
Scaling Theory of Polymer Translocation into Confined Regions

Chiu Tai Andrew Wong and Murugappan Muthukumar
Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts

ABSTRACT We examine the voltage-driven polymer translocation from a spacious region into a confined region imposed by two
parallel planes, so that the entry is impeded by the entropic confinement but aided by the electric field inside the confined region.
Two modes of entry are examined: linear translocation where a chain enters the confined region with chain ends, and hairpin
translocation where a chain enters the confined region by forming a hairpin. Our calculation shows that translocation time increases
with polymer length for linear entries but decreases with polymer length for hairpin entries. Applying to electrophoresis of DNA
molecules through periodic spacious and confined regions, our theory shows that the dominance of hairpin translocations leads to
the experimentally observed faster migration of longer DNA molecules. Our theory predicts experimental conditions for the validity
of this law in terms of polymer length, size of the confined region, and solution conditions.

INTRODUCTION

Polymer translocation from a spacious region into a confined

region is ubiquitous in biology and nanotechnology. For ex-

ample, protein molecules translocate to other cellular com-

partments through narrow membrane channels (1), polymer

molecules are driven from solutions into gel matrices in

electrophoresis (2), and DNA/RNA molecules are forced into

micro- or nanofluidic channels and protein channels (3–14).

The phenomenon of polymer translocation is controlled by

many factors (15). Chief among the contributing factors is the

entropic barrier arising from the reduction of polymer con-

formations in the confined regions. Therefore, a driving force

is required for successful translocation. While the entropic

barrier imposed by the restricted space is common, the driving

force can take different forms, or a combination of them. For

instance, DNA molecules can be driven into a confined region

by an electric field, a pressure-driven flow (6), or an electro-

osmotic flow due to the surface charge of the confined region

(16,17). In biological cells, the specific binding of specific

signal sequences initiates the entry of a protein molecule to a

narrow transmembrane channel (1).

Microfluidic channels with periodic spacious and confined

regions (3,4) demonstrate such interplay between entropic

barrier and driving force. In these devices, the migration time

of DNA molecules showed dramatic molecular weight de-

pendence, with longer DNA molecules traveling faster under

applied electric fields (3,4,18,19). A typical system consists

of periodic strips of deep and shallow regions with heights

1.5–3.0 mm and 75–100 nm, respectively. The DNA mole-

cules, in kilobase-pairs length scale, are driven through the

periodic constrictions by an applied electric field, as depicted

in Fig. 1. The molecules are unrestricted laterally so that they

are confined between two horizontal parallel surfaces placed

at distances much larger than the sizes of DNA molecules.

For each period, which consists of a deep region followed by

a shallow region, a DNA molecule first travels through the

deep region with time t1. It then stops momentarily at the

interface between the deep and shallow regions, and takes t2

to enter the shallow region. Finally, it takes t3 to finish

passing through the shallow region. A DNA molecule thus

takes time t1 1 t2 1 t3 to travel through one period (20).

Because of the height difference, the electric field in deep

regions is much lower than that in shallow regions (19,21),

making t3 negligible compared to t1 1 t2. In general, con-

finement effect is unimportant in deep regions so that the

electrophoretic behavior of the DNA molecules is the same as

that in a free solution. Consequently, t1 is independent of

molecular weight of the DNA molecule, as is well known in

the capillary electrophoresis (22). Therefore, the molecular

weight dependence comes essentially from t2, the time for

the DNA molecule to enter the shallow region from the deep

region. The above description is consistent with fluorescence

microscopy observations (4).

To understand the molecular basis of the above described

experimental results, several theoretical attempts (3,19,23,

24) and computer simulations (20,21,23,25,26) have been

reported in the literature. Han et al. (3,4) considered DNA

translocation into the confined region as an activation process

and assumed that translocation time was in the Arrhenius form

t2 ; t0 exp(F*), where F* ; 1/E is the free energy barrier of

translocation into the shallow region and E is the electric field in

the shallow region. They argued that the activation probability

was proportional to the contact area between the slit and DNA

molecule RD, where R ; Nn is the size of the DNA with N
segments, and D is the height of the shallow region. Using size

exponent n ’ 0:59 for a flexible self-avoiding chain, the pre-

factor t0 is approximately 1/RD ; 1/NnD. Thus, t2 always

decreases with chain length N in this model. Sebastian et al.

