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In important application fields today—genomics and proteomics
are examples—selecting a small subset of useful features is crucial
for success of Linear Classification Analysis. We study feature
selection by thresholding of feature Z-scores and introduce a
principle of threshold selection, based on the notion of higher
criticism (HC). For i � 1, 2, . . . , p, let �i denote the two-sided
P-value associated with the ith feature Z-score and �(i) denote the
ith order statistic of the collection of P-values. The HC threshold is
the absolute Z-score corresponding to the P-value maximizing the
HC objective (i/p � �(i))/�i/p(1 � i/p). We consider a rare/weak
(RW) feature model, where the fraction of useful features is small
and the useful features are each too weak to be of much use on
their own. HC thresholding (HCT) has interesting behavior in this
setting, with an intimate link between maximizing the HC objec-
tive and minimizing the error rate of the designed classifier, and
very different behavior from popular threshold selection proce-
dures such as false discovery rate thresholding (FDRT). In the most
challenging RW settings, HCT uses an unconventionally low thresh-
old; this keeps the missed-feature detection rate under better
control than FDRT and yields a classifier with improved misclassi-
fication performance. Replacing cross-validated threshold selec-
tion in the popular Shrunken Centroid classifier with the compu-
tationally less expensive and simpler HCT reduces the variance of
the selected threshold and the error rate of the constructed
classifier. Results on standard real datasets and in asymptotic
theory confirm the advantages of HCT.

false discovery rate � linear classification � threshold selection �
rare/weak feature models

The modern era of high-throughput data collection creates
data in abundance; however, this data glut poses new chal-

lenges. Consider a simple model of linear classifier training. We
have a set of labeled training samples (Yi, Xi), i � 1, . . . , n, where
each label Yi is �1 and each feature vector Xi � Rp. For
simplicity, we assume the training set contains equal numbers of
1’s and �1’s and that the feature vectors Xi � Rp obey Xi �
N(Yi�, �), i � 1, . . . , n, for an unknown mean contrast vector
� � Rp; here, � denotes the feature covariance matrix and n is
the training set size. In this simple setting, one ordinarily uses
linear classifiers, taking the general form L(X) � �j � 1

p w( j)X( j),
for a sequence of ‘‘feature weights’’ w � (w( j): j � 1, . . . , p).

Classical theory going back to R. A. Fisher (1) shows that the
optimal classifier has feature weights w � ��1 �; at first glance,
linear classifier design seems straightforward and settled. How-
ever, in many of today’s most active application areas, it is a
major challenge to construct linear classifiers that work well.

In many ambitious modern applications—genomics and pro-
teomics come to mind—measurements are automatically made
on thousands of standard features, but in a given project, the
number of observations, n, might be in the dozens or hundreds.
In such settings, p �� n, which makes it difficult or impossible to
estimate the feature covariance straightforwardly. In such set-
tings one often ignores feature covariances. Working in stan-
dardized feature space where individual features have mean zero
and variance one, a by-now standard choice uses weights w( j) �

Cov(Y, X( j)) ' �( j) (2, 3). Even when this reduction makes
sense, further challenges remain.

When Useful Features Are Rare and Weak
In some important applications, standard measurements gener-
ate many features automatically, few of which are likely to be
useful in any specific project, but researchers do not know in
advance which ones will be useful in a given project. Moreover,
reported misclassification rates are relatively high. Hence, the
dimension p of the feature vector is very large, and although
there may be numerous useful features, they are relatively rare
and individually quite weak.

Consider the following rare/weak feature model (RW feature
model). We suppose the contrast vector � to be nonzero in only
k out of p elements, where � � k/p is small, that is, close to zero.
As an example, we might have p � 10,000, k � 100, and so � �
k/p � 0.01. In addition, we suppose that the nonzero elements of
� have common amplitude �0. Because the elements X( j) of the
feature vector where �( j) � 0 are entirely uninformative about
the value of Y( j), only the k features where �( j) � �0 are useful.
The problem is how to identify and benefit from those rare, weak
features. Setting � � �n�0, we speak of the parameters � and �
as the sparsity and strength parameters and denote by RW(�,�)
this setting. [Related ‘‘sparsity’’ models are common in estima-
tion settings (4, 5). The RW model includes an additional feature
strength parameter � not present in those estimation models.
More closely related to the RW model is work in multiple testing
by Ingster and the authors (6–8), although the classification
setting gives it a different meaning.]

