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ABSTRACT In yeast, b-oxidation of fatty acids (FAs) takes place in the peroxisome, an organelle whose size and number are
controlled in response to environmental cues. The expression of genes required for peroxisome assembly and function is
controlled by a transcriptional regulatory network that is induced by FAs such as oleate. The core FA-responsive transcriptional
network consists of carbon source-sensing transcription factors that regulate key target genes through an overlapping feed-
forward network motif (OFFNM). However, a systems-level understanding of the function of this network architecture in
regulating dynamic FA-induced gene expression is lacking. The specific role of the OFFNM in regulating the dynamic and cell-
population transcriptional response to oleate was investigated using a kinetic model comprised of four core transcription factor
genes (ADR1, OAF1, PIP2, and OAF3) and two reporter genes (CTA1 and POT1) that are indicative of peroxisome induction.
Simulations of the model suggest that 1), the intrinsic Adr1p-driven feed-forward loop reduces the steady-state expression
variability of target genes; 2), the parallel Oaf3p-driven inhibitory feed-forward loop modulates the dynamic response of target
genes to a transiently varying oleate concentration; and 3), heterodimerization of Oaf1p and Pip2p does not appear to have a
noise-reducing function in the context of oleate-dependent expression of target genes. The OFFNM is highly overrepresented in
the yeast regulome, suggesting that the specific functions described for the OFFNM, or other properties of this motif, provide a
selective advantage.

INTRODUCTION

Peroxisomes are highly dynamic and responsive eukaryotic

organelles whose dysfunction is linked to a host of severe

neuropathologies (1–9). Peroxisomes play roles in many

metabolic processes (10), most notably the b-oxidation of

fatty acids (FAs) (11). Accordingly, the peroxisome com-

partment is rapidly and dramatically induced in the presence

of FAs. This induction is mediated at the level of transcrip-

tion (12). In both animals and fungi, lipid-binding hetero-

dimeric transcription factors (TFs) regulate cellular lipid

levels by controlling the transcription of lipid metabolizing

enzymes, many of which are localized to peroxisomes

(3,5,13).

In the budding yeast Saccharomyces cerevisiae, peroxi-

somes are induced in response to oleic acid, and the tran-

scription of many peroxisomal proteins and proteins required

for assembly and growth of the organelle is controlled by

oleate response elements (OREs) recognized by the FA-

bound heterodimer Oaf1p-Pip2p (12–16). This heterodimer

operates within the context of a feed-forward transcriptional

network involving four core TFs: Adr1p, Oaf1p, Pip2p, and

Oaf3p (17,18). The individual roles of Adr1p, Oaf1p, and

Pip2p in regulating the expression of oleate-responsive genes

are known (12), and recent work has established that Oaf3p is

a transcriptional inhibitor with a significantly increased

number of target genes when cells are grown in oleate-con-

taining medium (17). Key oleate-responsive genes, such as

the catalase CTA1, the peroxisomal lipase LPX1, and the TF

PIP2, are regulated by all four TFs under oleate growth

conditions (17). We refer to such genes as AOPY-regulated

genes due to their regulation by Adr1p, Oaf1p, Pip2p, and

Ykr064p (Oaf3p) (17). Although the combinatorial roles

played by these factors in regulating oleate-responsive genes

are known and the pathway-level structure of the transcrip-

tional network has been mapped (17), little is known about

the specific role of the feed-forward network architecture in

regulating the transcriptional response to oleate. In a recent

study of the heterogeneity of response in the yeast galactose

transcriptional network, kinetic model simulations and ex-

periments demonstrated that dual feedback loops in the ga-

lactose transcriptional network ensure a more homogeneous

transcriptional response by filtering out molecular noise (19).

Like the galactose network, the oleate-responsive transcrip-

tional network is extremely sensitive (2) and possesses pos-

itive feedback, raising the question of how the transcriptional

network prevents inappropriate proliferation of the organelle

in response to transient exposure to FA. Mathematical studies

have showed that feed-forward (20) and heterodimeric (21)

transcriptional network motifs can reduce noise. These con-

siderations led us to investigate whether the feed-forward,

heterodimeric architecture of the oleate-responsive tran-

scriptional network acts to reduce transcriptional noise. Us-

ing a kinetic model, we demonstrate that the Adr1p-driven

feed-forward loop (FFL) reduces the steady-state variability

of expression of oleate-responsive genes combinatorially

regulated by these factors, and that the Oaf3p-driven inhib-
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itory FFL modulates the transient variability of FA-respon-

sive genes in the cell population.