(24) drew analogy between the present problem and the

Kramer’s problem of a phantom polymer inside an asymmetric

double potential well. In this model, t0;1=N
ffiffiffi
E
p

if the poly-
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mer crosses the free energy barrier between the two wells in

hairpin conformations, and t0 is independent of N if the poly-

mer crosses the barrier in linear conformations (21). Note that

these theories are derived without accounting for the statistics

of the DNA molecules inside the particular geometry of the

system. By performing Monte Carlo simulations, Chen and

Escobedo (23) found that the free energy barrier for a Gaussian

chain to enter the shallow region increased with chain length

and approached a constant value in low electric fields, while it

decreased with chain length in high electric fields. Streek et al.

(25) found that, by increasing the height of the shallow regions

in their simulations, a fast and a slow state of DNA migration

through the periodic regions resulted from nonequilibrium

dynamics. Tessier et al. (21) performed detailed Monte Carlo

simulations with system dimensions similar to that of the ex-

periments (3,4). In agreement with experimental observations,

the mobility of the DNA increased with molecular weight

in their simulations. They attributed this effect mainly to the

deformation of the DNA molecules taking place during t2.

Panwar and Kumar (20) simulated the system with a Gaussian

chain and found that the mobility of the chain could change

nonmonotonically with molecular weight, depending on the

relative magnitudes of t1, t2, and t3. Recently, Lee and Joo

(26) studied the system with both linear and star-branched

polymers using Brownian dynamics simulations of bead-spring

chain models, and found that the size of the polymer appeared

to be the determining factor of the total migration time.

In this article, we present an analytically tractable scaling

theory and calculate t2 using the statistics of self-avoiding

chains under confinement. Two modes of polymer entry to

the confined region are considered: linear translocation,

which is led by a chain end; and hairpin translocation, which

is led by a hairpin of chain segments. By constructing their

free energies and the corresponding translocation times, we

find that the N dependence of t2 is dictated by the statistics of

chain tail(s) in the spacious region. For self-avoiding poly-

mers, t2 ; N0.31 for linear translocations and t2 ; N�0.38 for

hairpin translocations. Our calculation suggests that the de-

crease of translocation time with increasing chain length

observed in experiments can be ascribed to the dominance of

hairpin translocations. Furthermore, we predict that translo-

cation time increases with chain length if linear translocations

dominate, which is favored by short chains.

THEORY

We consider a polymer chain entering a confined region composed of two

parallel planes (shallow region) from a spacious region (deep region). When

the polymer molecule is trying to enter the shallow region, part of the chain

partitions into the shallow region and the rest of the chain still resides in the

deep region, as shown in Fig. 2. The free energy of the whole chain is the sum

of free energies of polymer segments inside the shallow region and those

inside the deep region.

The free energy of segments in the shallow region has two competing

contributions: 1), energy gain due to the electric field; and 2), conformational

entropy lost due to the geometric confinement. We assume that the electric

field is negligible and does not perturb the chain conformation in the deep

region. The deep region is assumed to be wide and deep enough that the

confinement effect on the chain is unimportant in the spacious region.

A typical free energy profile (15,27) for a chain entering the shallow re-

gion is illustrated in Fig. 3. The translocation process is described by the

number of polymer segments in the shallow region m with free energy F(m).

The process is at first unfavorable because of the entropic confinement im-

posed by the shallow region. As the chain proceeds further, after a critical

number of inserted segments m*, the critical insertion size, the electrostatic

free energy gain dominates and the translocation becomes favorable.

Therefore, the free energy barrier of translocation is F* ¼ F(m*) – F(0). In

this section, we construct the free energy expression F(m) for linear and

hairpin conformations. In the rest of the article, the units of length, energy,

and force are the Kuhn length l, thermal energy kBT, and kBT/l, respectively.

Since we use only scaling arguments in various key steps, the equality sign in

the following equations omits all numerical prefactors arising from the

nonuniversal aspects of the problem.

Confinement free energy in shallow region

Consider m polymer segments in the shallow region with height D and

constant electric field E. In view of the simplicity and success of the blob

FIGURE 2 Two modes of translocation (from the top view of geometry in

Fig. 1). (a) For a linear translocation, the chain enters the shallow region

with a chain end, forming n blobs in a linear series, with m segments in the

shallow region and a tail of N – m segments in the deep region. (b) For a

hairpin translocation, the chain enters the shallow region with a hairpin, with

m segments in the shallow region and two tails of j and N – m – j segments in

the deep region. In the deep region, there are two linear chains of blobs, each

with n/2 blobs.

