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Abstract
The surfaces of all vertebrate cells are decorated with a dense and complex array of sugar chains,
which are mostly attached to proteins and lipids. Most soluble secreted proteins are also similarly
decorated with such glycans. Sialic acids are a diverse family of sugar units with a nine-carbon
backbone that are typically found attached to the outermost ends of these chains. Given their location
and ubiquitous distribution, sialic acids can mediate or modulate a wide variety of physiological and
pathological processes. This review considers some examples of their established and newly
emerging roles in aspects of human physiology and disease.

Introduction to the biology of glycans
Teaching of molecular and cellular biology in the standard medical curriculum still focuses on
Crick’s 1970 ‘central dogma’ of molecular biology that ‘DNA makes RNA makes
protein’ [1], along with descriptions of cells, membranes and tissues. This gives physicians the
impression that nucleic acids, proteins, lipids and small molecules are the only major
constituents of the human cell. In fact, another major class of macromolecules was inadequately
considered during the molecular biology revolution of the last few decades, namely, sugar
chains or glycans [2]. The reasons for this omission were largely technical, as glycans were
more complex and difficult to study. In recent years glycans have emerged from this historical
obscurity, generating a specialized field of ‘glycobiology’ [3] – which essentially refers to the
molecular and cellular biology and physiology of glycans [4,5]. Meanwhile, preclinical
textbooks still say little about glycans, and the current generation of medical students and
physician-scientists are trained without adequate attention to this class of molecules. In fact,
glycans are ubiquitous in all biological systems. Being particularly prominent on cell surface
and secreted molecules, they are also important contributors to many physiological and
pathological interactions.

This review focuses on one class of sugars called the sialic acids, which are typically found at
the outermost end of glycan chains of all cell types [6–8]. These acidic sugars with a nine-
carbon backbone decorate all cell surfaces and most secreted proteins of vertebrates and
‘higher’ invertebrates, mediating or modulating a variety of normal and pathological processes
(Figure 1). First, by virtue of their negative charge and hydrophilicity, sialic acids have many
structural and modulatory roles. In a second category of functions, sialic acids serve as
components of binding sites for various pathogens and toxins [6,7,9,10], such as those listed
in Table 1. In most such interactions, a pathogen-binding protein recognizes certain forms of
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sialic acids presented in specific linkages to a defined underlying sugar chain. Although this
recognition is detrimental to the host expressing the cognate sialic acids, these molecules have
nevertheless persisted on all cell types in all vertebrates for a long evolutionary time. Thus,
they must have a third set of functions intrinsic to these organisms. Recent evidence indicates
that this is indeed the case, with several sialic acid binding proteins having been discovered
over the last few decades [6–10]. A final class of functions is ‘molecular mimicry’, in which
successful microbial pathogens decorate themselves with sialic acids, assisting in evasion of
host immunity [11] (see Table 2 for some examples). These varied functions of sialic acids are
to some extent antagonistic, generating an evolutionary arms race in which vertebrate hosts
need to maintain sialic acids for critical endogenous functions – even while constantly changing
them to avoid rapidly evolving pathogens that are either binding to or mimicking them.
Available data are consistent with this evolutionary scenario [12].

With this overview, we can now consider examples in which sialic acids mediate specific roles
in health and disease. Given the likely readership, these examples are presented in an order
typical of the medical curriculum. Consideration of each example is, of necessity, brief and
somewhat superficial, and the emphasis is placed on areas where there have been recent
advances.

Anatomy and physiology
Given their negative charge and hydrophilicity, sialic acids contribute to the biophysical
features of several biological systems. For example, the negative charge on human erythrocytes
and other cell types provides charge repulsion, preventing unwanted interactions of cells in the
blood circulation. The density of sialic acids in the glomerular basement membrane and on the
foot-processes of podocytes appears critical in maintaining the normal filtering function of the
organ [13,14], and extended polysialic acid chains can affect neuronal plasticity [15–18]. The
luminal surface of the vascular endothelium is also very heavily sialylated [19]. At the level
of molecular physiology, sialic acids can modulate the half-life of some proteins in the
circulation [20,21], especially under pathological conditions such as infections with sialidase-
expressing bacteria (see below).