MATERIALS AND METHODS

Computational methods

The ordinary differential equation (ODE) kinetic model equations were

solved using the standard ODE solver of MATLAB (The MathWorks, Na-

tick, MA). Model optimization was carried out using the constrained opti-

mizers ga and fmincon in the MATLAB Genetic Algorithm, Direct Search,

and Optimization Toolboxes. The undetermined model parameters (see the

Supplementary Material, Data S1) were optimized to minimize the x2 for the

model agreement with time-course and steady-state gene expression mea-

surements (Table 4 in Data S1). The stochastic simulations were carried out

using the chemical kinetics simulation software Dizzy (22), running in the

Sun Java runtime environment version 1.4.2 on a 32-bit Intel Xeon processor

system running CentOS 5 GNU/Linux. Network motifs were detected in the

yeast regulome using the FANMOD software (23). For the random network

generation (see Fig. 6), the following parameter values were used: number of

networks¼ 1000, exchanges per edge¼ 3, and exchange attempts¼ 3 (23).

Experimental methods

The YOR084W-GFP (encoding Lpx1-GFP) and deletion strains are from the

haploid GFP-clone and deletion collections, respectively (Invitrogen,

Carlsbad, CA). Strains containing both a gene deletion and GFP tag were

made by mating, sporulating, and dissecting tetrads. All strains used for flow

cytometry are haploid spores otherwise isogenic to BY4742. For each strain,

three individual yeast colonies were each seeded into 2 mL YEPD (1% yeast

extract, 2% peptone, 2% glucose) and cultures were grown overnight at

30�C. Cells were washed with water and transferred to 2 mL YPBO (0.3%

yeast extract, 0.5% potassium phosphate (pH 6.0), 0.5% peptone) 0.5%

Tween 40 (w/v) and 0.15% (w/v) oleate) and grown for 48 h at 30�C to final

densities of ;1.5 3 107 cells/mL. The cells were pelleted and resuspended in

water, and fluorescence intensities of individual cells were measured using a

FACSCaliber flow cytometer (BD Biosciences, San Jose, CA). For each

culture, 20,000 events were counted with a flow rate of 100–600 cells/s and a

forward scatter threshold of 25. Data analysis was done using WinMDI 2.9

(available from http://facs.scripps.edu). Cells were selected using a polygon

gate region in the dot plot of forward scatter counts versus side scatter counts

(to select viable, single-cell events for analysis). A second polygon gate

region in the dot plot of forward scatter counts versus GFP fluorescence

counts was used to eliminate uninduced cells from being included in the

calculation of the coefficient of variation (CV) of Lpx1p-GFP expression, to

obtain the most conservative possible estimate for the CV of Lpx1p-GFP

expression in adr1D cells.

MODEL DEVELOPMENT AND RESULTS

FA-responsive gene regulatory network
in Saccharomyces cerevisiae

In response to the presence of FA, the four TFs (Oaf1p, Pip2p,

Adr1p, and Oaf3p) regulate transcription of target genes

through a transcriptional network characterized by an over-

lapping feed-forward network motif (OFFNM) (Fig. 1). In-

tracellular FA (oleate) binds Oaf1p, activating the TF. Oaf1p

forms a heterodimer with Pip2p, and this heterodimer targets

the ORE on promoter regions as a transcriptional activator.