Naı̈ve application of the formula w � Cov(Y, X) in the RW
setting often leads to very poor results; the vector of empirical
covariances (Cov̂n,p(Y, X( j)): j � 1, . . . , p) is very high-
dimensional and contains mostly ‘‘noise’’ coordinates; the
resulting naive classification weights ŵnaive( j) � Cov̂n,p(Y, X( j))
often produce correspondingly noisy decisions. The data glut
seriously damages the applicability of such ‘‘textbook’’
approaches.

Feature Selection by Thresholding
Feature selection, that is, working only with an empirically
selected subset of features, is a standard response to data glut.
Here, and below, we suppose that feature correlations can be
ignored and that features are standardized to variance one. We
consider subset selectors based on the vector of feature Z-scores
with components Z( j) � n�1/2 �iYiXi( j), j � 1, . . . , p. These are
the Z-scores of two-sided tests of H0,j: Cov(Y, X( j)) � 0. Under
our assumptions Z � N(�, Ip), where � � �n� and � is the
feature contrast vector. Features with nonzero �( j) typically
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have significantly nonzero Z( j) and, conversely, other features
will have Z( j) consistent with the null hypothesis �( j) � 0. In
such a setting, selecting features with Z-scores above a threshold
makes sense. We identify three useful threshold functions: �*t(z),
� � {clip, hard, soft}. These are: clipping, �t

clip(z) � sgn(z), which
ignores the size of the Z-score, provided it is large; hard
thresholding, �t

hard(z) � z�1{�z� � t}, which uses the size of the
Z-score, provided it is large; and soft thresholding, �t

soft(z) �
sgn(z) (�z� � t)	, which uses a shrunken Z-score, provided it is
large.

Definition 1: Let � � {soft, hard, clip}. The threshold feature
selection classifier makes its decision based on Lt

� 
� 0, where
L̂t

�(X) � �j � 1
p ŵt

�( j) X( j), and ŵt
�( j) � �t

� (Z( j)), j � 1, . . . , p.
In words, the classifier sums across features with large train-

ing-set Z-scores, using a simple function of the Z-score to weight
the corresponding feature appropriately.

Well known methods for linear classification follow this
approach: The Shrunken Centroids method (9) reduces, in our
two-class setting, to a variant of soft thresholding; the schemes
discussed in refs. 10 and 11 are variants of hard thresholding.

Thresholding has been popular in estimation for more than a
decade (4); it is known to be successful in ‘‘sparse’’ settings where
the estimand has many coordinates, of which only a relatively few
coordinates are significantly nonzero. Although classification is
not the same as estimation, an appropriate theory for thresh-
olding can be constructed (unpublished work) showing that
threshold feature classifiers with ideally chosen thresholds work
well and even optimally control the misclassification rate.

One crucial question remains: how to choose the threshold
based on the data? Related proposals for threshold choice
include cross-validation (9), control of the false discovery rate
(12–14), and control of the local false discovery rate (15).

Higher Criticism
We propose a method of threshold choice based on recent work
in the field of multiple comparisons.

HC Testing. Suppose we have a collection of N P-values �i, which
under the global null hypothesis are uniformly distributed: �i �iid
U[0,1]. We perform the increasing rearrangement into order
statistics: � (1) � � (2) � . . . � �(N); and we note that, under the
null hypothesis, these order statistics have the usual properties
of uniform order statistics, including the asymptotic normality
�(i) �approx Normal(i/N, i/N(1 � i/N)). The ordered P-values may
be compared with such properties, leading to the following
notion.

Definition 2 (HC testing) (7): The higher criticism (HC) objec-
tive is

HC�i;��i�� � �N
i/N 	 ��i�

�i/N�1 	 i/N�
. [1]

Fix 
0 � (0, 1) (e.g., 
0 � 1/10). The HC test statistic is HC* �
max1 � i � 
0N HC(i; �(i)).