Pharmacology
As mentioned above, sialic acids are critical factors determining the half-life of glycoproteins
in circulation. Thus, if sialic acids are missing, underlying monosaccharides such as galactose
are recognized by receptors in the liver and other organs, and the glycoprotein is rapidly cleared
away [21]. It is currently unclear if this mechanism contributes towards modulating the intrinsic
half-life of glycoproteins. Regardless, the phenomenon is of practical relevance because many
biotherapeutic products (antibodies, cytokines and hormones) are glycoproteins [22]. Many
such products must be produced in mammalian cell lines. The extent of sialylation (often called
‘capping’) of the glycans on therapeutic glycoproteins can vary depending on conditions of
culture and production. Although a small amount of ‘uncapping’ is acceptable, any major
degree of under-sialylation results in rapid clearance of the molecule. As such, most
biotherapeutic products are tested for such terminal sialylation, often as a requirement of the
US Food and Drug Administration. Many attempts are now being made to enhance sialylation
in animal cells [23] or to even produce sialylated glycoproteins in yeast [24] or in insect cells
[25].

Another potential impact of sialic acids on pharmacology arises from the fact that the non-
human sialic acid N-glycolylneuraminic acid (Neu5Gc) frequently contaminates glycoprotein
biotherapeutic products [26–30]. This occurs for three reasons. First, the fear of human
pathogen contamination causes most manufacturers to produce glycoprotein biotherapeutic
products in non-human cell lines – which can attach Neu5Gc to the glycans on the product.
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Second, some of the media components used to culture cells (fetal calf serum and many so-
called ‘serum substitutes’) contain substantial amounts of Neu5Gc, which gets metabolically
incorporated into the therapeutic cells or glycoproteins [27,31]. Third, Neu5Gc-containing
components of the animal-derived media components might be directly adsorbed onto cells
designated for therapy. These issues are of potential significance because contrary to prior
literature [32], we now know that all normal humans have varying and sometimes substantial
levels of circulating antibodies directed against Neu5Gc [33–35]. The reason that prior studies
[32] missed these antibodies was that the assay used would not have picked up most Neu5Gc-
containing epitopes. Moreover, the biotherapeutic products first introduced into humans were
cytokines, such as erythropoietin, which were given in very small quantities and had low levels
of Neu5Gc to begin with [36]. By contrast, mouse myeloma cells have very high levels of
Neu5Gc, and antibodies produced in them are correspondingly rich in this molecule [37–39].
The same is true of molecules secreted into the milk of transgenic goats [40].

The implications of this Neu5Gc contamination are still being investigated [41]. One possible
outcome is variation in half-life of biotherapeutics or in transplant survival, depending upon
the anti-Neu5Gc antibody profile of each patient. A more serious possibility is that formation
of antigen–antibody complexes, which could secondarily enhance immune reactions against
the polypeptide itself [42]. Additionally, patients receiving such products might enhance their
own intrinsic anti-Neu5Gc antibody production. Such circulating antibodies could also be of
pathological relevance, as normal humans are meanwhile consuming Neu5Gc in food and
metabolically incorporating it into cell types such as endothelia and epithelia [34]. In the final
analysis there remains some controversy about the significance of Neu5Gc contamination of
biotherapeutic agents and cells. Regardless, in the long run it would seem sensible to find ways
to avoid injecting humans with a potentially immunogenic non-human molecule.

Fertilization and development
Much evidence suggests that various glycans (including sialic acids) can influence fertilization,
not only during sperm–egg contact [43] but also during interactions of sperm with various
fluids and surfaces of the female reproductive tract before it reaches the ovum [44]. For
example, there is an agglutinin in the endometrium that recognizes sialic acids [45], and sialic
acids appear to be directly involved in fertilization in some systems [46]. However, few
definitive conclusions have been reached. Sialic acids also affect embryogenesis. Despite the
fact that cultured cells can survive and divide in the absence of these sugars, genetic elimination
of sialic acid production in the mouse results in early embryonic lethality [47]. The mechanism
of lethality is unknown.