The promoter of the gene PIP2 contains an ORE, and thus

PIP2 is transcriptionally autoregulated in the presence of

oleate. Adr1p is rapidly activated in the presence of non-

fermentable carbon sources (such as oleate), and binds UAS1

elements in the promoters of the target genes (e.g., PIP2,

CTA1, and LPX1) (12). Adr1p therefore drives a coherent FFL

(coherent type 1, in the classification scheme of Mangan and

Alon (24)) involving PIP2 and targeting downstream target

genes (e.g., CTA1 and LPX1) (Fig. 1, thick red lines). Oaf3p,

which is a transcriptional inhibitor, also binds to the pro-

moters of CTA1 and PIP2 under oleate growth conditions

(17). Thus, Oaf3p drives a coherent inhibitory feed-forward

network motif (coherent type 2, in the Mangan-Alon classi-

fication (24)) involving PIP2 and CTA1, as well as many other

targets of Oaf1p, Pip2p, and Adr1p (Fig. 1, thick blue lines).

The two FFLs share the regulatory cascade PIP2 / Pip2p /
Oaf1p Pip2p / TARGET (where TARGET represents a typ-

ical target gene for this regulatory network, such as CTA1 or

LPX1), and thus form an overlapping regulatory architecture.

Mathematical model of the oleate-responsive
transcriptional network

To investigate the functional roles of network structural ele-

ments in controlling the dynamic response to oleate, a mathe-

matical model was developed that describes the response of the

core oleate-inducible gene regulatory network in yeast under a

carbon source transition from a nonfermentable carbon source

(glycerol) to FA (oleate). A complete description of the math-

ematical model, including the values of all kinetic parameters

and source material used for parameter estimation, is given in

the Supplementary Material (Data S1). The model describes

the transcriptional regulatory interactions governing peroxi-

somal protein production in response to intracellular oleic acid.

The model incorporates the oleate-dependent expression and

activity of four TF genes (ADR1, OAF1, PIP2, and OAF3), as

well as the expression of two archetypical oleate-inducible

target genes, CTA1 (Catalase A) and POT1 (3-ketoacyl-CoA

thiolase, also known as FOX3), the products of which are

peroxisomal and which are commonly used as transcriptional

indicators of peroxisome induction (16,25,26). For each gene

in the model, both the gene-specific mRNA and protein are

represented by dynamical variables in a set of ODEs:

drgðtÞ
dt
¼ ki;r;g fr;gðpgðtÞÞ � kd;r;grgðtÞ

dpgðtÞ
dt
¼ ki;p;grgðtÞ � kd;p;gpgðtÞ; (1)

where the index g labels a gene, with possible values (a, c, o,

y, p, f) mapping to genes as follows: a ¼ ADR1, o ¼ OAF1,

p ¼ PIP2, y ¼ OAF3, c ¼ CTA1, and f ¼ POT1. The

dynamical variables rg and pg represent the concentrations of

mRNA and protein, respectively, for gene g. The fractional

transcriptional activity of each gene g is modeled using a

rational function fr,g involving the protein concentrations of

the relevant transcriptional regulators of the gene. The rate of

initiation of transcription of gene g is given by the product

of this fractional activity and the rate constant ki,r,g. The rate
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of initiation of translation is given by the product of the rate

constant ki,p,g and the concentration of the mRNA. The con-

stants kd,r,g and kd,p,g are the degradation rate constants for the

mRNA and protein of gene g, respectively. The transport of

FA across the plasma membrane and subsequent esterifica-

tion with coenzyme A (CoA) are modeled using an ODE for

intracellular oleate, Oic, based on the following assumptions:

1), the rate of transport of FA across the plasma membrane is

a hyperbolic saturating function of extracellular oleate con-

centration; and 2), the rate of fatty acyl-CoA synthesis is of

the Michaelis-Menten form (see Data S1 for details).

Direct and indirect activation of TFs by oleate

In the model, the activity levels of the TFs Oaf1p, Oaf3p, and

Adr1p are altered by the presence or absence of intracellular

FA, consistent with the literature (12,13,17). The molecular

interactions underlying activation of Oaf1p, Adr1p, and

Oaf3p are assumed to occur rapidly, so the rates of activation

and deactivation are at quasi-steady state (27) with respect to

the slowly varying total concentrations of these TFs, and with

respect to the time-varying concentration of intracellular

oleate. In each of these three cases, activation of the TF is

modeled phenomenologically using a Michaelis-Menten-

type function of intracellular oleate concentration. For ex-

ample, oleate binding-dependent activation of Oaf1p is

modeled using the equation:

po ¼
poOic

KD;o 1 Oic

; (2)

where po is the concentration of activated Oaf1p, and KD,0 is

the equilibrium dissociation constant for Oaf1p protein ac-

tivation by oleate. The corresponding equation for modeling

the concentration of activated Oaf3p (py) is given in Data S1.