In practice, HC* is typically insensitive to the selection of 
,
especially in rare/weak situations. The HC-objective function is
the ‘‘Z-score of the P-value,’’ that is, a standardized quantity with
asymptotic distribution N(0, 1) under the null hypothesis. In
words, we look for the largest standardized discrepancy between
the expected behavior of the �i under uniformity and the
observed behavior. When this is large, the whole collection of
P-values is not consistent with the global null hypothesis. The
phrase ‘‘higher criticism’’ reflects the shift in emphasis from
single test results to the whole collection of tests (7). The HC test
statistic was developed to detect the presence of a small fraction
of non-null hypotheses among many truly null hypotheses (7).
Note: there are several variants of HC statistic; we discuss only

one variant in this brief note; the main results of ref. 7 still apply
to this variant. For full discussion, see ref. 7 and unpublished
work by the authors.

HC Thresholding. Return to the classification setting in previous
sections. We have a vector of feature Z-scores (Z( j), j � 1, . . . ,
p). We apply HC notions by translating the Z-scores into
two-sided P-values, and maximizing the HC objective over index
i in the appropriate range. Mixing standard HC notations with
standard multivariate data notation requires a bit of care. Please
recall that p always refers to the number of measured classifier
features, whereas terms such as ‘‘P-value’’ and ‘‘�(i)’’ refer to
unrelated concepts in the HC setting. In an attempt to avoid
notational confusion, let N' p and sometimes use N in place of
p. Define the feature P-values �i � Prob{�N(0, 1)� � �Z(i)�}, i �
1, . . . , N; and define the increasing rearrangement �(i), the HC
objective function HC(i; �(i)), and the increasing rearrangement
�Z�(i) correspondingly. Here, is our proposal.

Definition 3 (HC thresholding): Apply the HC test to the feature
P-values. Let the maximum HC objective be achieved at index ı̂.
The higher criticism threshold (HCT) is the value t̂HC � �Z�(ı̂).
The HC threshold feature selector selects features with Z-scores
exceeding t̂HC in magnitude.

Fig. 1 illustrates the procedure. Fig. 1 A shows a sample of
Z-scores, B shows a PP plot of the corresponding ordered
P-values versus i/N, and C shows a standardized PP plot. The
standardized PP plot has its largest deviation from zero at ı̂, and
this generates the threshold value.

Performance of HCT in RW Feature Model
In the RW(�,�) model, the feature Z-scores vector Z � N(�, Ip),
where � is a sparse vector with fraction � of entries all equal to
� and all other entries equal to 0.

Fig. 2 exhibits results from a collection of problems all with p �
1,000 features, of which only 50 are truly useful, that is, have �
nonzero in that coordinate, so that in each case the fraction of
useful features is � � 50/1,000 � 0.05. In this collection, the
amplitude � of nonzeros varies from 1 to 3. Here, the useful
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Fig. 1. Illustration of HC thresholding. (A) The ordered �Z� scores. (B) The
corresponding ordered P-values in a PP plot. (C) The HC objective function in
Eq. 1; this is largest at ı̂  0.01 N (x axes are i/N). Vertical lines indicate �(ı̂) in B
and �Z�(ı̂) in A.
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features are indeed weak: they have expected Z-scores typically
lower than some Z-scores of useless coordinates.

We compare HC thresholding with three other thresholding
rules: (i) FDRT(.5), thresholding with false feature discovery
rate (FDR) control parameter q � 0.5; (ii) FDRT(.1), thresh-
olding with false feature discovery rate control parameter q �
0.1; and (iii) Bonferroni, setting the threshold so that the
expected number of false features is 1. These three rules
illustrate what we believe to be today’s orthodox opinion, which
strives to ensure that most features in the classification rule are
truly useful, and to strictly control the number of useless features
present in the trained classifier. Local false discovery rate
control shares the same philosophy. We generated 1,000 Monte
Carlo realizations at each choice of parameters. We present
results in terms of the dimensionless parameter �, which is
independent of n; if desired, the reader may choose to translate
these results into the form �0 � �/�n for a conventional choice
of n, such as n � 40. Fig. 2 presents the empirical average
performance. As compared with traditional approaches, HCT
has, in the case of weak signals, a lower threshold, a higher
false-feature discovery rate, and lower missed-feature detection
rate (MDR); the misclassification rate (MCR) is also improved.
In these displays, as the signal strength � increases, HCT
increases, but FDRT decreases (for analysis of this phenomenon,
see unpublished work).