Genetics
There are about sixty genes known to be involved in sialic acid biology [48], and the extent to
which they are critical for normal development and physiology is being investigated. The
embryonic lethality mentioned above was induced by experimental inactivation of GNE, the
gene which encodes the enzyme responsible for synthesis of sialic acids. In humans, missense
mutations of the same gene result in two genetic disorders of sialylation compatible with post-
embryonic survival. First, certain mutations of GNE are associated with hereditary inclusion
body myopathy, also sometimes called distal myopathy with rimmed vacuoles [49–52]. This
unusual disease and some related disorders are myopathies that appear late in life and that spare
some muscle groups. There is controversy as to whether the myopathy is primarily due to (i)
a lack of sialic acid production, (ii) some other as-yet-unknown function of GNE or (iii) a
combination of the two [53,54], as well as whether the mouse model of the disease is
representative of the human disorder [53,54]. In another disease, the lack of feedback inhibition
of GNE by the downstream product cytidine monophosphate (CMP)-sialic acid results in
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massive overproduction of sialic acids, which are excreted into body fluids [55–57]. Individuals
with the latter disorder, called sialuria, can have varying degrees of involvement of organ
systems, including the brain. Again, details of pathological mechanisms are unclear. Another
genetic disorder involves a defect in transport of sialic acids from lysosomes into the cytosol.
A severe form of this defect is infantile sialic acid storage disease [58,59], and the milder
version is called Salla disease [60]. Finally, ‘sialidoses’ are defects in the sialidase that removes
sialic acids from glycoconjugates, resulting in accumulation of sialic-acid-containing
macromolecules in the lysosome [61].

Pathology
Changes in sialic acid expression are seen in many pathological states, several of which are
discussed in later sections. These changes can be detected in histological sections by using
plant lectins or antibodies to detect specific sialylated glycans [62,63]. In clinical pathology,
sialic acid measurements of body fluids are used to predict disease risk. There have been many
papers suggesting that measurements of total sialic acid in the serum [64–67] can predict the
risk of various diseases. However, the logic by which such measurements are of prognostic
value is largely unknown – one possibility is that it is a general indication of the ‘acute phase
response’ in which hepatocytes increase their secretion or various heavily sialylated
glycoproteins [68–70]. One possibility is that such glycoproteins engage inhibitory Siglecs and
tune down the innate immune response [71]. There is also literature linking sialic acid levels
on lipoproteins to cardiovascular disease risk, apparently by affecting the interactions of
lipoproteins with endothelium [72,73]. Some sialylated molecules can be detected in the serum
as markers of cancer progression (see below). Finally, loss of sialylation on serum transferrin
is used as a screening test both for chronic alcohol consumption [74] and for congenital
disorders of glycosylation [75–77].

Microbiology and infectious disease
Given their terminal location and wide distribution, sialic acids are not surprisingly the targets
for binding by a large number of pathogenic organisms and their toxins [9]. Some examples
are listed in Table 1. It can be seen that binding specificity goes beyond simple recognition of
sialic acid in most cases, including the types of sialic acids, their modifications, and their
linkage to the underlying sugar chain. Perhaps the best-known role of sialic acids is in binding
of influenza viruses to airway epithelium, a critical first step in the process of infection of a
cell by the virus [78,79]. In this regard, there has been much attention recently on avian
influenza (‘the bird flu’) and the risk that this virus might ‘jump’ into humans [80]. Such
‘jumps’ require the hemagglutinin component of the virus to undergo specific mutations,
switching from preferentially recognizing the α2-3-linkage of sialic acids found in the intestinal
epithelium of birds (where the virus resides), to preferentially binding α2-6-linked sialic acids,
which are enriched on the airway epithelium of humans [78,81,82]. In fact, such a direct
transmission is rather rare. More commonly, the virus makes its way from wild birds into
poultry, and then into other domesticated mammals such as the pig, which is claimed to act as
a ‘mixing vessel’ as it has both α2-3- and α2-6-linked sialic acids on the epithelium [78]. There
is now evidence that a direct bird to human transfer did occur at least once before, when the
infamous 1918 influenza pandemic killed tens of millions of people [83,84]. Recent examples
of severe and even lethal human infections with avian flu might be explained by the fact that
these individuals inhaled a very large dose of virus, which reached the lower airways, where
α2-3-linked sialic acids are present in humans [80]. Fortunately, there have yet to be conclusive
cases of human-to-human transmission of avian influenza. Of course, pathogen binding can
also be blocked by the decoy function of soluble mucins, which are secreted into airways and
carry large amounts of sialic acids [85]. This complexity [82] appears to have not been
considered in many current studies that try to explain influenza pathogenesis.

