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ABSTRACT A top-down approach to mechanistic modeling of biological systems is presented and exemplified with the
development of a hypothesis-driven mathematical model for single-chain antibody fragment (scFv) folding in Saccharomyces
cerevisiae by mediators BiP and PDI. In this approach, model development starts with construction of the most basic mathematical
model—typically consisting of predetermined or newly-elucidated biological behavior motifs—capable of reproducing desired
biological behaviors. From this point, mechanistic detail is added incrementally and systematically, and the effects of each addition
are evaluated. This approach follows the typical progression of experimental data availability in that higher-order, lumped
measurements are often more prevalent initially than specific, mechanistic ones. It also necessarily provides the modeler with
insight into the structural requirements and performance capabilities of the resulting detailed mechanistic model, which facilitates
further analysis. The top-down approach to mechanistic modeling identified three such requirements and a branched dependency-
degradation competition motif critical for the scFv folding model to reproduce experimentally observed scFv folding dependencies
on BiP and PDI and increased production when both species are overexpressed and promoted straightforward prediction of
parameter dependencies. It also prescribed modification of the guiding hypothesis to capture BiP and PDI synergy.

INTRODUCTION

In systems biology, mathematical models are used to describe

biological systems to obtain understanding of system behavior

and predict system responses (1). The type of model used and

its scale and scope vary with the desired behaviors and re-

sponses it is intended to capture and predict, the desired level of

detail, and the size of the biological system of interest. Model

types range from the highest-level regulatory graphs, which

show how species interact, to Bayesian networks, which rep-

resent conditional interactions and dependencies, to Boolean

models, which describe switching behavior, to nonlinear ODE

models, which describe dynamic behavior, to the most highly

detailed stochastic models, which capture random behavior

caused by low molecule counts (2–4). Model scale may range

from molecular to organismal, and from low-level mechanistic

detail to higher-level lumped behavioral units. Model building

on the mechanistic scale has been referred to as ‘‘bottom-up,’’

as the model includes previously-known interactions and reg-

ulatory feedbacks, which are pared down as analysis identifies

the critical, behavior-defining ones. Building on the more ab-

stract, lumped behavioral scale has been referred to as ‘‘top-

down,’’ where input-output relations are used to identify and

gradually fill in previously unknown interactions (5). This

work combines these two approaches by applying the top-

down methodology to biological model building on the mech-

anistic scale.

By and large, mechanistic modeling approaches have not

been formalized and are as varied as the models and biological

systems under study themselves. Additionally, no formal

evaluation of the approaches’ applicability to or advantages in

modeling a particular biological system has been performed.

The body of circadian rhythm mathematical models demon-

strates the variety of approaches that have been employed to

describe a system largely conserved across mammals and fruit

flies. In developing their mathematical model for the mam-

malian circadian rhythm, Forger and Peskin (6) performed an

exhaustive literature search to include many of the known

molecular interactions and mechanisms involved in the cir-

cadian clock, when a basic negative feedback loop was all that

was necessary to reproduce experimentally observed oscil-

lations. This approach is clearly in the vein of bottom-up

model building, and it produced a mathematical model con-

taining 73 state variables (biological species) and 74 param-

eters. In stark contrast, Tyson et al. (7) sought to capture and

analyze circadian behavior in Drosophila melanogaster with

a higher-level model by reducing a three-state model con-

sisting of mRNA and two forms (monomer and dimer) of

protein to two: mRNA and total protein. Meantime, Leloup

and Goldbeter developed 10-state Drosophila (8) and 19-state

mammalian (9) models of intermediate complexity to fulfill

their analytical purposes.

Still, one generalized approach to mechanistic modeling of

biological systems has been proposed (10): start by identifying

all of the reactions within the scope of the biological system and

perform mass balances around the participating species. Then,

simplify the resulting mathematical model consisting of a set of

nonlinear ODEs with further assumptions and approximations,

which often leads to algebraic expressions, Michaelis-Menten

kinetics, and transfer functions such as the Hill function. Fi-

nally, employ analytical tools such as sensitivity analysis to
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identify components responsible for producing certain behav-

iors and stability and bifurcation analysis to assess what be-

haviors the system is capable of producing. This process

description formalizes the bottom-up approach to mechanistic

model building.

This work describes a contrasting approach similar to that

outlined by Ideker and Lauffenburger (11), but on the scale of

mechanistic modeling: with the full desired mechanistic scope

of the model defined, develop the simplest imaginable repre-

sentation of the biological system in an attempt to isolate the

backbone structure and identify motifs responsible for the

underlying behavior. Once this basic model has been estab-

lished, gradually expand it to include the desired mechanistic

details, so the contributions—or lack thereof—of these modi-

fications to system behavior may be incrementally evaluated

using systems biology analytical tools. (In the cited work by

Ideker and Lauffenburger (11), a top-down approach to bio-

logical modeling across many levels of complexity, starting

from high-level regulatory graphs and gradually appending

them with more data to transition to lower-level model types

like ODE models, is described.) This approach may then be

referred to as a top-down approach to mechanistic modeling,

and its methodology is outlined in Fig. 1. The strength of this

approach lies in the fact that it necessarily acquaints the mod-

eler with the inner workings—the behavioral contributions

originating from each mechanistic component—of a model as

the modeler constructs it.

The top-down mechanistic modeling approach also bene-

fits from a growing repertoire of known biological motifs and

modules responsible for producing certain biological behav-

iors. The Escherichia coli toggle switch (12) and repressilator

(13) are two well-known examples from synthetic biology.

Other examples include positive feedback loops that can store

information from transient signals, inhibitory feedback loops

that guard against noise, and feed-forward loops that accel-

erate responses (14). Much work has gone into identifying and

cataloguing recurring structural motifs within a variety of

gene regulatory, protein-protein interaction, and other bio-

logical networks (15–19), with the intent of eventually char-

acterizing their dynamic properties (21–22). One of the most

extensive—though still quite limited—collections of already-

characterized biological behavior motifs has been compiled

by Wolf and Arkin (23). Familiarity with these motifs and

modules can aid in construction of the basic backbone

structure by allowing one to identify more readily the com-

ponents and interactions that will be necessary to reproduce

experimentally observed behaviors.

To demonstrate the top-down approach to mechanistic

modeling, this work will develop a model for single-chain

antibody fragment 4-4-20 (scFv) translocation into and folding

within the endoplasmic reticulum (ER) lumen of Saccharo-
myces cerevisiae, or baker’s yeast, by the chaperone binding

protein (BiP) and foldase protein disulfide isomerase (PDI).

The motivation for this study comes from the fact that single-

chain antibodies have a variety of applications in biotechnol-

ogy and medicine (24,25) and serve as useful models for the

expression of other disulfide bond-containing therapeutic

proteins. Additionally, yeast is a frequently-used platform,

because it combines the ease of microbial genetics and growth

characteristics with post-translational, eukaryotic processing

(26–28). The goal of using systems biology to study this system

is to optimize production of scFv in the S. cerevisiae platform.

It has been shown that overexpressing BiP or PDI indi-

vidually increases scFv yields in the microorganism but

overexpressing both species simultaneously amplifies yields

beyond both of those individual increases (26,29). Xu et al.

(29) hypothesized that these experimentally observed BiP and

PDI dependencies and amplification resulting from co-over-

expression originate from BiP assisting in/accelerating un-

folded scFv translocation into the ER with no effect on protein

folding rates and PDI actually facilitating protein folding. In

this line of reasoning, increasing BiP increases the pool of

scFv to be folded, and increasing PDI increases the amount of

that pool that is exported from the cell. A mathematical model

was developed using the top-down approach to mechanistic

modeling to test this hypothesis. Steady-state analysis was

employed as a primary analytical method for evaluating

model performance. As the top-down approach was applied,

its strengths were clearly highlighted as it identified a critical

motif and three requirements for reproduction of experi-

mentally observed BiP and PDI dependencies and enhanced

scFv production with both species overexpressed, while

suggesting that the hypothesis incompletely describes po-

tentially more complex interactions between BiP and PDI in

scFv folding that yield synergistic effects.

FIGURE 1 Overview of the top-down approach to mechanistic biological

modeling methodology presented in this work. Inputs and outputs to the

methodology are indicated with dotted arrows; methodology flow is indi-

cated by solid arrows.
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MODEL DEVELOPMENT METHODOLOGY

Establishing desired model behaviors

In implementing the top-down approach, one first identifies the experimental

behavior(s) one wishes to capture with the mathematical model. One benefit

of the top-down approach is that it begins with the construction of a high-

level mathematical model, so the approach may be readily implemented even

when existing biological data is sparse (which is often the case with bio-

logical systems). To reiterate, in the case of scFv folding, the model must

display BiP and PDI dependence in secreted scFv production and increased

scFv production when both BiP and PDI are overexpressed than when either

is overexpressed independently. These behaviors are captured in a key set of

experimental data from Xu et al. (29), reproduced in Fig. 2 A.

Establishing desired model details

Next, one mines the experimental literature for known and hypothesized in-

teractions and mechanistic details desired for inclusion in the final mechanistic

model. In doing so, the model’s scope is established. Since the scFv folding

model was to be used for evaluating the validity of the hypothesis of Xu et al.

(29), it was to include BiP assisting in unfolded scFv (UscFv; a detailed key to

nomenclature, including definitions for prefixes such as the U-, used in this

work is provided in Table 2) translocation into the ER and PDI catalyzing

protein folding. Other details desired for inclusion in the model were those

associated with transcription, translation, and post-translational translocation of

the scFv; UscFv, BiP, and PDI binding states; and relative UscFv folding/

misfolding rates in each of those binding states. Inclusion of these details would

also require three compartments: the nucleus, cytoplasm, and ER.

Constructing a backbone model

With the scope of the detailed mechanistic model established, one then

identifies the components necessary for construction of a backbone model, the

bare minimum that is required for capturing the desired experimental be-

haviors. This step may be facilitated by searching the literature for elements

(modules, motifs, and interactions) known to be responsible for producing

certain biological behaviors for homologies to the system at hand. If one or

more plausible matches is/are found, the corresponding element(s) may be

applied to the backbone model structure. Experimental validation of the uti-

lization of such elements—notably, combinations thereof in gene regulatory

networks—in mathematical model construction to represent and predict bi-

ological behavior was performed by Guido et al. (30). If no known modules,

motifs, or interactions are appropriate for use in the backbone model, the

modeler will need to identify such underlying mechanisms independently.

In the scFv folding example, there was no precedent for the experimen-

tally observed scFv folding dependencies, so the latter approach was un-

dertaken. Guidance in constructing a backbone model structure for this

system originated from the hypothesis of Xu et al. (29). It was possible to

capture this hypothesis most fundamentally in a two-state mathematical

model, where UscFv entered the ER in a second-order, BiP-dependent step,

and the UscFv folded in preparation for secretion (SscFv) in a second-order,

PDI-dependent step. This reaction scheme is illustrated as Model 1 in Fig. 3,

and its parameters are described and assigned values in Table 3.

When developing a backbone (or any mathematical) model, enumerating

all assumptions and simplifications is an effective means of systematizing the

process. If and when a model fails to capture the experimental behaviors,

assumptions and simplifications may be altered or relaxed in a methodical

fashion. Only when all of these potential alterations and relaxations have

been exhausted should the insight gained from the unsuccessful modeling

attempt be applied toward formulating a new model. The assumptions and

simplifications used in construction of the scFv folding backbone model are

listed below and explained in the following paragraph.

1. All reactions were modeled using lowest-order, deterministic kinetics.

2. No scFv protein of any form was initially present in the system.

3. Unfolded protein entry to the ER was assumed to have a first-order

dependency on BiP.

