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Abstract
Background: Quasi-steady state approximation (QSSA) based on time-scale analysis is known to
be an effective method for simplifying metabolic reaction system, but the conventional analysis
becomes time-consuming and tedious when the system is large. Although there are automatic
methods, they are based on eigenvalue calculations of the Jacobian matrix and on linear
transformations, which have a high computation cost. A more efficient estimation approach is
necessary for complex systems.

Results: This work derived new time-scale factor by focusing on the problem structure. By
mathematically reasoning the balancing behavior of fast species, new time-scale criteria were
derived with a simple expression that uses the Jacobian matrix directly. The algorithm requires no
linear transformation or decomposition of the Jacobian matrix, which has been an essential part for
previous automatic time-scaling methods. Furthermore, the proposed scale factor is estimated
locally. Therefore, an iterative procedure was also developed to find the possible multiple boundary
layers and to derive an appropriate reduced model.

Conclusion: By successive calculation of the newly derived time-scale criteria, it was possible to
detect multiple boundary layers of full ordinary differential equation (ODE) models. Besides, the
iterative procedure could derive the appropriate reduced differential algebraic equation (DAE)
model with consistent initial values, which was tested with simple examples and a practical example.

Background
The dynamic simulation of bio-reaction pathways is
becoming more important as the kinetic information of
various pathways is revealed. Moreover, the necessary data
for the specific pathways are easily obtained through var-
ious channels, including the internet. However, there are
fundamental difficulties in the numerical solution of the

differential equation system: model stiffness is one. a bio-
reaction system consists of multiple reactions with various
enzymes that have different turn-over numbers, meaning
various magnitudes of reaction rates. Furthermore, the
metabolites involved in one reaction can also participate
in other reactions in the same system. These characteristics
make typical bio-systems strongly coupled and have mul-
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tiple time-scales. Therefore, ordinary differential equa-
tions (ODEs) based on the dynamic modeling of a
metabolic system are usually stiff.

The stiffness problem requires unnecessary effort to track
the boundary layer solutions, hence, the computational
efficiency decreases. Furthermore, when the simulation is
concurrent with the experiment, the calculation accuracy
is closely related to the measurement interval. If the meas-
urement interval is modest so that it is impossible to find
some specific parameters, then the numerical result does
not need to be precise. In these situations, by sacrificing
the accuracy modestly, simplifying the model structure is
necessary, which is often the case for parameter estima-
tions and sensitivity analyses [1].

For this purpose, apart from a numerical analysis
approach, the kinetic field's specific solution methods
have been required [2]. Traditionally, simplification of an
original complex model, such as a quasi-steady state
approximation (QSSA) and a partial equilibrium approx-
imation, have been applied to relieve the stiffness charac-
teristics [3-7]. However, since these approaches require
the practitioner's intuition and experience, computational
methods have been developed, especially vividly in com-
bustion engineering fields. There are two important pro-
cedures in computational model simplification: the
determination of the simplification criteria and the deter-
mination of the slow invariant manifolds.

Some computational methods concentrated on deriving
the correct slow manifolds. They are iterative trajectory
based methods [8,9], the method of invariant manifold
(MIM) [10], the minimal entropy production trajectory
(MEPT) based methods [11,12], and the nonlinear model
reduction method [13]. Gorban et al. collected and
reviewed such kinds of methods [14].

The others suggested the appropriate simplification crite-
ria: generalized sensitivity analyses [15] used singular val-
ues of the sensitivity matrix as the scale factor, while
computational singular perturbation (CSP) [16-18],
intrinsic low dimensional manifold (ILDM) [19], and
dynamic dimension reduction, which is a modified ver-
sion of ILDM [20,21], used the eigenvalue analysis of the
system's Jacobian matrix with focusing on the time-scales
of the system. Currently, ILDM based methods have been
applied to reduce complexity of biochemical systems [21-
23]. Since CSP or ILDM based methods use the dynamic
properties of a system, they can give the dynamically use-
ful information of the system.

Even if there are several differences between the CSP and
ILDM, the most important ideas are similar: the determi-
nation of the speed ranking is based on the eigenvalue cal-

culation of the Jacobian matrix, which require at least
O(n3) flops of computation, and the derivation of solu-
tion is based on a linear transformation of the original sys-
tem. Furthermore, they share common barriers in
producing an explicitly reduced model, generally as a
result of the system transformation. This feature is impor-
tant when model simplification approaches are related to
not only computational efficiency but also parameter esti-
mation.

This work suggests an automatic method for speed rank-
ing that directly uses the Jacobian matrix without a system
transformation. Due to its simplicity, this approach
requires O(n) flops of computation, being more physi-
cally intuitive. In addition to the scaling procedure, the
decision of the differential and algebraic variables in a
slow dynamic regime after relaxation of the fast dynamics
is also introduced. The result of the proposed process is an
explicitly phrased model, which can be a route to distin-
guish the meaningful parameters from the unobservable
ones.