Varki Page 4

Trends Mol Med. Author manuscript; available in PMC 2009 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Meanwhile, many successful pathogens express sialic acids on their own surfaces (see Table
2). Control of the alternative complement pathway by recruitment of factor H, masking of
underlying epitopes, enhanced intracellular survival and reduced immunogenicity result from
this sialic acid expression [86–88]. However, such processes cannot fully explain why bacteria
go to elaborate lengths to not only synthesize sialic acids but also display them on extended
glycan chains that almost perfectly mimic mammalian structures [11,89]. We have suggested
that recognition of these complex sialylated glycans by CD33-related Siglecs might send a
negative signal to innate immune cells, thereby enhancing survival of the bacteria [12,89].
Studies of this possibility are currently under way.

Immunology
Sialic acids are critical components of most ligands for the selectin family of cell adhesion
molecules, which mediate leukocyte rolling along endothelium, as well as other interactions
between immune cells and/or involving platelets [8,10]. Sialic acids are also the ligands for
the Siglec family of cell adhesion molecules, which appear to be involved in regulating the
immune response [8,12,90]. Marked changes in sialic acid linkages occur during the
development of immune cells. For example, during thymic development of T cells,
upregulation of the enzyme ST3Gal-I causes ‘capping’ of a glycan structure otherwise
recognized by the lectin peanut agglutinin. This developmental change is conserved in
vertebrate evolution, and genetic disruption of this transition results in a loss of cytotoxic T
cells, apparently accelerating a normal mechanism of T cell turnover after an immune response
[91]. Also, α2-6-linked sialic acids are markedly upregulated during the development of B cells
[92], coinciding with the binding preference of the B cell surface molecule CD22/Siglec-2,
which modulates the B cell response to antigen stimulation [12,90]. Sialoadhesin (Siglec 1)
expressed on macrophages appears to both modulate the immune response and act as a
phagocytic receptor for pathogens bearing sialic acids [93]. On a more general note, activation
of immune cells appears to be associated with a downregulation of cell surface sialic acids,
possibly mediated by a specific sialidase. In vitro studies suggest that this loss of sialic acids
might alter aspects of the immune response [94,95].

Cardiovascular physiology and disease
One function of the high concentration of sialic acids on the luminal face of the endothelium
[19] is to generate ligands for recognition by L-selectin on leukocytes [96]. Conversely, E-
selectin expressed on activated endothelium, and P-selectin expressed on activated
endothelium or platelets can recognize sialic-acid-containing ligands on leukocytes. These
selectin-mediated interactions are dependent on additional modifications of the glycans, such
as fucosylation and sulfation, and mediate processes involved in inflammation, lymphocyte
recirculation, blood coagulation and reperfusion injury [96,97]. Studies in genetically deficient
mice show that the P- and E-selectins also play a role in the early stages of development of
atherosclerosis [98]. As mentioned earlier, the sialic acids on low density lipoproteins (LDLs)
appear to play a role in determining uptake of lipids by endothelium and thus potentially in the
development of atherosclerosis [72,73]. Variant alleles of P- and E-selectin have even been
associated with risk of cardiovascular disease [99,100].