4. Folding/secretion was assumed to have a first-order dependency on PDI.

5. Pools of 1 3 103 scFv mRNAs, 3.37 3 105 free BiPs, and 5.24 3 105

free PDIs participated in their respective reactions, as described in the

reaction equations and illustrated in Fig. 3, and were not consumed.

6. No scFv misfolding or degradation reactions were included.

FIGURE 2 (A) Experimental scFv se-

cretion data reproduced from Xu et al. (29).

‘‘O.’’ refers to ‘‘overexpressed’’. Over-

expression levels are provided in the refer-

ence. (B) In silico reproduction of this data,

using the fully detailed mathematical

model. (C) 50 h time points for all model

simulations normalized to the respective 50

h experimental time points in Fig. 2 A (e.g.,

the 50 h O.BiP model time points are

divided by the experimental 50 h O.BiP

data point). The similarly-scaled experi-

mental 50 h time points to which this data is

compared are represented by the horizontal

dashed line of value one. Thus, models that

have normalized 50 h time points close to

one for all BiP and PDI expression levels

are most successful at reproducing the

experimental data. Scaled error bars for

the experimental 50 h data point with the

highest standard deviation (0.2 relative

units for O.PDI) are provided on the plot

(O.BiP and O.BiP1PDI had standard de-

viations of 0.05 relative units). BiP and PDI

overexpression levels and the unscaled

simulation and experimental values used

to produce this plot are provided in Table 1.
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7. All properly folded scFv was assumed to proceed to the Golgi and

ultimately be secreted.

8. All compartments were assumed to be well mixed.

Assumptions 1 and 7 will be common to all mathematical models presented

in this article. The second assumption was meant to mimic the experimental

conditions under which the invalidation data were taken, where transfer to

galactose-containing medium at time ¼ 0 initiated scFv production. As-

sumptions 3 and 4 were meant to capture in basic form the central concepts of

the hypothesis of Xu et al. (29), and the first-order dependencies arose from

Assumption 1. Assumption 5 arose from literature-derived values for these

concentrations (31–33), and embedded within it was the further, critical

assumption that all BiP and PDI was available for reaction with scFv, and

none was sequestered away by competing reactions/species. Assumption 6

was made for simplicity, even though it is well documented that proteins

terminally misfold and are removed from the ER via ER-associated degra-

dation (34). Assumption 7 was for pure model simplification reasons.

Assumption 8 was also made for simplification, and although preliminary

work exists suggesting that BiP is not homogeneously distributed throughout

the ER (35), Fig. 4 A suggests these effects will not alter BiP dependency

results presented here. The reaction equations follow. State definitions are

provided in Table 2, rate constant definitions and values are provided in

Table 3, and rate constant derivations are provided in the Appendix.

d½UscFv�
dt

¼ k1b½scFvmRNA�½BiP� � k2b½UscFv�½PDI�: (1)

d½SscFv�
dt

¼ k2b½UscFv�½PDI�: (2)

All mathematical model simulations in this work were performed using

MATLAB Simulink using the ode15s solver (The MathWorks, Natick, MA).

Fig. 2 B, which contains trajectories from the fully detailed model, exemplifies

typical simulation trajectories for all mathematical models from in silico runs

intended to replicate the experimental results of Xu et al. (29) in Fig. 2 A. All

model trajectories displayed the observed linear behavior, so that a concisely

effective method for evaluating model performance in replicating the exper-

imental trajectories could be developed by comparing 50 h time point values,

as demonstrated in Fig. 2 C. These values, listed in Table 1, were scaled by the

experimental data points to facilitate this simulation-experiment comparison.

The table also lists the multiples by which BiP and PDI were overexpressed

to yield the model results that most closely matched experiment, all of

which are within an order-of-magnitude of the experimental values listed in

the table, except for Model 8. Error bars from the experimental data point

with the largest standard deviation (O.PDI at 50 h) were also included in the

figure. Model numbers in the figure correspond to their assignments in

FIGURE 3 Schematics for the developmental models and their modifications. Models 1 and 2 were used in backbone model development. Models 3–6

represent the original four permutations of models containing explicit BiP and PDI binding and release. When Modification A was applied to these models,

they were designated Models 3*�6*, which are not schematized here. Model 7 represents a binding permutation model where the branched dependency-

degradation competition motif for BiP was introduced by eliminating BiP’s role in post-translational translocation. Model 8 depicts a final permutation where

UscFv may freely move between BiP and PDI binding states and has Modification A implemented in it. The figure legend that defines species, prefixes, icons,

and rate constant subscript prefixes and suffixes is in Table 2. Parameter definitions and values are in Table 3.
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Fig. 3 and the text, and asterisks indicate models that have been modified

with Modification A, which is also schematized in Fig. 3.

One benefit of developing a backbone model is it generally facilitates

analysis by eliminating the clutter associated with more detailed models. For

example, with such a simple model for scFv folding, it was possible to derive

analytically the steady-state production of SscFv from the model equations

and evaluate its dependencies on BiP and PDI concentrations directly. Steady

state was achieved within the first time step of the simulations, 1 3 103 s,

which is consistent with experiments that show pro-scFv (UscFv) reaching

steady-state levels within 10 and 60 min of the initiation of scFv production.

Consequently, the steady-state analysis was appropriate. For this most basic

mathematical model, the steady-state SscFv production rate ((d½SscFv�=dt)SS;
(d½SscFv�=dt) suffixes defined in Table 2), which was derived by expressing

the SscFv production rate in terms of system parameters after having set the

other states’ time dependencies to zero, was

d½SscFv�
dt

� �
SS

¼ k1b½BiP�½mRNA�: (3)

This equation demonstrates that SscFv production was totally independent of

PDI levels in this mathematical model. scFv flux through the system was

constant and determined at the ER-entry step, modulated by BiP. Increasing/

decreasing PDI levels would only decrease/increase, respectively, UscFv

levels, but the flux would remain the same. As a result, this model was

incapable of reproducing the experimentally observed scFv folding depen-

dency data. These results indicated a fault in the backbone model formulation.

As previously discussed, modifications to the model should be made by

systematically altering or relaxing assumptions and simplifications before

discarding it completely. Assumption 6 was the first to be altered in the scFv

folding model, as it was arguably one of the weakest. This alteration was

justified biologically: in vivo, if a protein is not successfully folded after

some time, it proceeds down the ER-associated degradation pathway, where

it is retro-translocated from the ER to the cytoplasm and degraded (reviewed

in (34)). Hence, protein folding may be viewed as a competition between

achieving a properly folded state or a terminally misfolded state.

To include this detail in the backbone model, a generic degradation

pathway was added to the UscFv state, illustrated as Model 2 in Fig. 3. Thus,

Assumption 6 from the previous model was replaced with

6. UscFv misfolds/degrades in a first-order reaction

and all other assumptions remained the same. The corresponding model

equations and steady-state SscFv production rate follow.

d½UscFv�
dt

¼ k1b½scFvmRNA�½BiP�

� k2b½UscFv�½PDI� � km5½UscFv�: (4)

d½SscFv�
dt

¼ k2b½UscFv�½PDI�: (5)

d½SscFv�
dt

� �
SS

¼ k1b½BiP�½mRNA�½PDI�
km5

k2b

1 ½PDI�
: (6)

From the steady-state SscFv production rate, it may be seen that the degra-

dation pathway introduced PDI dependency, the magnitude of which varies

depending on the ratio of the degradation to folding rate constants. The model

predicts that as the assisted folding rate constant dominates over degradation,

PDI dependence diminishes. For the literature-derived parameter values used

in the model (see Appendix for all parameter derivations), there was suffi-

cient PDI dependence to capture both of the two key experimental invali-

dation behaviors: scFv secretion showed a similar BiP- and PDI-dependency

and was enhanced when BiP and PDI were simultaneously—as opposed to

individually—overexpressed (Fig. 2 C). Based on this significant improve-

ment in model performance, the first in a series of three requirements for the

ultimate detailed model to reproduce the experimental data was formulated:

Requirement No. 1

Competition between degradation/misfolding and accelerated folding by

PDI is necessary for PDI dependence.

Thus, with the addition of UscFv degradation, a successful backbone

model was constructed, and the hypothesized folding process remained viable.

Further model development

Upon formulation of a successful backbone model, the top-down approach to

mechanistic modeling proceeds with the gradual supplementation of the

model with mechanistic detail until the desired level of detail, defined when

the model’s scope was being elaborated, has been reached. The order in

which these details are added and the quantities added at a time will depend

upon the model and its intended use and will consequently require the dis-

cretion of the modeler. One consideration to make when proceeding, though,

is that one purpose of incrementally appending the model is to enable the

modeler to observe and evaluate the discrete effects produced by each al-

teration. Consequently, it would be desirable to design each increment so as

to maximize the insight gained from implementing it. This process is dem-

onstrated with the scFv folding model below.

For the scFv folding model, further translocation or folding details could

not be reasonably added without first including explicit BiP and PDI

binding and release of the UscFv: it was desired to have BiP bind the UscFv

at the translocon for entry to the ER, at which point BiP could theoretically

release it, or PDI could also bind the BiP�UscFv complex. It has been hy-

pothesized that PDI is largely incapable of binding unfolded protein on its

own in its foldase capacity, and BiP is responsible for making unfolded

protein accessible for PDI binding (36), thus increasing the extent to which

BiP and PDI cooperate in the protein folding process. The model was later

used to assess this hypothesis. UscFv could also transition between the

BiP�PDI�UscFv and PDI�UscFv states with the respective release or binding

of BiP. True to the top-down modeling approach, these binding states were

added incrementally to evaluate their effects on the ability of the model to

reproduce the experimentally observed BiP and PDI scFv folding depen-

FIGURE 4 Curves depicting the Michaelis-Menten-like dependencies of

steady-state SscFv production on BiP (A) and PDI (B) levels for Models

3*�6* and 8.

Top-Down Mechanistic Modeling 3539

Biophysical Journal 95(8) 3535–3558



dencies. The resulting four model permutations are schematized as

Models 3–6 in Fig. 3. Parameter descriptions and values are provided in

Table 3.

With the model constructs established, it was then necessary to as-

sign the folding and misfolding rates associated with each of the binding

states. Derivation and references for the actual rate values are presented

in the Appendix, but qualitative descriptions and logic are presented here. It

is thought that chaperone proteins such as BiP do not actually promote faster

protein folding but rather protect the unfolded protein against misfolding by

binding hydrophobic regions (reviewed in (37)). Hence, a BiP-bound un-

folded protein would be expected to fold at approximately the same rate as

an unbound one, however its effective misfolding rate would be slower than

the unbound one. A PDI-bound unfolded protein would be expected to have

a faster folding rate but a similar misfolding rate (ignoring PDI’s proposed

chaperone behavior (38–40), reviewed in (41)) to an unbound one, and a

BiP- and PDI-bound unfolded protein would be expected to have both a

faster folding rate and a slower misfolding rate. Assumptions and simpli-

fications for the four model permutations follow:

1. All reactions were modeled using lowest-order, deterministic kinetics.

2. No scFv protein of any form was initially present in the system.

3. Unfolded protein entry to the ER was assumed to have a first-order

dependency on BiP.

4. Folding/secretion was assumed to be first-order and faster for BiP-PDI-

bound and PDI-bound than BiP-bound and unbound UscFv.

5. A pool of 1 3 103 scFv mRNAs participated in the lumenal UscFv

production reaction but was not consumed.

6. 3.37 3 105 free BiPs and 5.24 3 105 free PDIs were available for

UscFv binding and were consumed in the binding reactions and

regenerated upon release.