HCT Functional and Ideal Thresholding
We now develop connections between HCT and other important
notions.

HCT Functional. The HCT functional is, informally, the ‘‘threshold
that HCT is trying to estimate.’’ More precisely, note that, in the
RW(�, �) model, the empirical distribution function Fn,p of
feature Z-scores Fn,p(t) � AvejI{Z( j) � t}, approximates, for large
p and n arbitrary, the theoretical CDF F�,�(t) � (1 � �) �(t) 	
��(t � �), t � R, where �(t) � P{N(0, 1) � t} is the standard

normal distribution. The HCT functional is the result of the HCT
recipe on systematically replacing Fn,p(t) by F�,�(t).

We define the underlying true positive rate, TPR(t); the false
positive rate, FPR(t); and the positive rate, PR(t), in the natural
way as the expected proportions of, respectively, the useful, the
useless, and of all features, having Z-scores above threshold t.
The HC objective functional can be rewritten (up to rescaling) as

HC̃ �
PR� t� 	 FPR� t�

�PR� t��1 	 PR� t��
�

��TPR� t� 	 FPR� t��

�PR� t��1 	 PR� t��
. [2]

In the RW(�,�) model, we have TPR(t; �, �) � �(t � �) 	 �(�t �
�), FPR(t; �, �) � 2�(�t), and PR(t; �, �) � (1 � �) FPR(t) 	
��TPR(t). Let t0 � t0(�,�) denote the threshold corresponding to
the maximization limit 
0 in Definition 2: PR(t0; �,�) � 
0. The
HCT functional solves a simple maximization in t:

THC�F�,�� � argmaxt�t0
HC̃� t ; � , �� . [3]

Rigorous justification of this formula is supplied in ref. 12,
showing that in the RW(�,�) model, t̂n,p

HC converges in probability
to THC(F�, �) as p goes to infinity with n either fixed or increasing;
so indeed, this is what HCT is ‘‘trying to estimate.’’

Ideal Threshold. We now study the threshold that (if we only knew
it!) would provide optimal classifier performance. Recall that, in
our setting, the feature covariance is the identity � � Ip; the quantity
Sep(w; �) � w��/�w�2 is a fundamental measure of linear classifier
performance. The misclassification rate of the trained weights ŵ on
independent test data with true contrast vector � obeys

P�Error�Training Data, �}��(�Sep�ŵ ; ��� , [4]

where again � is the standard normal N(0, 1) CDF. Hence,
maximizing Sep is a proxy for minimizing misclassification rate
(for more details, see unpublished work).
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Fig. 2. Monte Carlo performance of thresholding rules in the RW model. (A–D) P � 1,000, � � 0.05, and x axes display �. (A) MCR1/2. (B) Average threshold. (C)
Average FDR. (D) Average MDR. Threshold procedures used: HC (black), Bonferroni (green), FDR (q � .5) (blue), FDRT (q � .1) (red). Averages from 1,000 Monte
Carlo realizations.
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For a fixed threshold t, let Sep(wclip
t ; �) denote the realized

value of Sep on a specific realization. For large p and n arbitrary,
this is approximately proportional to

Sep̃�t� �
�TPR� t� 	 2 �TSER� t��

�PR� t�
, [5]

where TPR and PR are the true and positive rates defined
earlier, and TSER(t) denotes the expected True Sign Error Rate
TSER(t)' P{Z( j) 
 0��( j) � 0}. We are in the RW model, so
Sep̃(t;�,�) can be written in terms of TPR(t; �, �), PR(�, �), and
TSER(t; �) � �(�t ��). We define the ideal threshold functional

TIdeal�F�,�� � argmaxtSep̃� t ; � , �� . [6]

Among all fixed thresholds, it achieves the largest separation for
a given underlying instance of the RW(�, �) model.

Comparison. How does the HCT functional compare with the
ideal threshold functional, both in value and performance? They
seem surprisingly close. Fig. 3 presents the values, FDR, MDR,
and MCR for these functionals in cases with � � 0 fixed and �
varying. The HCT functional quite closely approximates the
ideal threshold, both in threshold values and in performance
measures. In particular, we note that the behavior of the HCT
rule that was so distinctive in the rare/weak features model—
high false-feature discovery rate and controlled missed detection
rate—are actually behaviors seen in the ideal threshold classifier
as well. The systematic discrepancy between the HCT and the
ideal threshold at small � is due to the constraint t � t0 in Eq. 3.