FIGURE 1 The DNA molecule starts at the beginning of the deep region

as shown in panel a. Driven by the electric field E (the arrow indicates the

direction of the movement of the chain), it takes time t1 to migrate to the end

of the deep region as shown in panel b. The polymer molecule then takes t2

to enter the shallow region, as sketched in panel c. Once the polymer

molecule enters the shallow region successfully, it takes t3 to finish passing

through the shallow region, as shown in panel d.
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model of polymer chains in confined regions (28), we adopt the blob model.

We assume that the segments inside the shallow region form a series of blobs

with diameter D each, and the electric field aligns the blobs in linear but does

not influence the segment statistics inside them. There are g¼D1/n segments

in each blob, and within the blobs, the chain statistics is unaltered by con-

finement (28). Therefore, the number of blobs is n¼m/g¼m/D1/n. It is to be

noted that the size exponent n is 0.59 for the experimental conditions of the

literature (3,4,18,19), corresponding to the statistics of the self-avoiding

flexible chains. The free energy of confinement is (28)

FcðmÞ ¼
m

D
1=n
: (1)

The blob picture is satisfactory only if the persistence length lp is much

smaller than D and if it contains enough segments m to obey the self-avoiding

walk statistics (29).

Electrostatic free energy in shallow region

The conformations of a chain during linear and hairpin translocations are

shown in Fig. 2. Each segment in the shallow region experiences an elec-

trostatic force f¼ qE, where q is the net charge of each segment, and E is the

magnitude of the uniform electric field in the shallow region. The product qE

is positive. Each blob has g ¼ D1/n segments.

Let us first calculate the electrostatic energy when there is only one blob

(with g segments) inside the shallow region. The electrostatic energy gain is

the sum from each segment and can be written as E1 ¼ f +g

i¼1
xi; where xi is

the distance of the ith segment away from the interface between the deep and

shallow regions. A blob of length D ensures that 0 # xi # D. Alternatively, the

sum can be expressed as +g

i¼1
xi ¼ D+g

i¼1
(1=21Dxi); where �1/2 # Dxi #

1/2 is the normalized position of the ith segment relative to the center of the

blob. If the distribution of segments is symmetric about the center of the blob,

then +g

i¼1
Dxi ¼ 0:By making this assumption, the electrostatic energy of the

blob becomes E1 ¼ gfD/2. Now suppose that there are two blobs in series

aligning in the direction of the electric field. Starting with one blob, the

situation is equivalent to translating all segments in that blob by a distance D
in the direction of the electric field and creating another blob in the place of

that blob. Thus, starting with one blob, translating it into the new site of the

blob and then creating another blob in the place of the original one, the

electrostatic energy gain is E1 1 gfD. It follows that the electrostatic energy

for two blobs is E2¼ E1 1 E1 1 gfD. Similarly, when there are n blobs inside

the shallow region, the electrostatic energy change with respect to n – 1 blobs

is equivalent to translating the first blob by a distance (n – 1)D, so that it

moves to the end, and creating another blob in place of the first blob. The

electrostatic energy of the n blobs is therefore En¼ En�1 1 E1 1 gf(n – 1)D¼
nE1 1 gfD[(n – 1) 1 (n – 2) 1 . . . 1 1]¼ n2gfD/2. Since n¼m/g and g¼D1/n,

the electrostatic free energy of m segments assuming a linear conformation of

blobs in the shallow region is

FflðmÞ ¼ �En ¼ �
fm

2

2D
1=n�1

: (2)

The same result can be derived by an equivalent argument. By assuming that

E is uniform, the energy of a blob (with g segments) at a distance Dn9 from

the entrance to the shallow region is �fgDn9. Therefore, for n blobs, the net

gain due to the electric field is �fgD
R n

0
n9dn9; which results in the same

expression as Eq. 2. The negative sign indicates that the electric field drives

the chain into the shallow region and favors translocation by competing

against the positive confinement free energy given by Eq. 1. The rodlike limit

(n ¼ 1) eliminates the D dependence in Eq. 2, recovering the result for an

infinitely narrow channel (30). Note that Eq. 2 does not apply for Gaussian

chains (n ¼ 0.5) (also see (28)) as statistical independence among perpen-

dicular directions demands that the electrostatic energy does not depend on

D. Therefore, we will confine our discussion to non-Gaussian chains.

For hairpin translocations, the entry is led by segments somewhere in the

middle of the chain as illustrated in Fig. 2 b. We assume that a hairpin of n

blobs forms a loop of two linear strings of n/2 blobs side by side due to the

pulling by the electric field. The electrostatic energy for a hairpin confor-

mation is then

FfhðmÞ ¼ �2
1

2

� �
n

2

� �2

gfD ¼ �1

4
n

2
gfD ¼ � fm

2

4D
1=n�1

: (3)

Note that it is exactly half of its linear counterpart (Eq. 2). It is to be noted that

in this flexible chain model, relevant for chain lengths much larger than lp,

bending energy associated with chain stiffness is neglected.