7. All properly folded scFv was assumed to proceed to the Golgi and

ultimately be secreted.

8. Misfolding/degradation was assumed to be first-order and equivalent

for both BiP-PDI-bound BiP-bound UscFv but faster for both unbound

and PDI-bound UscFv.

9. BiP binding was required for PDI binding to occur.

10. Multiple binding by BiP and PDI was ignored for simplicity, and

folding/misfolding rates were based on overall folding/misfolding rates,

as derived in the Appendix.

11. All compartments were assumed to be well mixed.

Due to the increasing size and number of models, their ODEs have been

relegated to the Appendix, though it must be noted that the initial step of

importing UscFv to the ER (BiP�UscFv production term) was always

represented by k1[BiP][scFv mRNA] in the BiP�UscFv equations, with k1

representing the effective second-order scFv translation and translocation rate

into the ER. Analytical solutions for the model permutations’ steady-state

SscFv production rates are presented below (Model 3, Eq. 7; Model 4, Eq. 8;

Model 5, Eq. 9; and Model 6, Eq. 10). In deriving these solutions, a further

assumption was employed to make the algebra tenable: unbound BiP and

PDI were sufficiently abundant over UscFv, so their concentrations were not

altered by binding UscFv. This assumption held during simulations, where BiP

and PDI concentrations remained 3.37 3 105 and 5.24 3 105 molecules, re-

spectively, while bound species never exceeded 100 molecules.

d½SscFv�
dt

� �
SS

¼ k1½BiP�½scFv mRNA�ðk3ðkr2 1 k4 1 km4Þ1 k2½PDI�k4Þ
ðk3 1 km3Þðkr2 1 k4 1 km4Þ1 k2½PDI�ðk4 1 km4Þ

: (7)

d½SscFv�
dt

� �
SS

¼
k1½BiP�½scFv mRNA�

�
k3 1

k4k2½PDI�
kr2 1 k4 1 km4

1
k7kr6

k6½BiP�1 k7 1 km7

�

kr6 1� k6½BiP�
k6½BiP�1 k7 1 km7

� �
1 k2½PDI� 1� kr2

kr2 1 k4 1 km4

� �
1 k3 1 km3

: (8)

d½SscFv�
dt

� �
SS

¼ k3k1½BiP�½scFv mRNA�
k2½PDI�1 k3 1 km3

1
k3kr2

k2½PDI�1 k3 1 km3

1 k4 1
k5kr6

k6½BiP�1 k5 1 km5

� �

3
k1½BiP�½scFv mRNA�k2½PDI�

ðk2½PDI�1 k3 1 km3Þ kr6 1� k6½BiP�
k6½BiP�1 k5 1 km5

� �
1 kr2 1� k2½PDI�

k2½PDI�1 k3 1 km3

� �� �
8>><
>>:

9>>=
>>;
: (9)

d½SscFv�
dt

� �
SS

¼ k31
k2½PDI�

kr21kr6 1� k6½BiP�
k6½BiP�1 k5 1 km5

� �
1 k4 1 km4

k4 1
k5kr6

k6½BiP�1 k5 1 km5

� �
1

k7kr6

k6½BiP�1 k7 1 km7

8>><
>>:

9>>=
>>;

3
k1½BiP�½scFv mRNA�

kr6 1� k6½BiP�
k6½BiP�1k71km7

� �
1k2½PDI� 1� kr2

kr21kr6 1� k6½BiP�
k6½BiP�1k51km5

� �
1k41km4

0
BB@

1
CCA1k31km3

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
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As may be observed in these equations, the aforementioned

BiP�UscFv production term, k1[BiP][scFv mRNA], appears in the numerator

in each of the model permutations’ expression for steady-state SscFv pro-

duction, indicating that production in each permutation was largely linearly

dependent on BiP concentration. On the other hand, production dependence on

PDI concentration assumed a Michaelis-Menten-like form. The linear BiP

dependence overpowered PDI’s contribution for a range of BiP and PDI

concentrations (not shown), so to reproduce the experimental dependencies,

it was necessary to overexpress PDI an order-of-magnitude times more than

BiP (Fig. 2 C, Table 1). To modify this behavior, the assumptions and

simplifications that went into deriving the models were reevaluated for al-

terations.

From the backbone model development, it was observed that including

a degradation pathway to compete with a species-dependent pathway in-

stilled the Michaelis-Menten-like dependence on PDI in the steady-state

SscFv production rate expression. This branched dependency-degradation

competition motif could then be applied to BiP’s role in translocation, so

steady-state SscFv production would have a Michaelis-Menten-like de-

pendence on both BiP and PDI. Since BiP catalyzing translocation of

UscFv into the ER was the dependency step, a degradation step, such as

cytoplasmic scFv mRNA degradation, was necessary. A schematic repre-

sentation of this modification is presented in Fig. 3 (Modification A); it is

shown implemented in Model 8; and Models 3–6 with this modification will

be denoted with an asterisk as Models 3*�6*. This theoretical alteration

translated into the alteration of Assumption 5, whose revised version appears

below:

5. scFv transcription was modeled by a step input of scFv mRNA that

could be consumed by cytoplasmic degradation and lumped transla-

tion/translocation into the ER to yield 1 3 103 scFv mRNA during

steady-state SscFv production.

The fully modified differential equations for each model permutation appear

in the Appendix; however, it is instructive to analyze the differential equation

for scFv mRNA production—common to all model permutations—which

resulted from the revised Assumption 5:

d½scFv mRNA�
dt

¼ VscFv � k1½BiP�½scFv mRNA�

� kd½scFv mRNA�: (11)
When this equation is analyzed at the steady state,

½scFv mRNA� ¼ VscFv

k1½BiP�1 kd

; (12)

a steady-state BiP�UscFv production term (i.e., the BiP-dependent translo-

cation rate) for the altered models may be derived: VscFvk1½BiP�=(k1½BiP�1kd):

This term, with its distinct Michaelis-Menten-like dependence on BiP,

supplants k1[BiP][scFv mRNA] in the previous models’ expressions for

steady-state SscFv production (Eqs. 7–8), so that both BiP and PDI have

similar concentration dependencies. The similar steady-state BiP and PDI

SscFv production value dependencies shown in Fig. 4 and the comparable

BiP and PDI relative overexpression levels required to reproduce the

experimentally observed BiP and PDI dependencies in Fig. 2 provided in

Table 1 reinforce this result with simulation data. Consequently, an important

biological structural motif has been identified, and a second requirement for

the scFv folding model is claimed:

Requirement No. 2

Assuming post-translational translocation is BiP-dependent, competition between

the translocation step and cytoplasmic degradation of the translocating species is

required to make BiP and PDI expression level dependencies comparable.

It may also be noted that another way to introduce a branched dependency-

degradation competition motif for BiP in the scFv folding model is by elimi-

nating BiP’s participation in post-translational translocation of the UscFv to the

ER (Model 7 in Fig. 3). In this case, UscFv enters the ER unbound, where it may

degrade by folding or misfolding (degradation branch of the motif) before being

reversibly bound by BiP (dependency branch). The steady-state BiP�UscFv

production term in this case, k6½BiP�(k1½scFv mRNA�1kr6½BiP � U�)=(k6½BiP�1
k71km7); demonstrates Michaelis-Menten-like dependency, so that the expres-

sion for steady-state SscFv production thus shows such a dependence on both

BiP and PDI:

TABLE 1 Relative BiP and PDI overexpression levels used to produce the corresponding relative SscFv levels 50 h into the

in silico experiments (columns 2–14), which were normalized to provide the scaled relative SscFv level data found in Fig. 2 C

Model 1 2 3 3* 4 4* 5 5* 6 6* 7 8 Detailed Experiment

Relative overexpression level

BiP 2 1.5 1.5 40 1.5 40 1.5 20 2 40 3 100 2 3–12

PDI 2 2 10 40 10 40 10 80 10 40 20 15 4 6–8

Relative scFv level

Nominal 1.8 1.1 1.5 1.4 0.97 0.90 1.4 1.4 0.97 0.90 1.5 0.87 0.99 1.0

O.BiP 3.7 1.7 2.2 2.3 1.5 1.6 2.2 2.2 2.0 1.7 2.1 1.3 1.5 1.2 6 0.1

O.PDI 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.9 1.6 6 0.4

O.BiP 1 PDI 3.7 2.8 2.8 3.0 2.8 3.0 2.8 2.9 3.7 3.0 3.1 2.9 2.7 3.4 6 0.2

Experimental values of the BiP and PDI overexpression levels and the relative SscFv levels to which the data in Fig. 2 C were normalized are also included in the final column

for comparison. Key: O., overexpressed; O.BiP, overexpressed BiP; O.PDI, overexpressed PDI; O.BiP1PDI, overexpressed BiP and PDI; Nominal, no overexpression.

d½SscFv�
dt

� �
SS

¼ k7k1½scFv mRNA�
k6½BiP�1 k7 1 km7

1
k7kr6

k6½BiP�1 k7 1 km7

1 k3 1
k4k2½PDI�

kr2 1 k4 1 km4

� �

3
k6k1½BiP�½scFv mRNA�

ðk6½BiP�1 k7 1 km7Þ kr6 1� k6½BiP�
k6½BiP�1 k7 1 km7

� �
1 k2½PDI� 1� kr2

kr2 1 k4 1 km4

� �
1 k3 1 km3

� �
8>><
>>:

9>>=
>>;
:

(13)
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From this result, one may conclude that the hypothesis of Xu et al. (29) is not

exclusive in possessing the ability to reproduce experimentally observed BiP

and PDI dependencies in scFv folding, though the BiP-independent trans-

location model is inconsistent with experimental evidence of BiP-scFv as-

sociations (42).

In returning to the hypothesis-based model development, there were four

permutations of the model iteration that included explicit BiP and PDI

binding details that were capable, to some extent, of capturing the experi-

mentally observed BiP and PDI dependencies. One final permutation was

established to evaluate the hypothesis that PDI requires BiP-bound UscFv for

binding as a foldase, as previously described. This final permutation, which

represented the alternative case where PDI may bind UscFv directly, is

represented by Model 8 in Fig. 3 and already has Modification A im-

plemented in it.

While the analytical solution for steady-state SscFv production in this

final model permutation is fairly complex (see Appendix), it does exhibit

Michaelis-Menten-like dependencies on both BiP and PDI. However, it

deviated from experiment by an order of magnitude in the amount of BiP and

PDI overexpression (Table 1) it required to reproduce the data in Fig. 2 A. A

further means to evaluate model performance would be necessary to draw

more definitive conclusions on this model permutation and the hypothesis

that generated it.

Up to now, focus has been placed on evaluating the model permutations’

ability to reproduce BiP and PDI dependencies. The other key experimental

behavior desired for a successful mathematical model to exhibit was enhanced

SscFv production by simultaneously—over independently—overexpressed

BiP and PDI. The unscaled results recorded in Table 1 show that this behavior

was in fact displayed by all of the models.

Xu et al. (29) proposed that the enhanced SscFv production from simul-

taneous BiP and PDI overexpression resulted from cooperativity, or syner-

gistic effects, between the two species in the folding process. In the context of

their hypothesized model, where BiP and PDI act serially upon scFv, synergy

is mathematically defined as a steady-state SscFv production rate when both

BiP and PDI are overexpressed ((d½SscFv�=dt)SS;O:BiP1PDI) that is greater than

the product of the production rates when each of the species is overexpressed

independently ((d½SscFv�=dt)SS;O:BiP3(d½SscFv�=dt)SS;O:PDI) using the same

relative overexpression levels. When these rates are normalized by the pro-

duction rate when neither species is overexpressed ((d½SscFv�=dt)SS;nominal),

the following ratio

indicates serial synergy for values .1. An experimental synergy value was

obtained by evaluating the slopes for each BiP/PDI overexpression level data

set in Fig. 2 A and implementing them in Eq. 14 as the respective steady-state

SscFv production rates. The value, 1.9, supports the proposal that the ex-

perimental data reflects synergistic behavior between BiP and PDI.