In the case of Adr1p, the TF is active in glycerol-growth

conditions, but in oleate-growth conditions it has increased

DNA-binding activity for oleate-responsive genes (17). The

concentration of activated Adr1p in oleate-growth conditions

was modeled using a sum of a constitutive activity level and a

Michaelis-Menten-type function of Oic:

pa ¼ pa ea 1 ð1� eaÞ
Oic

KM;a 1 Oic

� �
; (3)

where pa is the concentration of activated Adr1p; ea is a

constitutive fractional activity of Adr1p protein, and KM,a is

the equilibrium dissociation constant for Adr1p activation in

the presence of oleate.

Heterodimerization of activated Oaf1p with Pip2p

The reactions for binding and dissociation of the Oaf1p-

Pip2p heterodimer are assumed to be in quasi-steady state

with respect to the time-varying concentrations of total ac-

tivated Oaf1p and total Pip2p. Thus, the concentration of

Oaf1p-Pip2p heterodimer h is given by

FIGURE 1 The yeast oleate-respon-

sive transcriptional network contains

an OFFNM. Lines terminating in open

arrows and blunted lines represent tran-

scriptional up- and down-regulation, re-

spectively. Lines terminating in solid

arrows indicate molecular processes

such as transport, transcription/transla-

tion, and dimerization. Dotted black

arrows indicate indirect carbon-source-

dependent activation. Red and blue

arrows and blunted lines represent

the Adr1p- and Oaf3p-driven coherent

feed-forward motifs, respectively. The

alternating red/blue dashed line repre-

sents the overlapping region. The inset

panel demonstrates schematically the

OFFNM. Intracellular FA (oleate) binds

Oaf1p, activating the TF. Active Oaf1p

forms a heterodimer with Pip2p, and this

heterodimer targets the ORE on DNA as

a transcriptional activator. The promoter

of the gene PIP2 contains an ORE, and

thus PIP2 is transcriptionally autoregu-

lated in the presence of oleate. Adr1p is

rapidly activated in the presence of

nonfermentable carbon sources and tar-

gets UAS1 elements in the promoters of

the target genes PIP2 and CTA1. Adr1p therefore drives a coherent feed-forward network motif targeting PIP2 and CTA1 (thick red lines). Oaf3p is a

transcriptional inhibitor whose target footprint (in terms of number of genes) is strongly increased under oleate growth conditions (17). It drives a coherent

inhibitory feed-forward network motif targeting PIP2 and CTA1 (thick blue lines).
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h ¼ KD;h

2

� �
1 1
ðpo 1 ppÞ

KD;h

0
@

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1
ðpo 1 ppÞ

KD;h

� �2

� 2

KD;h

� �2

popp

s 1
A; (4)

where pp is the total concentration of Pip2p, and KD,h is the

dissociation constant.

Fractional gene activity

For each gene, the fractional transcriptional activity was

modeled using a rational function involving the concentra-

tions of the transcriptional regulators of that gene. As an

example, the fractional transcriptional activity of PIP2 was

modeled as a function of h, pa, and py:

fr;p ¼
epAp 1

h

Kh

1
pa

Ka

1
qhpa

KhKa

Ap 1
h

Kh

1
pa

Ka

1
qhpa

KhKa

1
py

Ky

1
hpy

KhKy

1
papy

KaKy

1
hpapy

KhKaKy

;

(5)

where ep is the constitutive term in the fractional activity of

PIP2; Ap is the activation constant for PIP2 induction; q
represents the cooperativity of Adr1p and Oaf1p-Pip2p

binding to the promoter region; and Kh, Ka, and Ky are

equilibrium constants for Oaf1p-Pip2p, Adr1p, and Oaf3p,

respectively, binding to their corresponding cis-regulatory

elements in the promoter. The fractional transcriptional

activity functions for OAF1, PIP2, ADR1, OAF3, and

POT1 were similarly constructed based on available infor-

mation from the literature regarding their carbon source-

dependent and TF-dependent transcriptional activities; the

specific functional forms are given in Data S1.