Free energies of chain tails in deep region

We model a chain tail in the deep region as a chain anchored to a hard wall in

a semi-infinite half-space (31). The partition sum (with respective to the free

state) of such a chain with j segments is (32,33)

Zj ; j
g9�1

; (4)

where g9 ¼ 0.69 for a self-avoiding chain. The free energy of a j-segment

chain tail in the deep region is then

FaðjÞ ¼ �ln Zj ¼ ð1� g9Þ ln j: (5)

Free energies of linear and
hairpin conformations

With the above elements, we are in a position to construct the free energy

profiles of linear and hairpin translocations. A chain in a linear conformation

partitions between the deep and the shallow regions in the conformation

shown in Fig. 2 a. Using Eqs. 1, 2, and 4, the probability of realizing a linear

conformation with m segments in the shallow region and N – m segments in

the deep region is

PlðmÞ ¼ ðN � mÞg9�1
exp

fm
2

2D
1=n�1
� m

D
1=n

� �
: (6)

The free energy of a state F gives the relative probability P of realizing that

state, according to P¼ exp(–F). The translocation process is assumed to be in

FIGURE 3 Typical free energy profile of translocation as a function of the

number of segments in the shallow region m. The value m* is the critical

number of segments in the shallow region beyond which the translocation

process is favorable.
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quasiequilibrium (that is, the typical relaxation times for conformational

change of the polymer are shorter than the typical translocation time) so that

it is solely dictated by the relative free energies among various states.

For hairpin conformations, the chain enters the shallow region with

segments somewhere between the two ends, forming a hairpin in the shallow

region as shown in Fig. 2 b. If there are m segments in the hairpin and j and

N – m – j segments in the two tails in the deep region, respectively, using Eqs.

1, 3, and 4, the probability of the hairpin conformation is

Phðm; jÞ ¼ j
g9�1ðN � m� jÞg9�1

exp
fm

2

4D
1=n�1
� m

D
1=n

� �
: (7)

It follows that the corresponding free energies of linear and hairpin confor-

mations are

FlðmÞ ¼ �
f

2

m
2

D
1=n�1

1
m

D
1=n

1 ð1� g9ÞlnðN � mÞ; (8)

Fhðm; jÞ ¼ �
f

4

m
2

D1=n�1
1

m

D1=n
1 ð1� g9Þln j

1 ð1� g9ÞlnðN � m� jÞ; (9)

respectively. In general, the above free energies have a maximum as a

function of m, as illustrated in Fig. 3. Note that in writing Eqs. 7 and 9, we

implicitly assume that the two chain tails in the deep region do not interact. If

a monomer at the interface between the shallow and the deep regions is

allowed to move up and down in the range of height D, the probabilities in

Eqs. 6 and 7 would have an additional front factor D. It follows from free

energy F¼�kBT ln P that there would be terms of ;ln D, which are ignored

in Eqs. 8 and 9 for simplicity. Their effects are secondary compared to the D

dependence appearing in the electrostatic and confinement terms.

RESULTS

Critical insertion size

Translocation into the shallow region is initially unfavorable

because of the geometric confinement with free energy

;m/D1/n. After a critical number of inserted segments m*,

the translocation process becomes favorable and the trans-

location free energy profile is dominated by the electrostatic

energy ;–fm2/D1/n�1. The translocation time is largely de-

termined by the height of the free energy barrier F(m*) rel-

ative to the free state in the deep region. Note that this height

is different for linear and hairpin translocations. For hairpin

translocations, it has an additional dependence on j, which is

Fh(m*, j). The value m* computed in physical distance cor-

responds to the critical hernia nucleation length in the simu-

lations of Tessier et al. (21). We will refer to m* as the critical

insertion size for both linear and hairpin translocations.