The models were also tested for their ability to display serial synergy,

and results are plotted in Fig. 5. The synergy values in the plot are for BiP and

PDI overexpression levels of the same relative amounts (e.g., both BiP and

PDI were overexpressed 10-fold, 20-fold, etc.), though similar trends were

observed for all other calculated permutations in BiP and PDI levels in the

10- to 100-fold overexpression range (e.g., BiP overexpressed 10-fold and

PDI overexpressed 20-fold, BiP overexpressed 20-fold, and PDI overex-

pressed 10-fold, etc.). From the plot, it may be observed that none of the

models exhibited serial synergy, indicating the likelihood of more complex

interactions between BiP and PDI in the scFv folding process

than hypothesized by Xu et al. (29), which may include the involvement

of other species, such as co-chaperones, and/or PDI’s chaperone activity.

At this stage of model development, there was one final technical issue to

be addressed pertaining to the biological validity of Assumption 6: 3.37 3

105 free BiPs and 5.24 3 105 free PDIs were available for UscFv binding and

were consumed in the binding reactions and regenerated upon release. BiP

has many roles in the ER (most reviewed in (37); karyogomy function de-

scribed in (43)) and, consequently, interacts with many proteins there, and

PDI accelerates the folding of any disulfide bond-containing species. To

better represent this biological sequestration of BiP and PDI from UscFv, a

pool of total (non-scFv) unfolded protein was introduced to which BiP and

PDI could bind. This modification is schematized as Modification B in Fig. 3.

Upon implementation of Modification B, one also introduces a useful means

of tuning SscFv production rates.

FIGURE 5 Curves depicting the serial synergy values (serial synergy

defined by Eq. 14) calculated for Models 3*�6* and 8 over a variety of BiP

and PDI overexpression levels. In this plot, ‘‘Relative BiP and PDI’’

indicates the factor by which both BiP and PDI were overexpressed for that

particular value. Values for further permutations in relative BiP and PDI

overexpression were calculated, but they displayed similar relative behavior

and are not included on this plot for simplicity.

d½SscFv�
dt

� �
SS;O:BiP 1 PDI

d½SscFv�
dt

� �
SS;nominal

d½SscFv�
dt

� �
SS;O:BiP

d½SscFv�
dt

� �
SS;nominal

3

d½SscFv�
dt

� �
SS;O:PDI

d½SscFv�
dt

� �
SS;nominal

¼

d½SscFv�
dt

� �
SS;O:BiP1PDI

3
d½SscFv�

dt

� �
SS;nominal

d½SscFv�
dt

� �
SS;O:BiP

3
d½SscFv�

dt

� �
SS;O:PDI

; (14)
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That is, as available BiP and PDI levels are altered through introduction of

this pool of generic unfolded protein, SscFv production dependencies are

also altered per the BiP and PDI dependency curves in Fig. 4, as long as free

BiP and PDI are available in excess (the assumption under which the de-

pendency curves were generated). If either BiP or PDI concentrations ap-

proach or fall below UscFv levels, SscFv production dependence will be

dominated by the limiting species—behavior that is not captured by the

curves. To control the amount of BiP and PDI sequestered away by generic

unfolded protein, the amount of generic unfolded protein present and/or

BiP and PDI’s affinities for unfolded protein may be altered. In this work,

the amount of generic unfolded protein was kept constant at 1.5 3 105, while

the affinities were altered, so that an excess of 1.87 3 105 unbound BiP and

3.74 3 105 unbound PDI remained at steady state.

Completion of the fully detailed model

Even though all model permutations were similarly capable of capturing

desired BiP and PDI dependencies and enhanced scFv production when both

BiP and PDI were overexpressed, Model 6* was selected for further devel-

opment, because its mechanistic structure most resembled the desired fully

detailed model structure. In transforming Model 6* to the fully detailed

model, details pertaining to scFv transcription and translation and an extra

step to the post-translational translocation process were added (Fig. 6; legend

in Table 2) with no effect on model performance with regard to capturing BiP

and PDI dependencies and enhanced scFv production with BiP and PDI

overexpression (Fig. 2 C). Additionally, it should be noted that in the fully

detailed model, BiP-dependent translocation competes with cytoplasmic

unfolded scFv rather than scFv mRNA degradation, but Michaelis-Menten-

like dependence on BiP is retained because the branched dependency-deg-

radation competition motif and Requirement No. 2 are conserved. The list of

model assumptions and simplifications for the fully detailed model follows.

System ODEs are included in the Appendix. Parameters, some of which were

renamed from the simpler models, are listed in Table 3.

1. All reactions were modeled using lowest-order, deterministic kinetics.

2. No scFv transcript or protein of any form was initially present in the system.

3. BiP binds UscFv at the translocon in a second-order reaction, and

UscFv enters in a first-order reaction step.

4. Folding/secretion was assumed be first-order and faster for BiP-PDI-

bound and PDI-bound than BiP-bound and unbound UscFv.

5. scFv transcription was a step input.

6. 3.37 3 105 total BiP and 5.24 3 105 total PDI were available for

UscFv and general unfolded protein binding and were consumed in the

binding reactions and regenerated upon release.

7. All properly folded scFv was assumed to proceed to the Golgi and

ultimately be secreted.

8. Misfolding/degradation was assumed be first-order and equivalent for

both BiP-PDI-bound BiP-bound UscFv but faster for both unbound and

PDI-bound UscFv.

9. BiP binding was required for PDI binding to occur.

10. Multiple binding by BiP and PDI was ignored for simplicity, and

folding/misfolding rates were based on overall folding/misfolding rates,

as derived in the Appendix.

11. Cytoplasmic species (scFv mRNA and UscFv) degraded.

12. All compartments were assumed to be well mixed.

FIGURE 6 Schematic for the fully detailed scFv folding model. State numbers are provided for comparison with equations in the code. The figure legend that

defines species, prefixes, icons, and rate constant subscript prefixes and suffixes is in Table 2. Parameter definitions and values are provided in Table 3.
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RESULTS

Having developed a detailed mechanistic model using the

top-down approach, analysis could proceed. The top-down

model development process enables the more efficient and

effective application of analytical methods, reviewed in

Aldridge et al. (10), due to the insights one has attained in

incrementally constructing the model. The insights gained in

the scFv folding model development guided the prediction

and evaluation of parameter dependencies of SscFv pro-

duction. Development of the backbone model for scFv

folding identified the core processes required for reproduc-

TABLE 2 Definitions for all states found in the equations and in Figs. 3 and 6, recurring prefixes used in state names, subscripts

for SscFv production in the equations, all icons found in the aforementioned figures, and recurring prefixes and suffixes used

in parameter subscript labels

State name State definition

BiP BiP (binding protein).

BiP�PDI�UP BiP- and PDI (protein disulfide isomerase)-bound generic unfolded protein.

BiP�PDI�UscFv BiP- and PDI-bound unfolded scFv (single-chain 4-4-20 antibody fragment) protein.

BiP�UP BiP-bound generic unfolded protein.

BiP�UscFv BiP-bound unfolded scFv protein.

Cytoplasmic scFv mRNA Cytoplasmic scFv mRNA.

Cytoplasmic UscFv Cytoplasmic unfolded scFv protein.

MscFv Misfolded scFv protein.

Nuclear scFv mRNA Nuclear scFv mRNA.

PDI PDI.

PDI�UP PDI-bound generic unfolded protein.

PDI�UscFv PDI-bound unfolded scFv protein.

ptt’ing UscFv Post-translational translocating unfolded scFv protein.

scFv mRNA scFv mRNA.

SscFv Secreted scFv.

UscFv Unfolded scFv protein.

UP Generic unfolded protein within the ER, excluding scFv.

State prefix Significance

M- Misfolded.

S- Secreted.

U- Unfolded.

d½SscFv�=dt subscript Subscript definition

-nominal No BiP or PDI overexpressed.

-O.BiP BiP overexpressed.

-O.BiP1PDI Both BiP and PDI overexpressed.

-O.PDI PDI overexpressed.

-SS Steady-state.

Icon description Icon definition

Double-headed arrow Indicates reversible reaction.

k– Rate constant defined in Table 3.

Multiplication sign Indicates an additional reactant in a second-order reaction.

Orange sunburst BiP.

Pink/turquoise banana-shape PDI acting as a foldase.

Pink/turquoise tooth-shape PDI acting as a chaperone.

Plus sign Indicates additional products of a reaction.

Red box containing text ‘‘VscFv’’ scFv mRNA input.

Red curved line bundle Folded scFv destined for secretion (SscFv).

Red oval containing text scFv state defined by text.

Red sun containing text ‘‘deg.’’ Indicates degradation of the reactant.

Single-headed arrow Indicates irreversible reaction.

Turquoise oval containing text Generic unfolded protein state defined by text.

Rate constant subscript prefix/suffix Significance

-b Specific to a three-state model.

-bit BiP-independent translocation into the ER.

(-)d Degradation.

m- Misfolding rate.

r- Reverse reaction rate.
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tion of experimental behaviors: translocation by BiP and

branched folding by PDI that competed with degradation.

The added details only elaborated, but did not alter, these

basic processes. Consequently, predictions could be made for

large groups of parameters within the processes as to how

they would affect SscFv production.

Starting with the PDI folding/degradation competition

process, it would follow that changes in parameters associated

with folding would similarly affect SscFv production, and

changes in parameters associated with misfolding would in-

versely affect production. Thus, increasing folding rates and

decreasing misfolding rates would be expected to increase

SscFv production. Additionally, adjusting BiP- and PDI-

UscFv binding/ dissociation rates so as to increase the produc-

tion of the fastest folding, slowest misfolding UscFv binding

state (BiP�PDI�UscFv) over slower folding and faster mis-

folding states would also increase SscFv production. Indeed,

these predictions were verified when the parameter alterations

were implemented in the mathematical model (see Fig. 7,

which shows the relative SscFv dependencies to the various

folding, misfolding, binding, and dissociation rates). Relative

overall misfolded scFv production dependencies were simply

the inverse of these results (not shown).

Similar predictions and verifications could be performed

for parameter dependencies in the BiP translocation process.

In a logical fashion, it could be anticipated that increases/

decreases in parameters associated with transcription and

translation would result in increased/decreased SscFv pro-

duction (verification not shown). However, there was one

parameter that proved to be critical to model performance: the

rate at which the translocation complex formed, which in-

cluded UscFv trafficking to the translocon and BiP binding to

it in a second-order reaction. Reasoning predicts that low

values of this parameter would limit the translocation process,

TABLE 3 Parameters definitions, values, and references

Developing

models

parameter

Detailed

model

parameters Definition Value Units Reference(s)

k1 N/A Effective second-order rate constant for scFv translation and

translocation into the ER by bound BiP.

1.2 3 10�8 1=(molecules � s) (32,84,86)

k1b N/A Effective second-order rate constant for scFv translation and

BiP-catalyzed translocation into the ER.

1.2 3 10�8 1=(molecules � s) (32,84,86)

k1bit N/A Effective first-order rate constant for scFv translation and

BiP-independent translocation into the ER.