Comparison of model simulations with
experimental data

The kinetic parameters of the model were obtained from the

literature or directly estimated from steady-state and wild-

type (WT) time-course expression data for the four core TFs

and the target genes POT1 and CTA1 (6,17) (see Data S1).

The remaining 14 undetermined kinetic parameters were

varied to minimize the model error for recapitulating time-

course (6) and dose-response (13) expression measurements

in WT yeast and in deletion strains for the four core TFs (see

Data S1). The dose-response for POT1 induction under

varying concentrations of oleate (Fig. 2) shows agreement

between model and experiment for oleate concentrations

varying over two orders of magnitude. Simulated and mea-

sured time-course transcript abundance ratios under a carbon

source switch from glycerol to oleate are shown in Data S1.

The optimized model reproduced both the measured dynamic

and steady-state responses, with the exception of a transient

effect at 9 h in the time-course data. To further assess the

model, each of the 14 undetermined parameters was varied

eightfold up and down relative to the value in the best-fit

model to determine the sensitivity of the model prediction

error to the individual parameter values. The model predic-

tion error increased strongly over the range of alternative pa-

rameter values explored for 13 of the 14 parameters (Fig. S1

of the Supplementary Material). These findings suggest that

the available number and diversity of measurements used for

model training are adequate to discern the best-fit model in

the space of these parameter values. Varying the remaining

parameter (KM,s, see Data S1) up or down twofold from the

value in the best-fit model did not alter the main findings

discussed below. Furthermore, a quantitative analysis of

model complexity indicates that the model is not overfitted

(Data S1).

To investigate the possibility that the overlapping feed-

forward network architecture serves to regulate the variabil-

ity of downstream target gene expression by reducing the

strength of molecular noise, the ODE-based kinetic model

was translated into a stochastic model in which the dynamics

of the transcriptional network within each cell are modeled as

a stochastic process. Formally, the dynamics of the stochastic

process are governed by a chemical master equation that can

be obtained from the ODE kinetic model as described by

Gillespie (28). A simplified stochastic model was defined

using the quasi-steady-state approximation (QSSA)-based

Rao-Arkin method to model the stochastic reaction propen-

sity for reaction channels that are not governed by simple

mass-action kinetics (29), consistent with previous experi-

mentally validated models of transcriptional regulation

(19,30,31). The stochastic dynamics were solved using

Monte Carlo simulations based on the Gibson-Bruck algo-

FIGURE 2 The model recapitulates the measured relative dose response

for POT1 expression. Data points indicate the activity of a luciferase reporter

gene with the POT1 promoter in yeast cells grown overnight in media with

oleate at the indicated initial concentration (13). The predicted POT1

expression levels from the model (line plot) have been normalized relative

to the luciferase activity in 8 mM oleate.
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rithm (32). The resulting ensemble-averaged stochastic dy-

namics are consistent with the deterministic ODE-based ki-

netic model, and allow the estimation of the contribution of

molecular noise to the steady-state distribution of target gene

expression.

Adr1p-driven FFL reduces variability of
oleate-responsive gene expression

In silico modeling was used to investigate the role of Adr1p

in regulating the dynamics and cell population distribution of

expression of a gene activated by both an ORE (Oaf1p-

Pip2p) and Adr1p, i.e., CTA1. The model was modified to

simulate a hypothetical mutant strain (AOPY Mutant Model

I) in which CTA1 is fully inducible on oleate by Oaf1p-Pip2p

alone, and is not directly regulated by Adr1p, thus elimi-

nating Adr1p-driven feed-forward regulation of CTA1 (Fig.