Methods
Criteria for balancing
In homogeneous chemical kinetics, the dynamic model
can be written in the following form of the ODE.

Since a chemical reaction system generally consists of pro-
duction and loss terms, the ODE can be rewritten as:

or with a matrix-vector notation,

where y ∈ �+n is a concentration vector, Pi: �+n → �+ is a
production term, and Li : �+n → �+ is a loss terms. S is a
stoichiometric matrix and v is a reaction rate vector. The
subscripts P and L denote the production and loss, respec-
tively.
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Generally, it can be said that if yi exhibits a quasi-steady
state behavior, such behavior is observed after a short
period of time for the corresponding Pi and Li to balance
each other. In a normal computational environment, the
period can be readily estimated from equation (1), but the
applicability of QSSA cannot be directly determined
based on the estimation. The goal of this work is to deter-
mine the proper criteria to determine the applicability of
the QSSA based on the estimation of balancing period. At
the moment either Pi or Li enlarge, the period during
which Pi balances with Li can be evaluated in a simple
manner.

By chain rule,

where f = (f1, f2, . . .)T. Let δti be a short time period after
which Pi and Li balance each other. Then, we have follow-
ing relationship:

where superscript 0 indicates the reference value. Rear-
ranging the equation gives:

If the denominator on the righthand side of equation (3)
is not zero, we can compute the time scale δti from this
equation. If the magnitude of the time scale is large,
namely, |δti| > t for some t > 0, yi is considered to exhibit
slow dynamics and QSSA is not applied.

If |δti| <t, yi exhibits fast dynamics, QSSA can be applied
depending on the sign of δti.

• If δti is positive, it will reach a balancing state quickly
and QSSA can be applied to yi.

• If δti is negative, the applicability of QSSA cannot be
determined by δti alone.

If the denominator is zero, the numerator Li - Pi should be
considered for following three cases:

• Pi ≠ Li indicates a non-reducing state between production
and loss. QSSA should not be applied.

• Pi = Li = 0 indicates that no dynamics has occurred yet for
yi. QSSA should not be applied.

• Pi = Li ≠ 0 indicates that δti should be set to zero since
complete balance has been obtained.

The time scale of the element reaction can be also esti-
mated using the same method, which will be used to
determine a closed subsystem later.

Another scale factor should be used to determine whether
the i'th variable is balanced or not; the ratio of |fi| to the
larger one of Pi and |Li|,

If -t = δti < 0, the information about ri becomes important
to determine the dynamics of yi. If ri is large, namely ri > r
for some r > 0, the production and loss are neither bal-
anced nor can be balanced soon, hence QSSA is not appli-
cable to such yi.

Based on the values calculated from (3) to (5), the criteria
to separate QSSA variables are as follows.

1. Both production and loss terms must exist.

2. For certain r << 1 and t << tf, the applicability of QSSA to
the ith variable can be summarized as in Table 1.

Iterative balancing
The above-mentioned scale factors δti and ri are locally
determined at a certain moment, initially in the inner-
most boundary layer. Therefore, if there are multiple
boundary layers, the separation process should be applied
iteratively to exit the fastest dynamic regime and move to
the next fastest one, jumping to the next boundary layers,
and finally to the slow dynamic regime, outer region,
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Table 1: QSSA applicability.

0 ≤ δti ≤ t -t <δti ≤ 0 |δti| > |  t

ri ≤ r Yes Yes No
ri > r Yes No No

Applicability of QSSA to yi
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where fast dynamics of the inner regions are fully relaxed.
The iterative procedure locates the variable values of the
fast dynamics, y(0), to the outer region, y(0+), which
become the consistent initial values of the reduced sys-
tem.

Once δti and ri are computed, identifying the fast variables,
one can decompose the original stoichiometric matrix
into two sub-matrices, Sf and Ss. Equation (2) is rewritten
as:

where subscript s indicates slow variables and f indicates
fast ones. To derive consistent initial values for the outer
region, the following algebraic equation should be solved:

0 = Sf v.

