence was determined from the clone of unintegrated circular DNA described in Fig. 2B. The acceptor
sequence was derived from a subclone of the 4-kb PstI fragment which is also from unintegrated DNA. The
consensus sequences are from Mount (21). Arrow, location of env mRNA splice.
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ends of env mRNA as well, since the duplication
is required for reverse transcription (29). Thus,
289 nucleotides from the 5' end of the primary
viral RNA transcript are found in env mRNA.
This sequence is devoid of possible start codons,
so the first AUG codon in env mRNA is 290
nucleotides from the 5' end. As discussed earli-
er, it is uncertain whether this or one of the
succeeding two AUG codons in the same read-
ing frame initiates synthesis of the env polypep-
tide. The sequence of the fragment of unintegrat-
ed DNA containing the splice donor site is also
free of translational start codons until position
314, where an AUG codon begins an open
reading frame that extends for at least 50 nucleo-
tides. Although this may represent the coding
region for the amino terminus of Pr77gag, the
corresponding protein sequence has not been
directly determined. Moreover, we cannot be
certain that the nucleotide sequence is unaltered
in this region, in view of the difficulties of
generating clones from this region. In any case,
the first AUG codon in the sequence of a retro-
viral mRNA is not necessarily an initiation site
for translation; for example, the gag gene of
Rous sarcoma virus is preceded by three unused
AUG codons in viral RNA, and in src mRNA
the gene is preceeded by four AUG codons,
including the initiation codon from gag (12, 28).

(iii) Open reading frame in U3. We and others
have previously identified sequences within and
adjacent to the MMTV LTR likely to influence
the initiation and polyadenylation of viral RNA
and the priming and integration of viral DNA (8,
10, 13, 16). We have now determined the com-
plete sequence of the 1,326-bp LTR from the 5'
LTR of our provirus (and selected regions of
other MMTV LTRs) to facilitate the construc-
tion of deletion mutants used in studies of the
hormonal responsiveness ofMMTV DNA (to be
reported elsewhere) and to examine an apparent
paradox concerning the size of the open reading
frame in the U3 domain.
The existence of a translatable region in or

near the U3 sequence was first suggested by
Dickson and Peters, who showed that fragment-
ed virion RNA and RNA synthesized from the
cloned 1.3-kb Pst D fragment (containing all but
the 5' 10 bp of the LTR) could direct synthesis in
vitro of peptides 36, 24, 21, and 18 kd in size (5,
6). The MMTV C3H LTR sequence published
by Donehower et al. (7) provided an open read-
ing frame capable of encoding the 24-, 21-, and
18-kd proteins, but not the 36-kd polypeptide.
By the addition of two extra bases at positions
2478 and 2486, our sequence extends the open
reading frame to the left end of the LTR and
allows the expression of the 36-kd protein.
These additional bases were also found by Done-
hower et al. on reanalysis of their sequence data

(7). The open reading frame thus begins with an
AUG codon one base from the 5' end of the LTR
and extends for 319 codons. An open reading
frame of similar or identical size has also been
found in the LTR of MMTV GR (11) and endog-
enous provirus GR40 or unit 11 (7, 13).
The significance of the open reading frame in

the MMTV U3 region has been widely dis-
cussed, but to date no protein products from this
region have been encountered in infected cells.
A few additional features of this putative viral
gene should be mentioned here. First, since the
candidate start codon begins with the second
base in the LTR, the start codon is likely to be
missing from the 5' LTR due to the loss of 2 bp
from the end of each LTR during integration
(16). Thus, synthesis of a protein longer than 24
kd from the 5' LTR would require an initiation
codon in the flanking cellular sequence (as noted
by Kennedy et al. [13]) in addition to signals for
transcription of the 5' LTR. A resolution to the
question of the function of this open reading
frame is promised by recent reports of viral
RNAs that would appear to be appropriate
mRNAs for its expression. Inspection of the
nucleotide sequence immediately upstream from
the start of the open reading frame reveals
candidate splice acceptor sites. van Ooyen et al.
(28a) and Wheeler et al. (30) have found in
normal mammary tissue, from some but not all
mouse strains, a 1.4-kb RNA species whose
structure is consistent with a spliced RNA that
employs one of these sites and would allow
expression of the LTR open reading frame.
However, this RNA is apparently transcribed
from an unspecified endogenous MMTV provi-
rus, and its function remains a mystery. Viral
replication presumably requires only the three
genes, gag, pol, and env, shared with other
replication-competent retroviruses lacking unas-
signed open reading frames. The open reading
frame cannot be required for the steroid respon-
siveness of MMTV, since LTRs from which the
entire reading frame has been deleted are still
competent to mediate steroidally regulated tran-
scription (manuscript in preparation).
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