We consider first the linear translocation. Using Eq. 8, the

linear critical insertion size m*l is given by solving @Fl/@m ¼
0. The solution is

m
�
l ¼

1

2fD
fDN 1 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfDN � 1Þ2 1 4ð1� g9ÞD1=n11

f

q� �
:

(10)

For large N, such that N� D(1�n)/2n f�1/2, the second term in

the square root of Eq. 10 becomes negligible. The value m*l
now takes the simple form

m̃�l ’
1

fD
: (11)

Note that, in the rest of the article, a variable with tilde on top

denotes an approximation that is valid for large N.

For hairpin translocations, the critical insertion size m*h
depends on j, the length of a tail in the deep region. Solving

@Fh/@m ¼ 0 for a fixed j, we get

m
�
hðjÞ ¼

1

2fD

�
2 1 Df ðN � jÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDf ðN � jÞ � 2Þ2 1 8ð1� g9ÞD1=n11f

q �
: (12)

Similarly, Eq. 12 reduces to

m̃
�
h ’

2

fD
(13)

for large N and is independent of the tail length j. Note that,

from Eqs. 11 and 13, m̃�h is exactly twice m̃�l : Since a hairpin

forms a loop of two linear blobs side by side in our model, the

critical length of a hairpin, in physical distance, is the same as

its linear counterpart for N � D(1�n)/2n f�1/2. The exact

solution Eq. 10 converges to the asymptotic limit Eq. 11 for

large N. The exact result still neglects coefficients of O(1),

due to the nature of the blob theory. Physically, the approx-

imations, Eqs. 11 and 13, ignore the change of entropy of

chain tail(s) in the deep region when the chain translocates

into the shallow region, which is negligible for large N.

Relative probabilities of translocation modes

The translocation is linear if the chain attains the conforma-

tion of Fig. 2 a, with the critical number of segments ml* in the

shallow region and N – ml* segments in the deep region.

Using Eqs. 6 and 11, the probability of linear translocation is

P̃
�
l ’ N

g9�1
exp � 1

2fD1=n 1 1

� �
(14)

for large N.

Nevertheless, we argue from a physical point of view that

one more situation leads to linear translocations. Fig. 4 de-

picts a chain conformation with a hairpin of m segments in

the shallow region and only one tail with N – m segments in

the deep region, which results from an insertion led by a

hairpin that is too close to one of the chain ends. If ml* , m ,

mh*, the hairpin is too short for hairpin translocations but more

than enough to undergo a linear one. Therefore, the confor-

mation shown on the left of Fig. 4 leads to a linear translo-

cation. Effectively, this consideration accounts for the fact

that hairpins that are too close to chain ends lead to linear

translocations.

The probability of the hairpin conformation shown on the

left of Fig. 4 is given by Ph(m, 0) from Eq. 7, that is

3622 Wong and Muthukumar
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PhlðmÞ ¼ ðN � mÞg9�1
exp

f

4

m
2

D
1=n�1
� m

D
1=n

� �
: (15)

This conformation will lead to a linear translocation if ml* ,

m , mh*. The total probability of hairpin-to-linear transloca-

tion is

P
�
hl ¼

Z m
�
h

m
�
l

PhlðmÞdm; (16)

P̃
�
hl ’

Z 2m̃
�
l

m̃
�
l

N
g9�1

exp
f

4

m2

D
1=n�1
� m

D
1=n

� �
dm; (17)

¼ N
g9�1

D
ð1�nÞ=2n

ffiffiffiffi
p

f

r
erfi

1

2Dð11nÞ=2n ffiffiffi
f
p

� �
exp � 1

fD1=n11

� �
;

(18)

where erfiðxÞ[ erfðixÞ=i ¼ 2p�1=2
R x

0
expðt2Þdt is the imag-

inary error function. The total probability of the conforma-

tions that lead to linear translocations is then Pl* 1 P*hl.

For hairpin translocations, the probability that a chain

conformation leads to a hairpin translocation is

P
�
hðjÞ ¼ ðN � m

�
h � jÞg9�1

j
g9�1

exp
f

4

m�2h

D
1=n�1
� m�h

D
1=n

� �
: (19)

For large N, it becomes

P̃�hðjÞ ¼ ðN � jÞg9�1
jg9�1

exp � 1

fD
1=n 1 1

� �
: (20)

Equations 7 and 13 were used in getting the above result. The

value j is between 0 and N – mh*, because there are already

mh* segments in the shallow region. The total probability of

hairpin translocation is

P
�
h ¼

Z N�m
�
h

0

P
�
hðjÞdj; (21)

’
Z N

0

P̃
�
hðjÞdj; (22)

P̃
�
h ¼ AN

2g9�1
exp � 1

fD1=n11

� �
; (23)

where A ¼ G(g9)2/G(2g9) ¼ 1.94, and G(x) is the g-function.