1, red lines). In the mutant model, the activating effect of the

ORE was increased so that CTA1 would have comparable

oleate dose-responses in the mutant and WT models. To

quantify the cell population heterogeneity of expression of

CTA1 on oleate in the two models, the steady-state stochastic

dynamics in both models were simulated for 100 min. The

simulations revealed that at steady state, the histogram of

CTA1 transcript levels showed a broader distribution in the

mutant model than in the WT model (Fig. 3), indicating

greater heterogeneity of gene expression across the stochastic

ensemble. The CV of CTA1 transcript levels was 1.7-fold

higher in the mutant model than in the WT model. To in-

vestigate the transcriptional heterogeneity for the case in

which Adr1p regulates neither PIP2 nor downstream targets,

but these genes fully induce on oleate, an alternate version of

the model (AOPY Mutant Model II) was constructed that

represents a mutant in which both PIP2 and CTA1 are reg-

ulated only via the ORE (corresponding to an adr1D strain

with elevated ORE-binding affinity). Stochastic simulations

of this model also showed a more broadly distributed histo-

gram of expression of CTA1 (ratio of CVs ¼ 1.55) in the

mutant than in the WT; this effect was not observed for PIP2
(Fig. 4). The steady-state variability of CTA1 expression was

also studied using stochastic simulations of two other mutant

models (AOPY Mutant Models III and IV, consisting of the

deletions oaf3D and adr1Doaf3D, respectively, with com-

pensation in the ORE-binding affinity to allow full induc-

tion). The CTA1 variability was 1.44-fold higher in the

adr1Doaf3D model than in the WT model, whereas the ratio

of the variability between the oaf3D model and the WT

model was only 1.18 (Fig. S2).

To investigate the model prediction that Adr1p-initiated

feed-forward regulation can serve as a noise reducer, the

variability of expression of an AOPY target gene, LPX1 (17),

was tested experimentally. LPX1 (YOR084W) is highly in-

duced in response to oleate, and the protein product is per-

oxisomal (6). The abundance of a chimera of Lpx1p and

green fluorescent protein (GFP) reporter (Lpx1-GFP) was

measured in WT and adr1D yeast strains in the presence of

oleate using flow cytometry (see Materials and Methods).

Consistent with simulation results, the CV of Lpx1-GFP in

adr1D cells was 1.8-fold higher than in WT cells (Fig. S3).

Oaf3p acts to modulate transcriptional changes
in a fluctuating environment

Next, the mathematical model was used to investigate

whether the feed-forward inhibitor, Oaf3p, acts to buffer the

induced genetic switch against variations in the level of in-

tracellular FA. ORE-driven gene (POT1) expression kinetics

were simulated in the WT and oaf3D model strains exposed

to a sinusoidal oscillating oleic acid concentration. For the

mutant strain, the amplitude of oleate oscillation was de-

creased so that POT1 would have comparable oleate dose-

response to the WT. The kinetic model predicts that the

transcriptional repressor Oaf3p modulates the amplitude of

variation of expression levels of ORE-driven genes in a

fluctuating environment. The results (Fig. 5 A) showed

larger-amplitude variations in POT1 expression in the oaf3D

model than in the WT model, indicating that in the model, the

loss of Oaf3p impaired the ability of the genetic switch to

compensate for transient oleate oscillations. The ability of the

network to compensate for transient oleate oscillations was

also examined in two other mutant models, adr1D and

adr1Doaf3D. Comparing the time course of POT1 expression

levels across all four models (WT, oaf3D, adr1D, and

adr1Doaf3D) revealed that the smallest-amplitude POT1

FIGURE 3 An in silico model of a mutant strain in which CTA1 is solely

ORE-activated (AOPY Mutant Model I) is predicted to have greater

variability of CTA1 expression than the WT model. The histogram shows

the simulated population heterogeneity of reporter expression (CTA1 mRNA

level) in WT (black bars) and mutant strain (in which Adr1p does not

regulate CTA1) (white bars) in oleate growth conditions. The abscissa is the

CTA1 mRNA concentration after 100 min of stochastic simulation with

initial conditions given by species concentrations obtained from the steady-

state solution to the ODE kinetic model with constant 0.12% (w/v) oleate.

Stochastic simulations were carried out for an ensemble of 1000 realizations

of the stochastic process. CVmut represents the steady-state CV of reporter

expression levels for the AOPY Mutant Model I, and CVWT represents the

CV in the WT model.
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oscillations occurred in the WT and adr1D models, and the

largest-amplitude oscillations occurred in the oaf3D and

adr1Doaf3D models (Fig. S4). Additionally, the most rapid

transient induction from the noninduced state occurred in the

adr1Doaf3D model.