ROC Analysis. The similarity between the HCT functional and the
ideal threshold functional derives from the expressions for PR(t;
�, �) and TPR(t; �, �) in the RW model. In the setting where very
few features are selected, (1 � PR(t))  1, and 2TSER(t) 


TPR(t), so we see by comparison of Eqs. 2 and 5 that HC̃(t; �,

�)  Sep̃(t; �, �), as reflected in Fig. 3 (for more discussion and
analysis, see unpublished work).

Consider two related expressions: Proxy1 � ��TPR(t)/�PR(t),
Proxy2 � ��TPR(t)/�FPR(t). Maximizing either of these proxies
over t is equivalent to seeking a certain point on the so called
receiver-operating characteristics (ROC) curve (FPR(t),TPR(t) : 0 

t 
 �). Fig. 4 shows a range of ROC curves; the maximizers of
HC̃(t), of Sep̃(t), and of Proxy1(t) are very close in the ROC space.
Since the misclassification rate MCR(t) � (1 � �)(1 � FPR)(t) 	
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��(1 � TPR)(t) is a Lipschitz function of the ROC coordinates, all
three maximizers must offer similar performance.

The maximizer of Proxy2 has a very elegant characterization,
as the point in t where the secant to the ROC curve is double
the tangent to the ROC curve, TPR�

FPR�
� TPR

2FPR
at t � tProxy2

. The
maximizer of Proxy1 obeys a slightly more complex relationship
TPR�

FPR�
� (2 FPR

TPR
(1 � �/2)(1 � �) 	 �)�1 at t � tProxy1

. For small
enough �, this nearly follows the same rule: secant 2� tangent.

For comparative purposes, FDR thresholding finds a point on the
ROC curve with prescribed secant: TPR

FPR
� 1 � �

�
�(q�1 � 1) at

t � � ��(q�1 � 1) at t � tFDR,q. Further, a local false discovery rate
threshold yields a point on the ROC curve with prescribed tangent
TPR�

FPR�
� 1 � �

�
(q�1 � 1) at t � tlocalFDR,q. Defining the true discovery

rate TDR ' 1 � FDR, we see that HCT obeys FDR
TDR

 1
2

local FDR
local TDR

,
at t � tProxy2

. HCT and its proxies are thus visibly quite different
from prescribing FDR or local FDR, which again underscores the
distinction between avoiding false-feature selection and maximizing
classifier performance.

Complements
Performance on Standard Datasets. In recent literature on classi-
fication methodology, a collection of six datasets has been used
frequently for illustrating empirical classifier performance (16).
We have reservations about the use of such data to illustrate
HCT, because no one can say whether any specific such dataset
is an example of rare/weak feature model. However, such
comparisons are sure to be requested, so we report them here.

Of the standard datasets reported in ref. 16, three involve
two-class problems of the kind considered here; these are the ALL
(10), Colon (17), and Prostate (18) datasets. In ref. 17, 3-fold
random training test splits of these datasets were considered, and
seven well known classification procedures were implemented:
Bagboost (16), LogitBoost (19), SVM (20), Random Forests (21),
PAM (9), and the classical methods DLDA and KNN. We applied
HCT in a completely out-of-the-box way by using definitions
standard in the literature. HCT-hard, which uses feature weights
based on hard thresholding of feature Z-scores, gave quite accept-
able performance. For comparison, introduce the relative regret
measure Regret(A) � [err(A) � minA�err(A�)]/[maxA�err(A�) �
minA�err(A�)]. This compares the achieved error rate with the best
and worst performance seen across algorithms. We report errors
rates and regrets side by side in Table 1, where rows 2–7 are from
Dettling (16), row 8 is provided by Tibshirani, and row 9 is the result
of HCT-hard.

Additionally, column 5 is the maximum regret across three
different datasets, and column 6 is the rank based on the
maximum regret. In the random-split test, HCT-hard was the
minimax regret procedure, always being within 29% of the best
known performance, whereas every other procedure was worse
in relative performance in at least some cases.