Hematology and oncology
Sialic-acid-containing glycans on blood cells can be the target for recognition by some ‘cold
agglutinin’ disease antibodies [101,102]. These can arise either spontaneously (in the form of
chronic cold agglutinin disease) or transiently during infections with Mycoplasma
pneumoniae. The later antibodies are thought to arise from anti-idiotypic reactions against
primary antipathogen antibodies that mirror the sialic-acid-binding pocket of the bacterial
receptor [103]. There are distinct changes in sialylation associated with malignant
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transformation (see Table 3). In some instances it has been shown that these sialic acid
structures and linkages are associated with progression and poor prognosis of carcinomas
[104,105]. In at least one case, this association can be explained by the recognition of malignant
cells by selectins, causing interactions of the circulating tumor cells with platelets, leukocytes
and endothelium, and thereby facilitating metastasis [106,107]. The overall general increase
in sialic acid content of tumor cells might also serve to protect them from alternative pathway
complement activation by recruiting plasma factor H to the membrane – and, conversely, tumor
cells might secrete factor H for the same reason [108]. Secreted or proteolytically released
carcinoma mucins bearing some of these unusual forms of sialylation can be detected in the
bloodstream of cancer patients and are used as diagnostic and prognostic aids [109,110]. The
sialylated forms of these mucins are resistant to clearance by liver receptors [111], which is
likely to explain the association of unusual thrombotic events with mucin-producing
carcinomas – called Trousseau’s syndrome [112,113].

Tumors accumulate the non-human sialic acid Neu5Gc even while the patient is expressing
enhanced levels of antibodies directed against these Neu5Gc-containing epitopes [114]. We
have hypothesized that this occurs because the resulting weak immune response is actually
beneficial to the tumor cell [34], perhaps by enhancing leukocyte infiltration and angiogenesis.
Possible mechanisms for Neu5Gc accumulation include enhanced macropinocytosis and
hypoxia-induced upregulation of a lysosomal transporter [31,115]. The prognostic or
diagnostic significance of these anti-Neu5Gc antibodies is under investigation.

An exciting recent advance has been the discovery the somatic loss of the X-linked Cosmc
gene in hematopoeitic stem cells, which could explain the aberrant sialylation seen in
Siaα2-3GalNAcα-Ser/Thr (Tn)-polyagglutinin syndrome [116]. The same defect appears to
account for most, if not all, of the classic findings of overexpression of the tumor antigen sialyl-
Tn in many carcinomas [117]. In a nutshell, mutational loss of the Cosmc chaperone causes a
secondary loss of the key enzyme in O-glycan elongation. This results in the formation of
truncated O-glycans that can undergo direct sialylation, generating the sialyl-Tn antigen, which
is extremely rare in normal tissues [62].

Neuroscience and neurology
For unknown reasons, the brain is the organ with the highest level of sialic acids in the body,
much of it in the form of sialylated glycolipids (gangliosides) [118]. As mentioned earlier, one
function is the formation of polysialic acid, which is well documented as playing a part in
facilitating neuronal sprouting and plasticity [15–18]. Ganglioside recognition by myelin-
associated glycoprotein (Siglec-4) also plays a critical role in mediating myelin stability and
in inhibiting neural sprouting after injury [119]. In this regard, an exciting recent finding is that
sialidase injections enhance spinal axon outgrowth in vivo [120], possibly by destroying the
ganglioside ligands for Siglec-4. In addition to the brain-affecting genetic disorders of sialic
acid metabolism mentioned earlier, an autosomal recessive defect in synthesis of the
ganglioside GM3 causes an infantile-onset symptomatic epilepsy syndrome associated with
developmental stagnation and blindness [121]. Interestingly, mice with the same genetic defect
have a milder phenotype, involving enhanced insulin sensitivity [122].