The dependence of POT1 expression amplitudes (in the

oaf3D and WT models) was also systematically explored on

the timescale and the amplitude for varying the oleate con-

centration. The model simulations showed that the POT1
amplitude difference between the oaf3D model and the WT

model increased with decreasing frequency of an oleate pulse

(Fig. 5 B), indicating that the oaf3D strain is less able than the

WT to filter out oleate variations on a timescale of .40 min

(Fig. 5 B). Varying both the amplitude and period of the oleate

concentration oscillations revealed a nonlinear relationship

FIGURE 5 Deletion of Oaf3p in the model makes POT1 transcriptional

activity undergo larger-amplitude oscillations in response to a temporally

varying concentration of intracellular FA. WT and oaf3D models of POT1

transcription were solved for the case of a temporally oscillating concentra-

tion of oleate. (A) POT1 undergoes higher-amplitude oscillations in the

oaf3D model than in the WT model. (B) The difference between POT1

mRNA variation amplitudes in the oaf3D model and WT increases with

increasing period of oleate pulsing. When the period exceeds 10 h, the

difference between the oaf3D model and WT model amplitudes starts to

decrease. (C) The difference between the POT1 mRNA variation amplitudes

in the oaf3D (Aoaf3D) and WT (AWT) models, for different values of the

period and amplitude of oleate concentration oscillation. Color indicates the

POT1 amplitude difference between the oaf3D model and the WT model.

Overall, the difference between the amplitude of POT1 variation in the two

models is stronger at higher values of the oleate oscillation amplitude.

Furthermore, as the oleate oscillation amplitude increases, the maximum

POT1 amplitude difference (dark red) is observed at slightly increasing

values of the oleate oscillation period (black circles).

FIGURE 4 An in silico model of a mutant strain in which both PIP2 and

CTA1 are solely ORE-activated (AOPY Mutant Model II, corresponding to

an adr1D strain with the ability to fully induce ORE-driven expression) is

predicted to have greater variability of CTA1, but not PIP2 expression, than

the WT model. The histograms show the simulated population heterogeneity

of (A) CTA1 and (B) PIP2 mRNA levels in WT (black bars) and a mutant

adr1D strain in which PIP2 and CTA1 have increased ORE-driven tran-

scriptional activity (white bars) in oleate growth conditions. The abscissas

represent the distribution of the (A) CTA1 and (B) PIP2 mRNA concentra-

tions after 100 min of stochastic simulation with initial conditions given by

the steady-state solution to the ODE kinetic model with constant 0.12%

oleate. Stochastic simulations were carried out for an ensemble of 1000

realizations of the stochastic process. CVmut represents the steady-state CV

of expression levels of the indicated reporter in AOPY Mutant Model II, and

CVWT represents the CV of the indicated reporter in the WT model.
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between amplitude and period. The maximal differences be-

tween oaf3D and WT strains slightly shifted toward greater

period as the amplitude increased (black circles, Fig. 5 C),

suggesting a complex mechanism for modulating role of

Oaf3p on target gene expression under fluctuating oleate en-

vironments.

The OFFNM network architecture occurs
frequently in the yeast regulome

To determine whether the oleate-responsive transcriptional

network architecture consisting of the OFFNM is commonly

found in the yeast regulome, a network representing 3515

gene regulatory interactions extracted from the literature-

based Yeast Proteome Database (33) was analyzed. The

OFFNM was found to be highly overrepresented in the yeast

regulome (Fig. S5). In the yeast regulatory interaction net-

work, there were 410 instances of OFFNMs and 25 instances

of overlapping coherent FFLs of the specific subtype re-

presented in the yeast oleate-responsive transcriptional net-

work (i.e., overlapping coherent type 1 and 2 FFLs) (Fig. S6).

The frequency of OFFNM motif in the yeast regulome is thus

almost 10-fold higher than in random networks generated

from random edge reassignment of the network (Fig. 6).