The approximation is valid for large N.

The relative probabilities of the three different entry

mechanisms are shown in Fig. 5 a. Linear translocations,

with probabilities P*l and P*hl, are favored by short chains.

Hairpin translocations, with probability P*h, dominate for

long chains. In general, P*h changes more rapidly with N
compared to P*l and P*hl.

Probability of linear translocations

P*l, P*hl, and P*h are relative probabilities of conformations that

lead to their corresponding modes of translocation. Hence the

probability of linear translocations among all translocation

events is

�Pl ¼
P
�
l 1 P

�
hl

P
�
l 1 P

�
hl 1 P

�
h

: (24)

FIGURE 4 A hairpin entry with ml* , m , m*h and only one tail in the

deep region leads to a linear translocation. The chain enters the shallow re-

gion as a hairpin but m does not exceed the hairpin critical insertion size m*h.

The chain end forming the hairpin has no entropic penalty to prevent itself

from proceeding into the shallow region and gaining electrostatic energy. If

m is larger than the linear critical insertion length ml*, linear translocation

occurs.

FIGURE 5 (a) Relative probabilities of different translocation modes. The

probability of hairpin translocation increases with N. The values D¼ 1.5 and

f ¼ 0.08 are used. (b) Probability of linear translocations (Eq. 24) decreases

with increasing N and f. The values D ¼ 1.5, N ¼ 30, 60, 90, and 120

respectively. Solid lines are calculated using approximations Eqs. 14, 18,

and 23. Dotted lines are calculated using exact formulas. The approximation

works well for large N.
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Using the approximated formulas Eqs. 14, 18, and 23, �Pl is

plotted in Fig. 5 b. The exact numerical results are plotted on

the same graph for comparison. The exact result still neglects

coefficients of O(1), due to the nature of the blob theory.

From the integration that leads to Eq. 23, it is clear that long

chains favor hairpin translocations simply because they have

more chance of forming hairpins.

Linear and hairpin translocation times

When a polymer molecule is trapped at the end of the deep

region and tries to enter the shallow region, electrostatic

force, with the help of thermal fluctuations, attempts to pull

segments into the shallow region against the entropic con-

finement until the number of segments in the shallow region

exceeds the critical insertion size m*. Polymer segments may

be inserted into and retracted back from the shallow region

many times before a thermal fluctuation makes the translo-

cation successful. The process can be mapped to a one-di-

mensional random walk under a free energy profile similar to

the one shown in Fig. 3, with the initial condition m(t¼ 0)¼
0, reflecting boundary condition at m ¼ 0 and absorbing

boundary condition at m ¼ N (for linear translocations). The

reflecting boundary condition at m ¼ 0 accounts for the fact

that whenever the last segment is retracted from the shallow

region to the deep region, the whole chain would still stick to

the entrance of the shallow region and try the insertion again

due to the weak electric field in the deep region. The ab-

sorbing boundary condition at m¼N represents the complete

insertion into the shallow region. The dynamics is governed

by the Fokker-Planck equation

@WmðtÞ
@t

¼ @

@m
k0

@FðmÞ
@m

WmðtÞ1 k0

@WmðtÞ
@m

� �
; (25)

where Wm(t) is the probability that there are m segments in the

shallow region at time t and k0 is a phenomenological rate

constant depending on the friction between one monomer

and the confined region. Applying the initial condition and

boundary conditions to Eq. 25, the average translocation time

into the shallow region can be written as (31,34)

Ætæ ¼ 1

k0

Z N

0

dx

Z x

0

dyexpðFðxÞ � FðyÞÞ; (26)

which can be evaluated numerically.

If the chain spends a significant amount of time entering

the shallow region, as in most experiments (3,4,18,19), the

free energy barrier imposed by the shallow region is con-

siderably larger than the thermal energy kBT. This condition

allows us to take the saddle point approximation to Eq. 26.

The result is

Ætæ ’ 1

k0

expðFðm�Þ � Fð0ÞÞ: (27)

This is the same as the average time needed to cross a free

energy barrier in Kramer’s reaction rate theory (35) and of the

same form of t2 assumed in the previous studies (3,4,19,21).