Immune reactivity against sialic-acid-containing nervous system molecules can result in severe
pathology. Guillian-Barré syndrome (an acute generalized peripheral neuropathy) is often
triggered by intestinal infections with Camplyobacter jejuni, which synthesizes sialylated
mimics of neural gangliosides on its lipooligosaccharides [123,124]. Such infections are
followed in rare instances by generation of antibodies that cross-react with gangliosides on
neural cells. The pathogenic role of the antibodies is well documented, as is their specificity
for different types of ganglioside structures, each resulting in somewhat different neurological
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syndromes. Some bacterial neural toxins, such as those from Botulinum and Tetanus, mediate
toxicity by first recognizing sialic-acid-containing gangliosides in the brain [125]. For
uncertain reasons, many of the bacteria that successfully invade the nervous system tend to
decorate their surfaces with sialic acids [11]. Although such ‘molecular mimicry’ bestows the
ability to evade immune recognition (see above), it is unclear why there is a propensity for
these agents to invade the brain. Animal studies showed that bovine brain ganglioside infusions
could improve recovery after stroke by uncertain mechanisms, and this approach was extended
into human clinical studies [126]. However, a few of the patients developed a Guillian-Barré-
like syndrome [127], apparently because of an immune response to gangliosides such as GM1
[128]. It has also been suggested that this reaction might have been facilitated by contamination
with the gangliosides containing the sialic acid Neu5Gc [127]. This, together with the
emergence of ‘mad cow’ disease, terminated such studies. However, the original animal
observations remain valid, and the approach might deserve re-visiting in the future.

Pulmonary medicine
Sialic acids are prominently expressed along the epithelial border lining the airways and are
also major components of the secreted mucins in the airways. As mentioned earlier, these
represent binding sites for pathogens such as the influenza virus. They also provide the negative
charge and hydrophilicity that contribute to the rheological properties of mucus [85], which
serves to lubricate the airways, as well as trapping pathogens and other unwanted components
of inhaled air. Inappropriate, excessive or abnormal production of mucus can be pathological.
An extreme example is cystic fibrosis, a genetic defect in a chloride channel that secondarily
results in altered glycosylation of mucins, with decreased sialylation and increased sulfation
being prominent [129]. The link between these glycosylation differences and the changes in
physical properties of the mucus have not been fully elucidated. In a related matter, the
Pseudomonas strain that colonizes the airways in cystic fibrosis can use sialic acids as binding
sites [130].

Endocrinology
Sialic acids are found on circulating glycoprotein hormones such as those originating from the
pituitary gland [luteinizing hormone (LH) and follicle-stimulating hormone (FSH)] and from
the placenta [human chorionic gonadotropin (hCG)]. While the N-glycans of hCG and FSH
are completely sialylated, those of the LH can instead undergo an unusual modification, with
addition of 4-O-sulfated GalNAc termini [131]. These glycosylation differences determine the
fate of LH in circulation, with the sulfated molecules being rapidly cleared by a specific
receptor in the liver. This in turn determines circulatory half-life and the sharpness of the spikes
of these hormones in the female circulation, which eventually optimize the reproductive cycle
[131]. Recent evidence using gene knockout mice has confirmed a key role for these glycan
differences in reproductive biology [132]. By contrast, the sialylated hCG originating from the
placenta persists in the circulation for much longer, something that is most appropriate for the
pregnant state.

Nephrology
Sialic acids are highly concentrated in the glomerular basement membrane, being displayed
on the major glycoprotein of the podocytes of the glomerular basement membrane [13]. The
level and distribution of sialic acids affect the efficient filtration functions of the membrane
[14]. In so-called ‘minimal change’ nephrosis, there is a loss of sialic acids in this region, and
a similar situation can be induced in animal models with certain drugs. The mechanism of sialic
acid loss in the naturally occurring disease remains uncertain. Some cases of hemolyticuremic
syndrome have implicated neuraminidases (sialidases) released during bacterial infections
[133]. The aberrant sialylation of IgA immunoglobulin seen in IgA nephropathy [134] is likely
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to be explained by the somatic loss of the X-linked Cosmc gene in certain antibody-secreting
cells (see discussion above regarding the role of the same gene loss in blood diseases and
cancer).