4.0 3 10�3 1=s (32,84,86)

k2 k61 PDI-UscFv binding rate. 2.3 3 10�7 1=(molecules � s) (71–73)

k2b N/A PDI-catalyzed UscFv folding rate. 1.6 3 10�7 1=(molecules � s) (36,67,68,71–73)

kr2 kr61 PDI-UscFv release rate. 6.0 3 10�4 1=s (71–73)

k3 k63 BiP�UscFv folding rate. 7.0 3 10�3 1=s (36,67,68)

kd k3d Cytoplasmic scFv mRNA degradation rate. 2.6 3 10�3 1=s (85)

km3 km63 BiP�UscFv misfolding rate. 3.9 3 10�2 1=s (36,67,68)

k4 k65 BiP�PDI�UscFv folding rate. 3.4 1=s (36,67,68)

km4 km65 BiP�PDI�UscFv misfolding rate. 3.9 3 10�2 1=s (36,67,68)

k5 k66 PDI�UscFv folding rate. 8.5 3 10�2 1=s (36,67,68)

km5 km66 PDI�UscFv misfolding rate. 3.4 3 10�1 1=s (36,67,68)

k6 k60 BiP-UscFv binding rate. 1.2 3 10�8 1=(molecules � s) (86)

kr6 kr60 BiP-UscFv release rate. 1.0 3 10�1 1=s (86,87)

k7 k64 UscFv folding rate. 7.0 3 10�3 1=s (36,67,68)

km7 km64 UscFv misfolding rate. 3.4 3 10�1 1=s (36,67,68)

N/A k55 scFv mRNA nuclear translocation rate. 1.8 1=s (74–80)

N/A k56 scFv translation rate. 6.2 3 10�2 1=s (81,82)

N/A k58 UscFv trafficking rate to the translocon. 2.2 3 10�9 1=(molecules � s) (83)

N/A k59 UscFv posttranslational translocation rate. 9.0 3 10�1 1=s (84)

N/A k69 BiP-unfolded protein binding rate. 8.8 3 10�2 1=(molecules � s) (S. Hildebrandt,

D. Raden,

A. S. Robinson,

and F. J. Doyle III,

unpublished)

N/A kr69 BiP-unfolded protein release rate. 1.0 3 10�1 1=s (S. Hildebrandt,

D. Raden,

A. S. Robinson,

and F. J. Doyle III,

unpublished)

N/A k70 PDI-unfolded protein binding rate. 2.3 3 10�7 1=(molecules � s) (71–73)

N/A kr70 PDI-unfolded protein release rate. 6.0 3 10�4 1=s (71–73)

N/A k76 PDI-unfolded protein binding rate as a chaperone. 2.3 3 10�7 1=(molecules � s) (71–73)

N/A kr76 PDI-unfolded protein release rate as a chaperone. 3.2 3 10�1 1=s (41,71–73)

N/A k57 Cytoplasmic UscFv degradation rate. 4.0 3 10�4 1=s (69)

Top-Down Mechanistic Modeling 3545

Biophysical Journal 95(8) 3535–3558



so SscFv production would be highly BiP-dependent. High

values of this parameter would flood the ER with UscFv, so

SscFv production would become folding—hence, PDI—

limited. Consequently, this parameter could potentially dictate

relative SscFv dependencies to BiP and PDI levels.

To verify this prediction, SscFv levels at 50 h were plotted

against the experimental measurements for a range of trans-

location complex formation rates for various BiP and PDI

overexpression levels, as shown in Fig. 8. In the plots it may be

observed that, indeed, there is a gradual transition from total

BiP dependence to total PDI dependence by SscFv production

as the translocation rate increases. It is only within an inter-

mediate range, at ;2.2 3 10�9 1=(molecules � s); that BiP

and PDI dependencies are comparable. (The literature-derived

value, 1.2 3 10�8 1=(molecules � s); used in model develop-

ment falls within this range.) Since the value of this parameter

is so critical for reproducing experimentally observed BiP and

PDI dependencies, it becomes one final model requirement:

Requirement No. 3

The rate constant associated with the second-order BiP-de-

pendent reaction step in translocation must not be so low

compared to PDI-dependent folding rates that it excessively

amplifies BiP over PDI expression level dependency. It also

should not be so high that it eliminates BiP dependency al-

together and makes the system PDI folding-dependent.

It is important to note that Fig. 8 and Requirement No. #3

suggest that relative secreted scFv dependencies on BiP and

PDI concentrations are not robust to perturbations in the

translocation rate constant. Robustness has been hypothe-

sized to be a key feature of biological regulatory systems,

which contain control elements responsible for conferring

robustness on these systems (44,45). The isolated scFv

folding model presented here lacks any such elements, so its

consequent lack of robustness is not surprising. Biologically,

the protein folding process is regulated by the unfolded

protein response (reviewed in (46,47)), which does contain

control elements that increase protein folding robustness.

Prill et al. (20) has also hypothesized robustness to be a

feature of recurring biological motifs, which is supported by

the branched dependency-degradation competition motif, but

warn that a motif that expresses robustness in isolation may

not necessarily pass along that robustness to the entire sys-

tem, which is also observed in this work.

CONCLUSIONS

In this work, a top-down approach to mechanistic modeling

was presented and its implementation demonstrated through

the development of a mathematical model for scFv folding in

S. cerevisiae ER by BiP and PDI. This approach, represented

schematically in Fig. 1, may be summarized as follows:

1. Establish the training data (i.e., the experimental data the

mathematical model is expected to reproduce).

2. Establish the scope of the model (i.e., the biological

details that the model will include).

3. Develop and analyze a backbone model (i.e., the most

basic abstraction of the biological system that can

reproduce the desired behaviors), potentially from

known biological behavior motifs.

4. Incrementally append the backbone model with desired

biological details and evaluate their effects on model

performance until the desired level of mechanistic detail

has been achieved.

FIGURE 7 Relative SscFv production depen-

dency on UscFv folding and misfolding and

BiP- and PDI-UscFv binding/release rate pa-

rameters, as defined in Table 3 and depicted in

Fig. 6. Generally, parameter numbers with a

corresponding r are binding rates, and the r rates

are dissociation rates; parameter numbers with a

corresponding m are folding rates, and the m
rates are misfolding rates (see Table 2). SscFv

levels were measured at 50 h.
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As part of the model development, the importance of anno-

tating all assumptions and simplifications was emphasized, as

systematic alteration and relaxation of these assumptions and

simplifications could be used to conclusively eliminate

poorly performing model formulations.

When it was employed to develop a mechanistic mathe-

matical model for scFv folding based on the Xu et al. (29)

hypothesis, the strength of the top-down approach was dem-

onstrated. The approach identified three requirements and a

biological behavior motif necessary to reproduce experimen-

tally observed BiP and PDI dependencies and augmented scFv

production with combined BiP and PDI overexpression, thus

supporting the hypothesis in these capacities. It also identified

a shortcoming in the hypothesis, in that it cannot capture syn-

ergistic interactions between BiP and PDI in the scFv folding

process. Elucidation of the requirements and motif, which

naturally arose as part of the top-down process, would not

have been so straightforward had a bottom-up approach been

implemented. The requirements are reiterated below:

Requirement No. 1

Competition between degradation/misfolding and acceler-

ated folding by PDI is necessary for PDI dependence.

Requirement No. 2

Assuming post-translational translocation is BiP-dependent,

competition between the translocation step and cytoplasmic

degradation of the translocating species is required to make

BiP and PDI expression level dependencies comparable.

Requirement No. 3

The rate constant associated with the second-order BiP-de-

pendent reaction step in translocation must not be so low

compared to PDI-dependent folding rates that it excessively

amplifies BiP over PDI expression level dependency. It also

should not be so high that it eliminates BiP dependency al-

together and makes the system PDI folding-dependent.

The scFv folding example is elementary in its size and

complexity and in the amount of biological information readily

available for model construction, but the top-down approach is

applicable to systems of all sizes with all amounts of available

biological information. One key to any successful modeling

effort is the proper alignment of model scope with the amount

of available information and goal(s) of model construction.

Gradually applying detail to a highest-level model systemati-

cally heeds this charge by enabling the modeler to straight-

forwardly identify when the model is becoming needlessly

and/or impractically bulky, especially with respect to available

biological data and questions being asked of it. Even when

systems become necessarily large and/or difficult to solve, the

approach intimates the modeler with the modeling aspects that

are pushing the ever-increasing upper bounds of computer

technology (e.g., speed, memory, parallelization) and software

(e.g., solvers for ordinary and differential-algebraic systems of

equations, such as those within the powerful DASPK (48) and

SUNDIAL (49)) capability, so a precise plan of action may be

developed to cope with them.

One challenge present in the top-down approach is the

possibility of missing certain mechanistic components or

FIGURE 8 Plots demonstrating SscFv pro-

duction dependency on the rate at which

cytoplasmic UscFv was trafficked to the trans-

locon (k58) for double BiP and PDI (A), triple

BiP and PDI (B), and quadruple BiP and PDI

(C) overexpression levels. SscFv levels were

measured at 50 h and compared to the experi-

mental values (dashed lines). Error bars for the

experimental data are provided on one experi-

mental data point for ease of interpretation but

apply to all: O.BiP1PDI and O.BiP error bars

are found at k58 ¼ 1:2 3 10�91=(molecules � s);

O.PDI, at 2:2 3 10�91=(molecules � s); and

nominal, at 3:2 3 10�91=(molecules � s):

Top-Down Mechanistic Modeling 3547

Biophysical Journal 95(8) 3535–3558



biological behavior motifs if their effects are masked within

the data used to construct the model. For example, a feed-

forward regulatory loop may be overlooked if its influence on

existing experimental data is adequately captured by em-

ploying a large value for one of the parameters when the

precise value is unknown. Generally, this challenge may be

addressed by comparing mechanistic model parameter values

to known values for particular classes of reactions for dis-

crepancies (e.g., check if a model’s phosphorylation rate

falls within the known range of values for this type of reac-

tion). This parameter-check may also be used as a means of

evaluating model performance. Additionally, and perhaps

more importantly, an incomplete model produced by the top-

down approach that captures known experimental behaviors

is not technically invalid, unless experimental conditions in

which the influence of the missing components or biological

behavior motifs plays a critical role are defined and the in-

fluence observed. Again, the top-down approach offers

the benefit of preventing the model from becoming overly-

detailed relative to the amount of available information

and the questions being asked of it. The process of amending

a model with more biological information as it becomes

available falls into the general framework of iterative,

hypothesis-driven research in systems biology (1). Finally,

one way to protect against overlooking the influence of a

particular biological behavior motif is by ensuring that

known motifs and their behaviors are thoroughly character-

ized for a wide range of conditions and parameter values, a

task that has been undertaken for a variety of feedforward

loop types (50–52) in the case of the feedforward loop

example.

The field of systems biology is only recently emerging

as a viable means for studying biological systems, thanks

to recent advances in experimental data gathering and

analysis techniques and tools (53). As the field continues

to develop and become more standardized, a systema-

tization of the approaches to mathematical modeling of

biological systems will assist in this standardization. As

these approaches are systematized, formal comparisons

and evaluations of their appropriateness and performance

for use in modeling particular systems will most certainly

arise.

It is even possible that, eventually, certain aspects of

modeling approach selection and implementation will be-

come fully automated. Specific to the implementation of the

top-down approach to mechanistic modeling, much effort is

being placed into developing literature and database mining

algorithms and software (54–58) to enumerate experimen-

tally observed species interactions—a potential means of

automating the process of defining model scope. If a formal

biological behavior motifs database were ever to be com-

piled, algorithms and software could be developed to mine it

for motifs for use in backbone model construction as well.