The approximation is good for the case that F(m*) – F(0) is

considerably larger than kBT, realized by low electric forces f
and narrow gap heights D. Equation 27 will be used for both

linear and hairpin translocation times. We take F(0) to be zero

by assuming that no segments are fixed at the entrance of the

shallow region. Therefore, F(m*) is the free energy barrier

height for a particular free energy profile.

It is instructive to write down the free energy barriers for

the two translocation modes explicitly, denoted by F* in Fig.

3. Since linear translocations can be achieved by two

mechanisms, linear and hairpin-to-linear translocations as

depicted in Figs. 2 a and 4, the effective free energy barrier of

linear translocation is

F
�
l ¼ �lnðP�l 1 P

�
hlÞ; (28)

’ ð1� g9Þln N 1
1

2fD1=n11

� ln 1 1 D
1�n
2n

ffiffiffiffi
p

f

r
exp � 1

2fD
1=n11

� �
erfi

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fD

1=n11

q
0
B@

1
CA

2
64

3
75;

(29)

where Eqs. 14 and 18 are used in the last equation, valid for

large N. Similarly, the effective free energy barrier for hairpin

translocation is obtained, by using Eq. 23, as

F
�
h ¼ �lnðP�hÞ (30)

’ ð1� 2g9Þln N � ln A 1
1

fD1=n11
: (31)

From Eqs. 29 and 31, we observe that the free energy barriers

are composed of two parts, one depending on N and the other

depending on f and D. For hairpin translocations, the part that

depends on f and D is at least twice as large as that for linear

translocations. However, given that 1 – g9¼ 0.31 and 1 – 2g9¼
�0.38, the free energy barrier increases with N for linear

translocations and decreases with N for hairpin transloca-

tions. As N increases, the free energy barrier for hairpin

translocations can be lower than its linear counterpart and

eventually can dominate the mode of translocation.

Using Eqs. 27 and 29, the average linear translocation time

is

k0Ætlæ ’ expðF�l Þ

’
N

1�g9
exp

1

2fD
1=n11

� �

1 1 D
1�n
2n

ffiffiffiffiffiffiffiffi
p=f

p
exp � 1

2fD
1=n11

� �
erfi

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fD

1=n11
p

 !:

(32)

Note that the linear translocation time, Ætlæ ; N1–g9 ; N0.31,

increases with N for self-avoiding flexible chains. Similarly,

the average hairpin translocation time is
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k0Æthæ ’ expðF�hÞ ’
N1�2g9

A
exp

1

fD
1=n 1 1

� �
: (33)

Equations 27 and 31 were used. Æthæ ; N1–2g9 ; N�0.38

decreases with N for self-avoiding flexible chains.

If both linear and hairpin translocations are allowed, as in

actuality, the free energy barrier is F*¼�ln(P*l 1 P*hl 1 P*h)

and the translocation time is given by

k0Ætæ ’ expðF�Þ; (34)

which is plotted in Fig. 6 a using exact formulas. The exact

result still neglects coefficients of O(1), due to the nature of

the blob theory. Indeed, Eqs. 32 and 33 can be viewed as

the limiting cases of Eq. 34 for P*l 1 P*hl� P*h and P*h� P*l 1

P*hl, respectively. Equation 34 suggests that the translocation

time increases with N when linear translocations dominate

and decreases with N when hairpin translocations dominate.

The electric field response of the translocation time is shown

in Fig. 6 b.

DISCUSSION

We have investigated polymer translocation from a spacious

region into a confined region by using equilibrium self-

avoiding chain statistics. When the free energy barrier of

translocation is sufficiently higher than kBT, the linear

translocation time Ætlæ ; N1–g9 exp(1/2fD1/n11) ; N0.31 and

the hairpin translocation time Æthæ ; N1–2g9 exp(1/fD1/n11) ;

N�0.38. The results are valid for low electric forces f, narrow

gap heights D and long chain lengths N, and are different

from those predicted by previous simpler models (19,24). In

our theory, the N dependence on translocation time is due to

the fact that linear translocations are led by chain ends which

can only happen near the two chain ends, while hairpin trans-

locations are led by hairpins which can be formed anywhere

between the two chain ends so that the number of possible

hairpins increases with N. In addition, hairpin translocations

are favored by wide gaps and high applied voltages.