Gastroenterology
As with the lung and airways, the entire lining of the gastrointestinal tract has a dense and rich
array of sialic acids, on both cell surface and secreted molecules. Many of the comments made
above concerning the airways apply to the gastrointestional tract as well. The stomach typically
has an acidic environment in which sialic acids can be chemically released, and sialic acid
content tends to be low, often replaced by sulfation. However, there is sufficient sialic acid
remaining for it to be used as one of the receptors for Helicobacter pylori [135], the pathogen
that facilitates ulcer disease and gastric cancer. Further down in the intestinal tract it is common
to find highly modified sialic acids, in which addition of O-acetyl esters is dominant [136].
The reason is not clear, but such modifications do block both the binding of a variety of
pathogens and hinder the action of sialidases released by other pathogens. The highest density
of these modifications is found in the colon, where one can find di-O-acetylated and even tri-
O-acetylated sialic acids. Interestingly, this modification tends to decrease or even disappear
in the course of development of both ulcerative colitis and colon carcinoma [137]. The
significance of this change is uncertain, but there has been discussion of its use as a biomarker
for early cancer.

Hepatology
The liver secretes a large number of glycoproteins into the circulation, all of which are
sialylated on the termini of their glycans. As mentioned earlier, the addition of these sialic acids
assures the survival of these serum proteins, and their removal can result in rapid clearance
mediated by hepatic receptors that recognize the underlying sugar chain [20,21]. This is also
of relevance in biotechnology, in that many biotherapeutic agents must be produced as
glycoproteins, which require adequate sialic acid capping of their glycans to avoid rapid
clearance [22]. More recently, it has been shown that the classic hepatic asialoglycoprotein
‘Ashwell receptor’ might serve to reduce the level of coagulation determinants, such as platelets
and Von Willebrand factor, that have been desialylated by a sialidase released during sepsis
with organisms like pneumococcus [138]. Far from being a negative consequence, it appears
that this clearance process serves to protect the organism from excessive intravascular
coagulation and death [138].

Dermatology
In inflammatory skin diseases, the infiltration of skin by lymphocytes is mediated via
recognition of sialic-acid-containing molecules that act as ligands for the selectins (see above).
The subsequent recruitment of innate immune cells into the area of inflammation is also
mediated by the selectins [139]. Gangliosides are expressed prominently in melanomas, where
sialic acid modifications can generate a relatively tumor-specific antigen called 9-O-acetyl-
GD3 [140,141].

Conclusions and future prospects
This brief tour provides some examples of the significance of sialic acids in normal and
pathological states, with some emphasis on the most recent advances. Given the ubiquitous yet
diverse expression patterns of sialic acids and the limited amount of research done in this area,
it is reasonable to suggest that we are only seeing the proverbial ‘tip of the iceberg’ and that
many more functions of sialic acids, together with their roles in physiological and pathological
processes, remain to be uncovered (see examples in Box 1). This is certainly a fascinating area
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of cellular and molecular biology in which much work still needs to be done, and it can provide
great opportunities for young investigators interested in pursuing new challenges.

Examples of outstanding questions about sialic acids in health and disease
• Why is there such a high density of sialic acids on the luminal face of endothelial

cells?
• Is it possible to better control sialylation levels and eliminate the non-human sialic

acid Neu5Gc from biotherapeutic glycoproteins, such as antibodies and cytokines?
• Is it possible to efficiently produce fully sialylated biotherapeutic glycoproteins in

plants?
• Does altered sialylation affect fertilization and implantation?
• What is the role of the uterine agglutinin that binds sialic acids?
• Given the production of viable but abnormal mice with several different sialylation

defects, are there corresponding human genetic disorders yet to be recognized?
• Is it possible to prevent invasion by sialic-acid-recognizing pathogens by altering

cell surface sialylation and/or soluble blocking agents?
• What is the best way to monitor for the dangerous adaptation in binding preference

of avian influenza viruses towards human sialylated receptors?
• Are pathogens expressing complex sialylated glycans that mimic human structures