Another approach may be the creation and cataloguing of a

biological behavior motifs database using an algorithm

similar to that developed and implemented by Francxois and

Hakim (59), which constructs basic modules and motifs from

scratch (excluding even biologically known parameter

values) to capture prescribed biological behaviors. The

Francxois and Hakim (59) evolutionary procedure may even

be adapted to automate the process of appending a backbone

model with mechanistic detail and assessing the effects on

model performance, much the way attempts have been made

to automate model reduction in bottom-up approaches to

mechanistic modeling (60–64). Similarly, the top-down ap-

proach may borrow methods, such as those from metabolic

engineering (65,66), to systematically explore the effects of

altering model connectivity. Indeed, this work takes only an

initial step into the systematization of mechanistic biological

modeling, with much work yet to be done.

APPENDIX

Nomenclature

Table 2 enumerates definitions for all states, state prefixes, and prefixes

and suffixes used in parameter subscript labels in model equations and Figs. 3

and 6 for straightforward interpretations of these model descriptions. Note

that the brackets around the state names found in the equations simply

indicate concentrations, which were always expressed in terms of number of

molecules. The table also provides a legend for all of the characters used in

the figures. Finally, all parameter definitions and values may be found in

Table 3.

Parameter derivations

k3/k63, km3/km63, k7/k64, km7/km64, k4/k65, km4/km65, k5/k66, and
km5/km66, UscFv folding and misfolding rates

For Fab antibody fragments, Mayer et al. (36) measured 2% nominal folding,

15% folding with BiP and ATP, 20% folding with PDI, and 40% folding

with BiP, PDI, and ATP. These folding percentages were assumed to be

loosely applicable to 4-4-20 scFv fragment folding, since Nieba et al.

(67) has reported 2% nominal folding when the fragment is expressed in E.

coli. Freund et al. (68) measured a fast folding phase rate of 0:3241=min and

slow phase rate of 0:0481=min for another scFv fragment. The overall

folding rate

1

0:324
1

min

1
1

0:048
1

min

0
B@

1
CA
�1

1min

60 s
¼ 7:0 3 10

�41

s

was assumed to be applicable to the 4-4-20 fragment, so this was the nominal

and BiP-assisted folding rate (k3/k63 and k7/k64) used in the mathematical

models. The remaining folding rates could be derived from the collected

information:

2%

98%
¼ 7:0 3 10

�41

s

km7=km64; km5=km66

0km7=km64; km4=km65; km5=km66

¼ 3:4 3 10
�21

s
; (15)
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15%

85%
¼ 7:0 3 10

�41

s

km3=km63; km4=km65

0km3=km63 ¼ 3:9 3 10
�31

s
; (16)

20%

80%
¼ k5=k66

3:4 3 10
�21

s

0k5=k66 ¼ 8:5 3 10
�31

s
; (17)

50%

50%
¼ k4=k65

3:4 3 10
�21

s

0k4=k65 ¼ 3:4 3 10
�21

s
: (18)

To accelerate folding dynamics, all of these rate constant values were

multiplied by a factor of 10. Further, k4/k65 was multiplied by another factor

of 10 to emphasize the increase in folding rate caused by BiP and PDI

binding.

k6/k60, kr6/kr60, k69, kr69, k2/k61, kr2/kr61, k70, kr70, k76, and kr76,
BiP- and PDI-UscFv and general unfolded protein binding
and dissociation rates

k6/k60 and kr6/kr60 are taken directly from Robinson and Lauffenburger (69),

with the original references provided in Table 3. Units conversion was

implemented using 4:35310�15L=ER:BiP-general unfolded protein binding

and release rates were taken directly from S. Hildebrandt, D. Raden, A. S.

Robinson, and F. J. Doyle III, unpublished, which used an optimized value

for binding, and the Robinson and Lauffenburger (69) value for release.

Darby and Creighton (71) measured a PDI binding rate of 600 1=(M � s);

which converts to k2=k61; k70 ¼ 2:3310�71=(molecules � s): Primm and

Gilbert (72) and Puig et al. (73) measured the dissociation constant for

various forms of PDI from various substrates to be ;1 mM, which converts

to 2.62 3 103 molecules. This value was used to calculate the dissociation

rate: kr2=kr61; kr70 ¼ ð1:623103 moleculesÞð2:3310�71=(molecules � s)Þ ¼
6:0310�41=s:

For PDI chaperone binding/dissociation, Gilbert (41) reviewed dissoci-

ation constants ranging from 50 to 1000 mM. The average of these values was

used: 1.31 3 106 molecules, after units conversion. The chaperone binding

rate was arbitrarily taken to be identical to the foldase binding rate ðk76 ¼
2:3310�71=(molecules � s)Þ: The consequent chaperone release rate was

then 3:2310�11=s:

k55, k56, k58, and k59, scFv translation and transport rates

Ribbeck and Görlich (74), Siebrasse and Peters (75), and Smith et al. (76)

place nuclear translocation at a rate of ;100 MDa=(s � NPC molecule) in

various vertebrates for various molecules. Ribbeck and Görlich (74) mea-

sured 2800 NPC molecules in the nuclear envelope of HeLa cells. These

values were combined to produce a general value for the nuclear transloca-

tion rate, 2.8 105MDa=s; which was assumed to apply to S. cerevisiae.

Calapez et al. (77), Lukacs et al. (78), Shav-Tal et al. (79), and Politz et al.

(80) measured diffusion rates for a variety of species in the nucleus, including

DNA, mRNA, and nascent ribosomes, to be ;1mM=s:Given an estimated S.
cerevisiae nuclear volume of 1.74 3 10�15 L and an assumption of nuclear

sphericity, the characteristic area (Ær2æ) of the nucleus may be calculated:

Ær2æ ¼ 3

4p
ð1:74 3 10

�15
LÞ 10

15
mm

3

L

� �� �2=3

¼ 0:56 mm
2
:

(19)

The resulting effective diffusion rate was then

1

mM

s
0:56mm

2 ¼ 1:8
1

s
: (20)

Combining the diffusion rate with the nuclear translocation rate and the

molecular weight of scFv mRNA (0.3200024 MDa) gave an overall nuclear

translocation rate of

k55 ¼
1

2:8 3 10
5MDa

s

0:320024 MDa

0
@

1
A

1
1

1:8
1

s

0
BBBBBB@

1
CCCCCCA

�1

¼ 1:8
1

s
: (21)

Although ribosome occupancy density does not necessarily scale linearly

with mRNA length (81), this assumption was made for simplification

purposes. Using extrapolation points from Arava et al. (81), ribosome

occupancy density could be estimated from the 963-nt-long scFv fragment

mRNA:

1:2
ribosomes

100 nts
� 0:14

ribosomes

100 nts
400 nts� 3600 nts

¼

1:2
ribosomes

100 nts
� X

ribosomes

100 nts
400 nts� 963 nts

0X¼ 1:01
ribosomes

100 nts
: (22)

From this density, it could be estimated that there is an average of 10

ribosomes on the scFv fragment mRNA. Freedman (82) estimated an overall

translation rate of 2aa=s: The scFv fragment mRNA is 321-amino-acids long,

so the overall scFv translation rate is k56 ¼ (10 ribosomes32aa=s)=321 aa ¼
6:2310�21=s:

Goder et al. (83) estimated SRP binding and trafficking to the translocon

to take place at a rate of 3:41=s: The parameter k58 also includes BiP binding at

the translocon, which occurs at a rate of k6/k60¼ 1.2 3 10�8 1=(molecules � s):

Combining these two rates provides the overall rate constant:

k58 ¼
1

1

ð3:4 sÞð3:37 3 10
5

BiP moleculesÞ

0
BB@

1
1

1:2 3 10
�8 1

molecules � s

1
CA
�1

¼ 1:2 3 10
�8 1

molecules � s: (23)

The value in the table is optimized for desired secreted scFv dependencies on

BiP and PDI levels, as discussed in the text.

Theoretical analyses by Elston (84) place translocation at a rate of

;100nm=s: The average length of an amino acid is 0.35 nm, and the scFv

fragment protein length is 317 amino acids. Thus, k59 is 9:0 3 10�11=s:

kd/k3d, scFv mRNA degradation rate

As an approximation for scFv mRNA degradation, Oliveira and McCarthy

(85) gives half-lives for a variety of mRNAs ranging from 1.5 to 7.5 min. The

average of 4.5 min gave a first-order rate constant of (ln2=4:5 min) 3

(1 min=60 s) ¼ 2:6 3 10�31=s; which was used to for k3d.
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k1b, k1bit, and k2b, developing models rates

The value k1b encompasses the processes involved with k55, k56, k58, and k59.

The value k58 largely remained the rate-limiting step, so its derived value,

1.2 3 10�8 1=(molecules � s);was used in these models. The value k1bit is the

equivalent rate without BiP dependence, so this dependence may be removed

by the multiplication by 3.37 3 105 BiP molecules. Thus, k1bit ¼
4:0310�31=s: The value k2b was taken to be k5 /k66, made PDI-dependent

by dividing by 5.24 3 105 PDI molecules.

Model equations

Model 1

d½UscFv�
dt

¼ k1b½scFv mRNA�½BiP� � k2b½UscFv�½PDI�; (24)

d½SscFv�
dt

¼ k2b½UscFv�½PDI�; (25)

d½SscFv�
dt

� �
SS

¼ k1b½BiP�½scFv mRNA�: (26)

Model 2

d½UscFv�
dt

¼ k1b½scFv mRNA�½BiP� � k2b½UscFv�½PDI�

� km5½UscFv�; (27)

d½SscFv�
dt

¼ k2b½UscFv�½PDI�; (28)

d½SscFv�
dt

� �
SS

¼ k1b½BiP�½scFv mRNA�½PDI�
km5

k2b

1 ½PDI�
: (29)

Model 3

d½BiP � UscFv�
dt

¼ k1½scFv mRNA�½BiP�1 kr2½BiP � PDI

� UscFv� � k2½PDI�½BiP � UscFv�
� ðk3 1 km3Þ½BiP � UscFv�; (30)

d½BiP � PDI � UscFv�
dt

¼ k2½PDI�½BiP � UscFv� � kr2½BiP

� PDI � UscFv� � ðk4 1 km4Þ
3 ½BiPPDI � UscFv�; (31)

d½BiP�
dt
¼ ðk3 1 km3Þ½BiP � UscFv�1 ðk4 1 km4Þ½BiP

� PDI � UscFv� � k1½scFv mRNA�½BiP�; (32)

d½PDI�
dt

¼ ðk4 1 km4Þ½BiP � PDI � UscFv�1 kr2½BiP

� PDI � UscFv� � k2½PDI�½BiP � UscFv�; (33)

d½SscFv�
dt

¼ k3½BiP � UscFv�1 k4½BiP � PDI � UscFv�; (34)

d½SscFv�
dt

� �
SS

¼ k1½BiP�½scFv mRNA�ðk3ðkr2 1 k4 1 km4Þ1 k2½PDI�k4Þ
ðk3 1 km3Þðkr2 1 k4 1 km4Þ1 k2½PDI�ðk4 1 km4Þ

:

(35)