The solution of equation (6) can give other scale factors
that also satisfy the approximation criteria, which shows
the possibility of multiple boundary layers with different
time scales. The existence of multiple boundary layers
with different time scales corresponds to the cascaded
nested hierarchy concept of inertial manifolds [8]. For
these events, equations for the iterative approach can be
written as:

where the superscript k is the number of iterations. From

,  and  are iteratively calculated and the updated

equation (7) is solved until |yk+1 - yk| satisfies the conver-
gence criteria. The convergence criterion of this iterative
procedure can be considered as the partial equilibrium
among the fast variables. This is conceptually similar to
the equilibrium value convergence of Lebiedz's work [11].
After convergence is achieved, the following reduced
models with the modified initial values are derived:

The solution of the algebraic equation (7) can be com-
puted using the appropriate numerical method such as
Newton's method or other similar methods. However,
those methods sometimes give physically meaningless
solutions. To overcome this, Mass and Pope applied an
iterative technique that successively constructs sub-ODE
systems and successively solves them [19]. This work

applied a similar approach to that of Mass and Pope to
find the plausible initial guesses for the algebraic equation
(7).

From equation (7), the columns of Sf, say sj, give informa-
tion about the closing and opening of the subsystem by
the j 'th reaction. If sj is composed of only non-negative
signs or only non-positive signs, this system is opened by
the j'th reaction. If the time scale of the opening j'th reac-
tion, δτj, is large, say δτj > t, the reaction is excluded from
the subsystem, resulting in a closed subsystem,

Since the closed system always has steady state, the k'th
solution of the transient subsystem reaching a steady state
is used as the initial guess for equation (7).

Overall process
The criteria are used to detect the existence of a boundary
layer and the iterative balancing computes the initial val-
ues of the reduced model at the border of the outer region.
There are two categories of QSSA possibilities. The first
category is that the large deviation between Pi and Li
decreases very fast, which gives a relatively larger ri but a
small δti. The second is that Pi and Li are almost balanced
by a coincidental initial value. In this case, the approxima-
tion is also dependent on how small δti is. Then the itera-
tive balancing relocates the initial values toward the outer
region. If there are multiple boundary layers, a few more
iterations of the iterative balancing are required to search
for the proper initial values for the reduced model. Once
the iterative balancing converges, indicating every possi-
ble balancing is completed with small values for both of ri
and δti, it is assumed that the fast dynamics are relaxed
and slow dynamics of the outer region begin with the
updated initial values.

This process can also identify the boundary layers that
occur internally, not only at the initial point, because the
detection checks the possibility of QSSA at every step of
the calculation. These features are illustrated in the next
section. In summary, the overall detecting and balancing
process is as follows:

Iterative balancing process
1. Calculate δti, δτj, and ri using equations (3) through (5).

2. If no species can be approximated, then go to step 4, or
else go to step 3.

3. Perform iterative balancing using equation (7).

4. Solve the ODE/DAE model with equation (8).
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5. Repeat steps 1 to 4 until the current t reaches the user-
defined tf.

Results and Discussion
The Michaelis-Menten kinetics without inhibition,

and with inhibition,

are considered in this study. The parameters are (k1, k2, k3,
k4, k5) = (500000, 5, 1000, 100, 0.16) and the initial val-
ues are (e0, s0, c10, c20, p0) = (1, 100, 0, 0, 0) and (e0, s0, c10,
c20, p0, i0, ei0) = (1, 100, 0, 0, 0, 1000, 0) [24]. As can be
seen, there are two boundary layers at the initial region
and near t = 900 (see Figure 1). Since p is only produced,
its dynamics are not considered when searching for the
fast balancing species. In the initial region, the estimated
value of δt ≈ 3.96 × 10-8 and species e, s, and c1 were
selected as fast variables, as expected. The subsystem com-
posed of the chosen species was opened by the second
reaction, hence the second reaction was removed from the
subsystem. Based on the solution from the first iteration,
species c1 and c2 were selected. Since the δt of e and s
remains small, there indices were maintained as fast vari-
ables. The updated subsystem was opened by the third
reaction, and consequently, the reaction was excluded.
After the second iteration, the solution converged and was
stored, then the open system was solved in a small interval
period. Since a very large δt of s was identified in this refin-
ing step, s was excluded from the fast variable set. Finally,
e, c1, and c2 were selected as QSSA variables before the sec-
ond boundary layer. The values of δti at each iteration after
three iterations of the iterative process are listed in Table
2. At the second boundary layer, the predefined criteria
gave another iterative process and relocated the solution
toward the outer area in the same manner as described
above. For comparison with the conventional manual
QSSA approach, the time scales of each species were also
derived by mathematical balancing [25]. The meaning of
the time-scales of the fast variables from the conventional
derivation is the time to exit the boundary layer. There-
fore, the summation of δti for every iteration until the spe-
cies enters the outer region is the direct comparative value
of the conventional scales (see Table 3). A similar ten-
dency is observed between the sums of δti and the mathe-
matical scales. As in Table 3, the sums of δti and the
mathematically scaled values indicate that there are two
boundary layers near t ≈ 10-8 and t ≈ 10-3 before exiting the

initial regions. A semi-log plot of the full model simula-
tion (Figure 2) supports this expectation.