Our result can be applied to explain the N dependence of

the voltage-driven DNA translocation time in periodic mi-

crofluidic channels (3,4). Since the electrophoretic mobility

is independent of N in the deep regions and the time through

the shallow regions is negligibly small, the N dependence of

the translocation time arises predominantly from the insertion

from the deep region into the shallow region. Our major

prediction is that the translocation time either decreases with

N (t ; N�0.38) if hairpin-translocation dominates or increases

with N (t ; N0.31) if linear-translocation dominates. These

predictions are to be contrasted with Sebastian and Paul (24)

where t ; N0 and N�1, respectively, for linear and hairpin

translocations, and with the literature (3,4), where t ;

N�0.59. Our prediction t ; N�0.38 for long chains where

hairpin translocations dominate, agrees with t ; N�0.42

obtained by fitting the experimental data (4). Nevertheless,

direct quantitative comparison with experimental results is

difficult due to many reasons described below.

We have assumed that the deep region is much larger than

the radius of gyration of the translocating polymer so that

confinement effect is unimportant. In some experiments, the

deep regions, although decades deeper than the shallow re-

gions, are comparable to the size of the DNA, imposing a

weak confinement to the chain (3). Furthermore, we assume

that the chain behaves flexibly inside the shallow region. In

reality, the height of the shallow regions may be comparable

to the persistence length of DNA (3,5). In this case, con-

finement free energy of semiflexible chains (5,36) and

bending energy of hairpins have to be taken into account. In

our calculations, all surfaces are assumed to be neutral. If

otherwise, the applied electric field would induce an electro-

osmotic flow. Nevertheless, electro-osmotic flow was sup-

pressed by high buffer concentrations in experiments (19). In

our model, the weak electric field in the deep region and the

FIGURE 6 (a) Average translocation time Ætæ exhibits a crossover from

linear to hairpin translocations as N increases for D ¼ 1.2, while this feature

is missing for wider gaps. Exact formulas with f ¼ 0.1 are used. (b) The

value Ætæ is a function inverse electric force 1/f with N ¼ 100. The exact

formulas are used.
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electric field gradient at the interface between the regions are

ignored, which might influence the chain statistics. We have

assumed that the translocation time is much longer than the

longest relaxation time of the polymer, so that the chain is in

quasiequilibrium during translocation. Given that the relax-

ation times of the DNA used in the experiments are ;10 ms

while translocation into a shallow region happens in seconds,

this assumption is justified. However, nonequilibrium dy-

namics is possible under high electric fields, resulting in fast

translocations observed in simulations (21). Higher order

translocation modes, such as double hairpins, are ignored in

this theory. They serve as higher order corrections since they

require a higher degree of chain deformation and are entro-

pically unfavorable. Most importantly, the translocation time

expressions are valid only when the free energy barrier is

higher than kBT. If otherwise, the translocation time cannot

be approximated by Eq. 27 and the full expression Eq. 26 has

to be evaluated numerically. Then the translocation coordi-

nates of a hairpin chain, which depends on both m and j, are

two-dimensional, which complicates the problem signifi-

cantly. Finally, we note that there is another definition of

hairpin translocation coordinates. Instead of the definition

shown in Fig. 2 b, a symmetric definition of variables can be

adopted such that there are m segments in the shallow region,

leaving two tails of N – j – m/2 and j – m/2 segments, re-

spectively, in the deep region. The expressions of translo-

cation times and probabilities are more involved under this

definition. Nevertheless, the results remains the same for

large N, which makes the change of entropy of the tails un-

important during translocation.

The hairpin conformation shown in Fig. 2 b assumes that

the two series of blobs align side by side. This idealized

situation may be discouraged by the excluded volume in-

teraction between the two series of blobs. One possible model

to account for this effect is to assume that, at the expense of

introducing one more parameter, the hairpin makes an angle

a at the turning point so that the two series of blobs keep a

distance away from each other. Then we need to substitute

f / f cos(a/2) in expressions involving hairpins, such as Eqs.

7 and 9. The critical insertion length Eq. 13 measured in

physical distance, however, will stay the same for large N due

to the cancellation of the factor cos(a/2). Finally, additional

parameters can be introduced in devising different boundary

conditions in solving Eq. 25, the Fokker-Planck equation.

The main concept that arises from our present theory is that

the molecular-weight dependence of the translocation time of

DNA is dictated by the relative propensity of hairpin con-

formations versus linear conformations. If hairpin confor-

mations dominate at the entrance to the shallow regions, the

translocation time decreases with molecular weight. If linear

conformations dominate, the translocation time is predicted

to increase with molecular weight.
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