Model 3*

d½scFv mRNA�
dt

¼ VscFv � kd½scFv mRNA�

� k1½scFv mRNA�½BiP�; (36)

d½BiP � UscFv�
dt

¼ k1½scFv mRNA�½BiP�1 kr2½BiP � PDI

� UscFv� � k2½PDI�½BiP � UscFv�
� ðk3 1 km3Þ½BiP � UscFv�; (37)

d½BiP � PDI � UscFv�
dt

¼ k2½PDI�½BiP � UscFv� � kr2½BiP

� PDI � UscFv� � ðk4 1 km4Þ½BiP

� PDI � UscFv�; (38)

d½BiP�
dt
¼ ðk3 1 km3Þ½BiP � UscFv�1 ðk4 1 km4Þ½BiP

� PDI � UscFv� � k1½scFv mRNA�½BiP�; (39)

d½PDI�
dt

¼ ðk4 1 km4Þ½BiP � PDI � UscFv�1 kr2½BiP � PDI

� UscFv� � k2½PDI�½BiP � UscFv�; (40)

d½SscFv�
dt

¼ k3½BiP � UscFv�1 k4½BiP � PDI � UscFv�; (41)

d½SscFv�
dt

� �
SS

¼ VscFvk1½BiP�ðk3ðkr2 1k4 1km4Þ1k2½PDI�k4Þ
ðk1½BiP�1kdÞððk3 1km3Þðkr2 1k4 1km4Þ1k2½PDI�ðk4 1km4ÞÞ

:

(42)

Model 4

d½UscFv�
dt

¼ kr6½BiP � UscFv� � k6½BiP�½UscFv�

� ðk7 1 km7Þ½UscFv�; (43)

d½BiP � UscFv�
dt

¼ k1½scFv mRNA�½BiP�1 kr2½BiP � PDI

� UscFv� � k2½PDI�½BiP � UscFv�
1 k6½BiP�½UscFv� � kr6½BiP � UscFv�
� ðk3 1 km3Þ½BiP � UscFv�; (44)
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d½BiP �PDI �UscFv�
dt

¼ k2½PDI�½BiP �UscFv�

� kr2½BiP �PDI �UscFv�
� ðk4 1 km4Þ½BiP �PDI �UscFv�; (45)

d½BiP�
dt
¼ ðk3 1 km3Þ½BiP � UscFv�1 ðk4 1 km4Þ½BiP

� PDI � UscFv�1 kr6½BiP � UscFv�
� k6½BiP�½UscFv� � k1½scFv mRNA�½BiP�; (46)

d½PDI�
dt

¼ ðk4 1 km4Þ½BiP � PDI � UscFv�1 kr2½BiP

� PDI � UscFv� � k2½PDI�½BiP � UscFv�; (47)

d½SscFv�
dt

¼ k7½UscFv�1 k3½BiP � UscFv�

1 k4½BiP � PDI � UscFv�; (48)

Model 4*

d½scFv mRNA�
dt

¼ VscFv � kd½scFv mRNA�

� k1½scFv mRNA�½BiP�; (50)
d½UscFv�

dt
¼ kr6½BiP � UscFv� � k6½BiP�½UscFv�

� ðk7 1 km7Þ½UscFv�; (51)

d½BiP �UscFv�
dt

¼ k1½scFvmRNA�½BiP�1kr2½BiP

�PDI�UscFv�� k2½PDI�½BiP �UscFv�
1k6½BiP�½UscFv�� kr6½BiP �UscFv�
� ðk3 1km3Þ½BiP �UscFv�;

(52)

d½BiP �PDI �UscFv�
dt

¼ k2½PDI�½BiP �UscFv�

� kr2½BiP �PDI �UscFv�
� ðk4 1km4Þ½BiP �PDI �UscFv�; (53)

d½BiP�
dt
¼ ðk3 1km3Þ½BiP �UscFv�1ðk4 1km4Þ

3 ½BiP �PDI �UscFv�1kr6½BiP �UscFv�
� k6½BiP�½UscFv�� k1½scFvmRNA�½BiP�; (54)

d½PDI�
dt
¼ ðk4 1km4Þ½BiP �PDI �UscFv�1kr2½BiP

�PDI �UscFv�� k2½PDI�½BiP �UscFv�; (55)

d½SscFv�
dt

¼ k7½UscFv�1k3½BiP �UscFv�

1k4½BiP �PDI �UscFv�; (56)

Model 5

d½BiP �UscFv�
dt

¼ k1½scFvmRNA�½BiP�1kr2½BiP

�PDI �UscFv�� k2½PDI�½BiP

�UscFv�� ðk3 1km3Þ½BiP �UscFv�; (58)

d½SscFv�
dt

� �
SS

¼
k1½BiP�½scFv mRNA� k3 1

k4k2½PDI�
kr2 1 k4 1 km4

1
k7kr6

k6½BiP�1 k7 1 km7

� �

kr6 1� k6½BiP�
k6½BiP�1 k7 1 km7

� �
1 k2½PDI� 1� kr2

kr2 1 k4 1 km4

� �
1 k3 1 km3

: (49)

d½SscFv�
dt

� �
SS

¼
VscFvk1½BiP� k3 1

k4k2½PDI�
kr2 1 k4 1 km4

1
k7kr6

k6½BiP�1 k7 1 km7

� �

ðk1½BiP�1 kdÞ kr6 1� k6½BiP�
k6½BiP�1 k7 1 km7

� �
1 k2½PDI� 1� kr2

kr2 1 k4 1 km4

� �
1 k3 1 km3

� �: (57)

d½PDI � UscFv�
dt

¼ kr6½BiP � PDI � UscFv�

� k6½BiP�½PDI � UscFv�
� ðk5 1 km5Þ½PDI � UscFv�; (59)

d½BiP � PDI � UscFv�
dt

¼ k2½PDI�½BiP � UscFv� � kr2½BiP � PDI � UscFv�
1 k6½BiP�½PDI � UscFv� � kr6½BiP � PDI � UscFv�
� ðk4 1 km4Þ½BiP � PDI � UscFv�; (60)

d½BiP�
dt
¼ ðk3 1 km3Þ½BiP � UscFv�1 ðk4 1 km4Þ½BiP � PDI

� UscFv�1 kr6½BiP � PDI � UscFv� � k6½BiP�½PDI

� UscFv� � k1½scFv mRNA�½BiP�; (61)

d½PDI�
dt

¼ ðk4 1 km4Þ½BiP � PDI � UscFv�1 ðk5 1 km5Þ

3½PDI � UscFv�1 kr2½BiP � PDI � UscFv�
� k2½PDI�½BiP � UscFv�; (62)
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Model 5*
d½scFvmRNA�

dt
¼ VscFv� kd½scFvmRNA�

� k1½scFvmRNA�½BiP�; (65)

d½BiP �UscFv�
dt

¼ k1½scFvmRNA�½BiP�1kr2½BiP

�PDI �UscFv�� k2½PDI�½BiP

�UscFv�� ðk3 1km3Þ½BiP �UscFv�; (66)

d½PDI �UscFv�
dt

¼ kr6½BiP �PDI �UscFv�� k6½BiP�½PDI

�UscFv�� ðk5 1km5Þ½PDI �UscFv�; (67)

d½BiP �PDI �UscFv�
dt

¼ k2½PDI�½BiP �UscFv�� kr2½BiP �PDI �UscFv�
1k6½BiP�½PDI �UscFv�� kr6½BiP �PDI �UscFv�
� ðk4 1km4Þ½BiP �PDI �UscFv�; (68)

d½BiP�
dt
¼ ðk31km3Þ½BiP�UscFv�1ðk41km4Þ½BiP�PDI

�UscFv�1kr6½BiP �PDI �UscFv�� k6½BiP�
3½PDI �UscFv�� k1½scFvmRNA�½BiP�; (69)

d½PDI�
dt
¼ ðk4 1km4Þ½BiP �PDI �UscFv�1ðk5 1km5Þ

3½PDI �UscFv�1kr2½BiP �PDI �UscFv�
� k2½PDI�½BiP �UscFv�; (70)

d½SscFv�
dt

¼ k3½BiP �UscFv�1k5½PDI �UscFv�

1k4½BiP �PDI �UscFv�; (71)

Model 6

d½SscFv�
dt

� �
SS

¼ k3k1½BiP�½scFv mRNA�
k2½PDI�1 k3 1 km3

1
k3kr2

k2½PDI�1 k3 1 km3

1 k4 1
k5kr6

k6½BiP�1 k5 1 km5

� �

3
k1½BiP�½scFv mRNA�k2½PDI�

ðk2½PDI�1 k3 1 km3Þ kr6 1� k6½BiP�
k6½BiP�1 k5 1 km5

� �
1 kr2 1� k2½PDI�

k2½PDI�1 k3 1 km3

� �� �
8>><
>>:

9>>=
>>;
: (64)

d½SscFv�
dt

¼ k3½BiP � UscFv�1 k5½PDI � UscFv�1 k4½BiP � PDI � UscFv�; (63)

d½SscFv�
dt

� �
SS

¼ k3VscFvk1½BiP�
ðk1½BiP�1 kdÞðk2½PDI�1 k3 1 km3Þ

1
k3kr2

k2½PDI�1 k3 1 km3

1 k4 1
k5kr6

k6½BiP�1 k5 1 km5

� �

3
VscFvk1½BiP�k2½PDI�

ðk1½BiP�1 kdÞðk2½PDI�1 k3 1 km3Þ kr6 1� k6½BiP�
k6½BiP�1 k5 1 km5

� �
1 kr2 1� k2½PDI�

k2½PDI�1 k3 1 km3

� �� �
8>><
>>:

9>>=
>>;
: (72)

d½BiP�
dt
¼ ðk3 1 km3Þ½BiP � UscFv�1 ðk4 1 km4Þ½BiP � PDI � UscFv�

1 kr6ð½BiP � UscFv�1 ½BiP � PDI � UscFv�Þ
� k6½BiP�ð½UscFv�1 ½PDI � UscFv�Þ � k1½scFv mRNA�½BiP�; (77)

d½UscFv�
dt

¼ kr6½BiP � UscFv� � k6½BiP�½UscFv�

� ðk7 1 km7Þ½UscFv�; (73)

d½BiP �UscFv

dt
¼ k1½scFvmRNA�½BiP�1kr2½BiP �PDI

�UscFv�� k2½PDI�½BiP �UscFv�1k6½BiP�½UscFv�
� kr6½BiP �UscFv�� ðk3 1km3Þ½BiP �UscFv�; (74)

d½PDI � UscFv�
dt

¼ kr6½BiP � PDI � UscFv� � k6½BiP�½PDI

� UscFv� � ðk5 1 km5Þ½PDI � UscFv�; (75)

d½BiP � PDI � UscFv�
dt

¼ k2½PDI�½BiP � UscFv� � kr2½BiP

� PDI � UscFv�1 k6½BiP�½PDI � UscFv� � kr6½BiP

� PDI � UscFv� � ðk4 1 km4Þ½BiP � PDI � UscFv�; (76)
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d½PDI�
dt
¼ ðk4 1km4Þ½BiP �PDI �UscFv�1ðk5 1km5Þ

3½PDI �UscFv�1kr2½BiP �PDI �UscFv�
� k2½PDI�½BiP �UscFv�; (78)

d½SscFv�
dt

¼ k7½UscFv�1k3½BiP �UscFv�1k5½PDI �UscFv�

1k4½BiP �PDI �UscFv�; (79)