The second example, the Michaelis-Menten kinetics with
inhibition, shows a boundary layer at the initial area only
(see equation (11) and Figure 3) with a similar scale of δt
to that of the non-inhibition case. The dynamic behavior
of the second model in the inner region of the initial
boundary layer is more complex because of the effect of
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Simplification results (I)Figure 1
Simplification results (I). Concentrations of e, c1, and c2 
for the Michaelis-Menten system; (a) full ODE model solution 
and (b) reduced model solution.
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the inhibition. These complex dynamics of the second
example require a few more iterations than that of the first
example to exit the initial boundary layer.

The third example is the caspase activation model given
by equation (12) in [26].

The reaction rate equations for equation (12) are written
as v1 = k1[c8*][c3], v2 = k2[c3*][c8], v3 = k3[c3*][IAP] - k-3
[c3*~IAP], v4 = k4[c3*][IAP], v5 = k5[c8*], v6 = k6[c3*], v7 =
k7[c3*~IAP], v8 = k8[IAP] - k-8, v9 = k9[C8] - k-9, v10 = k10[c3]
- k-10, v11 = k11[c8*][BAR] - k-11 [c8*~BAR], v12 = k12[BAR] -
k-12 and v13 = k13[c8a~BAR], where the kinetic constants
are listed in [26]. There are also two boundary layers at the
initial and internal regions, but with a much larger δt rel-
ative to the former cases; δt ≈ O(10-1) at the initial area
and δt ≈ O(1) at the internal boundary layer (Figure 4).

Although it is difficult to recognize the initial boundary
layer in the figure because of the small change in the con-
centrations relative to that of the internal boundary layer,
the initial boundary layer exists in the third model, which
can be overlooked by the simple observation of the full
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Existence of multiple boundary layersFigure 2
Existence of multiple boundary layers. (a) Semi-log plot 
of s and (b) that of e, c1, and c2 for the Michaelis-Menten sys-
tem. The existence of two boundary layers at the initial 
region are observed.

Table 2: δt values.

Iteration 0 1 2

e 3.96 × 10-8 -3.09 × 10-13 3.57 × 10-13

s 3.96 × 10-8 -3.09 × 10-13 3.51 × 102

c1 3.96 × 10-8 1.81 × 10-3 4.57 × 10-11

c2 Not available 1.82 × 10-3 1.82 × 10-3

δt values during the initial iterative process of two complex Michaelis-
Menten kinetics

Table 3: Comparison of time-scales.

Sums of δt Mathematical scale

e 3.96 × 10-8 2.00 × 10-8

s 3.51 × 102 6.25 × 102

c1 1.81 × 10-3 1.00 × 10-3

c2 0.36 × 10-2 1.00 × 10-2

Mathematically derived time scales and sums of δti of two complex 
Michaelis-Menten kinetics
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model simulation. The existence of the initial boundary
layer of the third model could be detected by the pro-
posed algorithm.

Figure 1 and Figure 3 show that the exact value of the
parameters k1, k2, k3, and k4 cannot be properly identified
using measurement intervals larger than O(10-8). Figure 4
also illustrates that it is impossible to obtained the specific
parameters of the original model with a measurement

interval larger than O(1). Only the ratios of some species's
concentrations can be observed. Therefore, the ratios are
meaningful for these situations, not the detailed dynamics
occurred within the period smaller than the measurement
interval. The suggested scheme improves computational
efficiency in the stiff inner region and extracts the infor-
mation of experimentally meaningful QSSA concentra-
tions for the corresponding species. Besides, by

Simplification results (II)Figure 3
Simplification results (II). Concentrations of e, es1, es2, 
and ei for the Michaelis-Menten system with inhibition; (a) full 
ODE model solution and (b) reduced model solution.

Simplification results (III)Figure 4
Simplification results (III). Concentrations of c8 and c8* 
for the caspase system; (a) the solution profile of c8, from 
the full ODE model (c8) and from the reduced model 
(c8_red) and (b) the solution profile of c8*, from the full 
ODE model (c8*) and from the reduced model (c8*_red).
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determining a measurement scale, the level of simplifica-
tion can be controlled easily.

Conclusion
This work proposed new criteria for the time-scale analy-
sis and iterative balancing approach to develop an auto-
matic simplification. This approach has different
consistent initial values after model reduction and suc-
cessfully found consistent initial values of the simplified
DAE model using iterative balancing. With some exam-
ples, from small systems to practical systems, this scheme
gave a successful reduction and found consistent initial
values. If a whole cell is the system of the dynamic simu-
lation, the network of reaction pathways will be more
complex, the number of variables will be increased, and
the simulation will be more difficult. Henceforth, it may
be also important to relate the derived model to the exper-
imental view, and this approach can give the criteria to
classify the meaningful values from the original model.
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