It is worth remarking that HCT-based feature selection clas-
sifiers are radically simpler than all of the other methods being
considered in this competition, requiring no tuning or cross-
validation to achieve the presented results.

Comparison to Shrunken Centroids. The well known ‘‘Shrunken
Centroids’’ (SC) algorithm (9) bears an interesting comparison
to the procedures discussed here. In the two-class setting, SC
amounts to linear classification with feature weights obtained
from soft thresholding of feature Z-scores. Consequently, HCT-
soft can be viewed as a modification to SC, choosing thresholds
by HCT rather than cross-validation. We made a simulation
study contrasting the performance of SC with HCT-hard, HCT-
soft, and HCT-clip in the rare/weak features model. We con-
ducted 100 Monte Carlo simulations, where we chose p � 10.000,
k � 100 (so � � k/p � 0.01), n � 40, and � � [1,3]. Over this range,
the best classification error rate ranged from nearly 50%—
scarcely better than ignorant guessing—to 
3%. Fig. 5 shows the
results. Apparently, HCT-soft and SC behave similarly—with
HCT-soft consistently better (here SC is implemented with a
threshold picked by 10-fold cross-validations). However, HCT-
soft and SC are not at all similar in computational cost at the
training stage, as HCT-soft requires no cross-validation or
tuning. The similarity of the two classifiers is, of course, explain-
able by using discussions above. Cross-validation is ‘‘trying’’ to
estimate the ideal threshold, which the HCT functional also
approximates. In Table 2, we tabulated the mean and standard
deviation (SD) of HCT and cross-validated threshold selection
(CVT). We see that CVT is on average larger than the HCT in
this range of parameters. We also see that CVT has a signifi-

Table 1. Error rates of standard classifiers on standard examples
from Dettling (16)

Method ALL/reg Col/reg Pro/reg m-reg R

Bagboo 4.08/0.59 16.10/0.52 7.53/0 0.59 6
Boost 5.67/1 19.14/1 8.71/0.18 1 7.5
RanFor 1.92/0.02 14.86/0.32 9.00/0.22 0.32 2
SVM 1.83/0 15.05/0.35 7.88/0.05 0.35 3
DLDA 2.92/0.28 12.86/0 14.18/1 1 7.5
KNN 3.83/0.52 16.38/0.56 10.59/0.46 0.56 5
PAM 3.55/0.45 13.53/0.11 8.87/0.20 0.45 4
HCT 2.86/0.27 13.77/0.14 9.47/0.29 0.29 1

reg, regret; col, colon; Pro, prostate; m-reg, maximum regret; R, rank based
on m-reg.
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Fig. 5. Comparison of error rates by using Shrunken Centroids, threshold
choice by cross-validation, and linear classifiers by using HCT-based threshold
selection. Simulation assuming the RW model. Black, HCT-soft; red, Shrunken
Centroids; green, HCT-clip; blue, HCT-hard. x axis displays �.

Table 2. Comparison of HCT and CVT

� HCT mean CVT mean HCT SD CVT SD

1.0 2.2863 3.8192 0.3746 1.9750
1.4 2.2599 3.3255 0.3401 1.7764
1.8 2.2925 3.0943 0.3400 1.3788
2.2 2.3660 2.6007 0.2921 0.8727
2.6 2.5149 2.5929 0.2644 0.5183
3.0 2.6090 2.9904 0.2698 0.5971
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cantly higher variance than the HC threshold; presumably, this
is why HCT-soft consistently outperforms SC. In fact, cross-
validation is generally inconsistent in the fixed-n, large-p limit,
whereas HCT is consistent in the RW model; hence the empirical
phenomenon visible in these graphs should apply much more
generally.

Alternative Classifier by Using HC. HC can be used directly for
classification (22), without reference to linear discrimination and
feature selection (for comparison with the method proposed
here, see unpublished work).

Theoretical Optimality. In a companion article (unpublished
work), we developed a large-p, fixed-n asymptotic study and

showed rigorously that HCT yields asymptotically optimal error
rate classifiers in the RW model.

Reproducible Research. All original figures and tables presented
here are fully reproducible, consistent with the concept of
Reproducible Research (23).
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