taking advantage of inhibitory Siglecs on innate immune cells?
• How do the changes in sialylation that take place during inflammatory acute phase

reactions alter the immune response?
• Can clinically approved heparins be used as surrogate agents to block selectin-

mediated pathologies?
• Can we find an orally active agent that will efficiently block selectins in chronic

inflammatory states?
• Are there other diseases caused by Cosmc mutations that allow the overproduction

of sialyl-Tn?
• Are forms of sialyl-Tn with modified sialic acids even more tumor-specific?
• Can we take advantage of enhanced Neu5Gc incorporation into tumor cells to find

and target new tumor-specific epitopes?
• How exactly are dietary non-human sialic acids metabolized and incorporated into

the body?
• Can manipulation of polysialic acid levels be used to enhance neural regeneration

after injury?
• Can we modulate glomerular podocyte sialic acid levels to correct nephrotic

syndromes?
• Can we alter the action of pathogen-expressed sialidases in favor of the host?
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Figure 1.
Some biological and pathological roles of sialic acids. First, due to their negative charge and
hydrophilicity, sialic acids have many structural or physical roles, for example in neural
plasticity, glomerular filtration or blood cell charge repulsion. Second, sialic acids serve as
components of binding sites for various pathogens and toxins [6,7,9,10], such as those listed
in Table 1. In most such interactions, a pathogen-binding protein (extrinsic receptor) recognizes
certain forms of sialic acids presented in specific linkages to a defined underlying sugar chain.
In the case of recognition by extrinsic receptors (pathogen-binding proteins and toxins), only
a few examples are listed. Third, sialic acids serve as ligands for intrinsic receptors such as
Siglecs and factor H [8,10,12,90,96,97]. The possible interactions between sialic acids (as
sialylated glycan molecules) expressed on host cells (self) with intrinsic receptors expressed
on the same or different host cells is shown. A final class of functions is ‘molecular mimicry’,
in which successful microbial pathogens decorate themselves with sialic acids, assisting in
evasion of host immunity [11] (Table 2). These varied functions of sialic acids are to some
extent antagonistic, generating an evolutionary arms race in which vertebrate hosts need to
maintain sialic acids for critical endogenous functions – even while constantly changing them
to avoid rapidly evolving pathogens that are either binding to or mimicking them [12].
Abbreviations: L1CAM, L1 cell adhesion molecule; PILR, paired immunoglobulin-like
receptor.
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Table 1
Examples of pathogens that bind to sialic acids on human cell surfaces

Pathogen Binding protein Known target sialylated sequence
Human Influenza A Hemagglutinin Siaα2-6Gal(NAc)
Avian Influenza A Hemagglutinin Siaα2-3Galβ1-
Human Influenza C Hemagglutinin-esterase 9-O-Ac-Siaα2-
Vibrio cholerae Toxin Galβ1-3GalNAcβ1,4(Siaα2-3)Lac-Cer
Plasmodium falciparum EBA-175 Siaα2-3Galβ1-3(Siaα2-6)GalNAc-O-
Clostridium botulinum Toxin Polysialogangliosides
Helicobacter pylori SabA Siaα2-3Gal on gangliosides
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Table 2
Examples of pathogens that express sialic acids on their surfaces

Pathogen Major disease
Sialic acid synthesized by pathogen
Neisseria meningitidis B Meningitis
Escherichia coli K1 Neonatal meningitis
Group B Streptococcus Neonate and infant infections
Campylobacter jejuni Enteritis, Guillian-Barré syndrome
Host sialic acid taken up by pathogen
Hemophilus influenzae Respirator infections
Hemophilus ducreyi Chancroid
Host sialic acid transferred by trans-sialidase
Trypanosoma cruzi Chagas disease
Corynebacterium diphtheriae Diphtheria
Host CMP-sialic acid used by sialyltransferase
Neisseria gonorrhoea Gonorrhoea
Neisseria meningitidis group A Meningitis
Source of sialic acid un known
Sporotrichium schenkii Skin infection
Aspergillus fumigatus Opportunistic infections
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