DISCUSSION

Here we present for the first time, to our knowledge, a de-

tailed kinetic model of the core FA-responsive transcriptional

network in yeast. A key structural motif in this network that

has not been previously studied using mathematical model-

ing is an overlapping pair of FFLs driven by Adr1p and

Oaf3p, respectively (see Fig. 1, inset). We refer to this net-

work architecture as the OFFNM. Simulations of the model

suggest two functional roles of this network motif. First, the

Adr1p-driven FFL reduces the steady-state expression vari-

ability of an ORE- and Adr1p-driven target gene. Second, the

Oaf3p-driven inhibitory FFL modulates the dynamic re-

sponse of the target gene to a transiently varying concentra-

tion of intracellular FA.

Simulations of the kinetic model in the absence of Adr1p

(AOPY Mutant Model I) revealed significantly higher target

gene expression than the corresponding WT strain with an

intact FFL. In the Mutant Model I, the target gene induction is

driven entirely by Oaf1p-Pip2p, whereas in the WT, the

target gene induction is driven by the combined effect of two

factors (Adr1p and Oaf1p-Pip2p). We speculate that acting

alone, Oaf1p-Pip2p-mediated expression is noisy because

PIP2 mRNA has a high level of fluctuations in the model (as

defined by the steady-state CV), and this variability is pre-

sumably due to the low copy number of PIP2 mRNA (see

Data S1) and the fact that PIP2 is positively autoregulated.

Previous studies have established that a low copy number of a

gene’s mRNA (34,35) and positive autoregulation of a gene

(36) can both contribute to variations in the protein level, and,

in the case of a TF, to increased variability of expression of

downstream gene targets (extrinsic noise) (37). In the pres-

ence of Adr1p, this noise is expected to be buffered because

of its direct regulatory influence on the target gene, which

increases AOPY gene expression, thereby decreasing the

relative variation in expression from the target. Furthermore,

the lack of a significant effect of oaf3D on target gene sto-

chastic variation suggests that, at steady state, the Adr1p-

driven FFL is primarily responsible for reducing stochastic

fluctuations in the expression of target genes. We note that

although PIP2 is a target of Adr1p, its low level of expression

leads to Pip2p variation likely having a high proportion of

intrinsic noise (34,35,38,39), whereas highly expressed

AOPY targets are dominated by extrinsic noise (e.g., by

fluctuating levels of Pip2p).

The hypothesis that the Adr1p-containing FFL reduces

(extrinsic) noise was tested experimentally by comparing the

cell population heterogeneity of expression of the oleate-in-

ducible lipase Lpx1p (a known target of all four TFs) in WT

and adr1D cells in oleate growth conditions, and a higher

level of dimensionless variability (1.8-fold) was observed in

adr1D cells than in WT cells.

The Oaf3p effect in modulating the gene expression re-

sponse is likely due to the rapid response of Oaf3p activation

to a changing oleate concentration, relative to the slower

response of the positively autoregulated Pip2p. Previous

studies have established that positive autoregulation leads to

a slower response (40), whereas the activation of Oaf3p is

presumed to occur through rapid molecular interactions and

not through transcriptional regulation. We did not observe a

strong effect of deletion of Adr1p on the ability of the net-

work to compensate for a dynamically varying oleate level.

Although previous modeling studies have suggested that

dimerization of a TF can reduce transcriptional variability of

its target (21,41,42), we did not observe a significant noise

reduction associated with heterodimerization of Oaf1p-Pip2p

in the context of our model of the core network (results

FIGURE 6 OFFNMs are enriched in yeast regulome. Frequency of

OFFNMs in the yeast regulome (extracted from the Yeast Proteome Database

(33), see Fig. S1) and in random networks.
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not shown). Since Oaf1p in the absence of Pip2p appears to

be a transcriptional repressor (17), perhaps the role of

heterodimerization in this network is instead to provide a

carbon-source-dependent, inducible mechanism to inhibit the

transrepressive activity of Oaf1p. From the results of the

network motif frequency analysis of the OFFNM in the yeast

regulome, it appears that this network structure is frequently

used in yeast transcriptional regulation, suggesting that the

specific functions described for the OFFNM provide cells

with a selective advantage.
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