Model 6*

d½scFvmRNA�
dt

¼VscFv� kd½scFvmRNA�

� k1½scFvmRNA�½BiP�; (81)

d½UscFv�
dt

¼ kr6½BiP �UscFv�� k6½BiP�½UscFv�

� ðk7 1km7Þ½UscFv�; (82)

d½BiP �UscFv�
dt

¼ k1½scFvmRNA�½BiP�1kr2½BiP�PDI

�UscFv��k2½PDI�½BiP�UscFv�
1k6½BiP�½UscFv�� kr6½BiP �UscFv�
� ðk3 1km3Þ½BiP �UscFv�; (83)

d½PDI �UscFv�
dt

¼ kr6½BiP �PDI �UscFv�� k6½BiP�½PDI

�UscFv�� ðk5 1km5Þ½PDI �UscFv�; (84)

d½BiP �PDI �UscFv�
dt

¼ k2½PDI�½BiP �UscFv�� kr2½BiP

�PDI �UscFv�1k6½BiP�½PDI

�UscFv�� kr6½BiP �PDI �UscFv�
� ðk4 1km4Þ½BiP �PDI �UscFv�; (85)

d½PDI�
dt
¼ ðk4 1km4Þ½BiP �PDI �UscFv�

1ðk5 1km5Þ½PDI �UscFv�
1kr2½BiP �PDI �UscFv�� k2½PDI�½BiP �UscFv�;

(87)

d½SscFv�
dt

¼ k7½UscFv�1k3½BiP �UscFv�

1k5½PDI �UscFv�1k4½BiP �PDI �UscFv�; (88)

d½SscFv�
dt

� �
SS

¼ k3 1
k2½PDI�

kr2 1 kr6 1� k6½BiP�
k6½BiP�1 k5 1 km5

� �
1 k4 1 km4

0
BB@

1
CCA

8>><
>>:

3 k4 1
k5kr6

k6½BiP�1 k5 1 km5

� �
1

k7kr6

k6½BiP�1 k7 1 km7

9>>=
>>;

3
k1½BiP�½scFv mRNA�

kr6 1� k6½BiP�
k6½BiP�1 k7 1 km7

� �
1 k2½PDI� 1� kr2

kr2 1 kr6 1� k6½BiP�
k6½BiP�1 k5 1 km5

� �
1 k4 1 km4

0
BB@

1
CCA1 k3 1 km3

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

; (80)

d½BiP�
dt
¼ ðk3 1 km3Þ½BiP � UscFv�1 ðk4 1 km4Þ½BiP � PDI � UscFv�

1 kr6ð½BiP � UscFv�1 ½BiP � PDI � UscFv�Þ
� k6½BiP�ð½UscFv�1 ½PDI � UscFv�Þ � k1½scFv mRNA�½BiP�; (86)
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Model 7

d½UscFv�
dt

¼ k1bit½scFvmRNA�1kr6½BiP �UscFv�

� k6½BiP�½UscFv�� ðk7 1km7Þ½UscFv�; (90)

d½BiP �UscFv�
dt

¼ kr2½BiP�PDI�UscFv��k2½PDI�½BiP�UscFv�

1k6½BiP�½UscFv�� kr6½BiP �UscFv�
� ðk3 1km3Þ½BiP �UscFv�; (91)

d½BiP �PDI �UscFv�
dt

¼ k2½PDI�½BiP �UscFv�

� kr2½BiP �PDI �UscFv�
� ðk4 1km4Þ½BiP �PDI �UscFv�;

(92)

d½BiP�
dt
¼ ðk3 1km3Þ½BiP �UscFv�

1ðk4 1km4Þ½BiP �PDI �UscFv�
1kr6½BiP �UscFv�� k6½BiP�½UscFv�; (93)

d½PDI�
dt
¼ ðk4 1km4Þ½BiP �PDI �UscFv�

1kr2½BiP �PDI �UscFv�� k2½PDI�½BiP �UscFv�;
(94)

d½SscFv�
dt

¼ k7½UscFv�1k3½BiP �UscFv�

1k4½BiP �PDI �UscFv�; (95)

Model 8

d½scFvmRNA�
dt

¼ VscFv� kd½scFvmRNA�

� k1½scFvmRNA�½BiP�; (97)

d½UscFv�
dt

¼ kr2½PDI �UscFv�� k2½PDI�½UscFv�

1kr6½BiP �UscFv�� k6½BiP�½UscFv�
� ðk7 1km7Þ½UscFv�; (98)

d½BiP �UscFv�
dt

¼ k1½scFvmRNA�½BiP�1kr2½BiP �PDI

�UscFv�� k2½PDI�½BiP �UscFv�
1k6½BiP�½UscFv�� kr6½BiP �UscFv�
� ðk3 1km3Þ½BiP �UscFv�; (99)

d½PDI �UscFv�
dt

¼ k2½PDI�½UscFv��kr2½PDI�UscFv�1kr6½BiP�PDI�UscFv�
� k6½BiP�½PDI �UscFv�� ðk5 1km5Þ½PDI �UscFv�; (100)

d½SscFv�
dt

� �
SS

¼ k7k1bit½scFvmRNA�
k6½BiP�1k7 1km7

1
k7kr6

k6½BiP�1k7 1km7

1k3 1
k4k2½PDI�

kr2 1k4 1km4

� �

3
k6k1bit½BiP�½scFvmRNA�

ðk6½BiP�1k7 1km7Þ kr6 1� k6½BiP�
k6½BiP�1k7 1km7

� �
1k2½PDI� 1� kr2

kr2 1k4 1km4

� �
1k3 1km3

� �
0
BB@

1
CCA: (96)

d½SscFv�
dt

� �
SS

¼ k3 1
k2½PDI�

kr2 1 kr6 1� k6½BiP�
k6½BiP�1 k5 1 km5

� �
1 k4 1 km4

0
BB@

1
CCA k4 1

k5kr6

k6½BiP�1 k5 1 km5

� �
1

k7kr6

k6½BiP�1 k7 1 km7

8>><
>>:

9>>=
>>;

3
VscFvk1½BiP�=ðk1½BiP�1 kdÞ

kr6 1� k6½BiP�
k6½BiP�1 k7 1 km7

� �
1 k2½PDI� 1� kr2

kr2 1 kr6 1� k6½BiP�
k6½BiP�1 k5 1 km5

� �
1 k4 1 km4

0
BB@

1
CCA1 k3 1 km3

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

: (89)
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d½BiP �PDI �UscFv�
dt

¼ k2½PDI�½BiP �UscFv�� kr2½BiP �PDI

�UscFv�1k6½BiP�½PDI �UscFv�
� kr6½BiP �PDI �UscFv�
� ðk4 1km4Þ½BiP �PDI �UscFv�;

(101)

d½PDI�
dt
¼ðk41km4Þ½BiP�PDI�UscFv�1ðk51km5Þ½PDI�UscFv�

1kr2ð½PDI �UscFv�1 ½BiP �PDI �UscFv�Þ
� k2½PDI�ð½UscFv�1 ½BiP �UscFv�Þ; (103)

d½SscFv�
dt

¼ k7½UscFv�1k3½BiP �UscFv�

1k5½PDI �UscFv�1k4½BiP �PDI �UscFv�;
(104)

L¼ kr6

kr2 1k6½BiP�1k5 1km5

; (105)

D¼ kr2�Mkr2k2½PDI�L� k6½BiP�L1kr6 1k4 1km4; (107)

½BiP �PDI �UscFv�SS

¼ ðk2½PDI�1Mkr6k2½PDI�Þ½BiP �UscFv�SS

D
; (111)

½PDI �UscFv�SS

¼ k2½PDI�½UscFv�SS 1kr6½BiP �PDI �UscFv�SS

kr2 1k6½BiP�1k5 1km5

; (112)

d½SscFv�
dt

� �
SS

¼ k7½UscFv�SS 1k3½BiP �UscFv�SS

1k5½PDI �UscFv�SS

1k4½BiP �PDI �UscFv�
SS
: (113)

Detailed model

d½BiP �UP�
dt

¼ k69½BiP�½UP�� kr69½BiP �UP�

1kr70½BiP �PDI �UP�� k70½PDI�½BiP �UP�;
(114)

P ¼ Mðkr2 1 k6½BiP�1 k5 1 km5Þðð1 1 Mkr6Þkr2k2½PDI�LÞ1 kr2k2½PDI�1 Mkr6kr2k2½PDI�
D

; (108)

½BiP � UscFv�SS ¼
k1½BiP�VscFv

ðk1½BiP�1 kdÞðkr6 1 k2½PDI�1 k3 1 km3 �Mkr6ðkr2 1 k6½BiP�1 k5 1 km5Þ � PÞ; (109)

M ¼ k6½BiP�

k6½BiP� � kr2k2½PDI�
kr2 1 k6½BiP�1 k5 1 km5

1 k2½PDI�1 k7 1 km7

� �
ðkr2 1 k6½BiP�1 k5 1 km5Þ

; (106)

½UscFv�SS ¼ kr6 1
ð1 1 Mkr6Þkr2k2½PDI�L

D

� �� �
ðMðkr2 1 k6½BiP�1 k5 1 km5ÞÞ½BiP � UscFv�SS

k6½BiP�

� �
; (110)

d½BiP�
dt
¼ ðk3 1 km3Þ½BiP � UscFv�1 ðk4 1 km4Þ½BiP � PDI � UscFv�

1 kr6ð½BiP � UscFv�1 ½BiP � PDI � UscFv�Þ
� k6½BiP�ð½UscFv�1 ½PDI � UscFv�Þ � k1½scFv mRNA�½BiP�; (102)
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d½UP�
dt
¼ kr69½BiP �UP�� k69½BiP�½UP�

1kr76½PDI �UP�� k76½PDI�½UP�; (116)

d½nuclear scFvmRNA�
dt

¼VscFv� k55½nuclear scFvmRNA�;

(118)

d½cytoplasmicscFvmRNA�
dt

¼ k55½nuclear scFvmRNA�

� k3d½cytoplasmicscFvmRNA�;
(119)

d½cytoplasmicUscFv�
dt

¼ k56½cytoplasmicscFvmRNA�

� k58½BiP�½cytoplasmicUscFv�
� k57½cytoplasmicUscFv�;

(120)

d½ptt9ingUscFv�
dt

¼ k58½BiP�½cytoplasmicUscFv�

� k59½ptt9ingUscFv�; (121)

d½BiP �UscFv�
dt

¼ k59½ptt9ingUscFv�1kr61½BiP �PDI �UscFv�

� k61½PDI�½BiP �UscFv�
1k60½BiP�½UscFv�� kr60½BiP �UscFv�
� ðk63 1km63Þ½BiP �UscFv�; (122)

d½UscFv�
dt

¼ kr60½BiP �UscFv�� k60½BiP�½UscFv�

� ðk64 1km64Þ½UscFv�; (123)

d½MscFv�
dt

¼ km64½UscFv�1km63½BiP �UscFv�

1km66½PDI �UscFv�1km65½BiP �PDI �UscFv�;
(124)

d½SscFv�
dt

¼ k64½UscFv�1k63½BiP �UscFv�

1k66½PDI �UscFv�1k65½BiP �PDI �UscFv�;
(125)

d½BiP �PDI �UscFv�
dt

¼ k61½PDI�½BiP �UscFv�� kr61½BiP �PDI

�UscFv�1k60½BiP�½PDI �UscFv�
� kr60½BiP �PDI �UscFv�
� ðk65 1km65Þ½BiP �PDI �UscFv�; (126)

d½PDI �UscFv�
dt

¼ kr60½BiP �PDI �UscFv�

� k60½BiP�½PDI �UscFv�
� ðk66 1km66Þ½PDI �UscFv�; (127)

d½BiP �PDI �UP�
dt

¼ k69½BiP�½PDI �UP�� kr69½BiP �PDI �UP�

1k70½PDI�½BiP �UP��kr70½BiP �PDI �UP�;
(128)

d½PDI �UP�
dt

¼ kr69½BiP �PDI �UP�� k69½BiP�½PDI �UP�

� kr76½PDI �UP�1k76½PDI�½UP�: (129)
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