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Abstract
Hybrid cells generated by fusing dendritic cells with tumor cells (DC-TC) are currently being
evaluated as cancer vaccines in preclinical models and human immunization trials. In this study, we
evaluated the production of human DC-TC hybrids using an electrofusion protocol previously
defined for murine cells. Human DCs were electrically fused with allogeneic melanoma cells
(888mel) and were subsequently analyzed for coexpression of unique DC and TC markers using
FACS and fluorescence microscopy. Dually fluorescent cells were clearly observed using both
techniques after staining with Abs against distinct surface molecules suggesting that true cell fusion
had occurred. We also evaluated the ability of human DC-TC hybrids to present tumor-associated
epitopes in the context of both MHC class I and class II molecules. Allogeneic DCs expressing HLA-
A*0201, HLA-DRβ1*0401, and HLA-DRβ1*0701 were fused with 888mel cells that do not express
any of these MHC molecules, but do express multiple melanoma-associated Ags. DC-888mel hybrids
efficiently presented HLA-A*0201-restricted epitopes from the melanoma Ags MART-1, gp100,
tyrosinase, and tyrosinase-related protein 2 as evaluated by specific cytokine secretion from six
distinct CTL lines. In contrast, DCs could not cross-present MHC class I-restricted epitopes after
exogenously loading with gp100 protein. DC-888mel hybrids also presented HLA-DRβ1*0401- and
HLA-DRβ1*0701-restricted peptides from gp100 to CD4+ T cell populations. Therefore, fusions of
DCs and tumor cells express both MHC class I- and class II-restricted tumor-associated epitopes and
may be useful for the induction of tumor-reactive CD8+ and CD4+ T cells in vitro and in human
vaccination trials.

Dendritic cells (DCs)3 are potent APCs that are capable of stimulating both naive CD4+ Th
cells and CD8+ CTLs (1). Therefore, DCs are being extensively evaluated as vehicles for Ag
delivery in immunotherapies for the treatment of patients with cancer. Many techniques have
been used to load DCs with tumor-associated Ags, including pulsing with synthetic peptides
that represent T cell epitopes (2,3). This strategy has been used in several human clinical
vaccination trials (4,5); however, it is limited to patients who express the particular peptide
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MHC-restricting molecule. Alternatively, DCs have been pulsed with recombinant proteins
(6) or transduced with recombinant viruses (7-12). These approaches circumvent the MHC
restrictions associated with peptides but are generally limited to individual proteins. Because
many tumors display heterogenous expression of target Ags (13), strategies that induce T cell
responses against multiple proteins may be more efficacious. Another concern is that some of
these Ag loading techniques facilitate the presentation of immunogenic viral or bacterial
epitopes in addition to those from the tumor-associated protein.

Other Ag presentation systems have been developed to stimulate polyclonal immune responses
against multiple tumor-associated proteins, including those that are known, undefined, shared,
or unique. For example, DCs have been loaded with killed tumor cells (14) and tumor lysates
(15,16). These approaches may be inefficient for stimulating polyclonal CTL responses
because some proteins are not efficiently cross-presented even by DCs that have mechanisms
which allow exogenously loaded proteins to enter MHC class I-processing pathways (1).
Alternatively, DCs have been pulsed with peptides eluted from tumor cells (17) and have been
transfected with tumor-derived RNA (18,19). In murine models, these approaches have
induced protective and therapeutic immune responses against tumors and are currently being
evaluated in human clinical vaccination trials.

Another evolving strategy for inducing immunotherapeutic responses against cancer is the use
of hybrid cells generated by fusing DCs with tumor cells (DC-TC) (20-22). Theoretically, DC-
TC hybrids possess properties of both parental cell types necessary for inducing primary
CD4+ and CD8+ T cell responses. Namely, fusions of DCs and tumor cells should express
shared and unique tumor-associated Ags, high levels of MHC class I and class II molecules,
and adhesion and costimulatory molecules. Vaccinations with DC-TC hybrids have stimulated
protective and therapeutic immune responses in several rodent tumor models including
carcinomas, lymphomas, melanomas, and gliomas (23-29). In addition, several in vitro studies
with human cells have suggested that DC-TC hybrids can present relevant tumor-associated
Ags in the context of class I HLA molecules and induce tumor-reactive CTL (30-33). However,
in some of these studies, the production of multinucleated hybrids with fused cell membranes
was not clearly documented. Because previous investigations have demonstrated that physical
mixtures of DCs and tumor cells can sometimes induce effective CTL responses (34), some
results pertaining to the enhanced immunogenicity of DC-TC hybrids have been difficult to
interpret.

Two human clinical trials have been reported in which patients with melanoma (35) or
malignant glioma (36) were vaccinated with autologous DC-TC hybrids made with the
fusogenic agent polyethylene glycol (PEG). Although the treatments were safe and well-
tolerated, few clinical responses were observed. An alternate technique for generating DC-TC
hybrids is to expose cells to electric fields (37). A cell mixture is first treated with an alternating
nonuniform electric current of low strength that causes cells to align, forming tight membrane
contacts. Subsequently, a direct current pulse with high intensity but short duration disrupts
cell membranes reversibly. After cessation of this pulse, membrane resealing occurs between
cells in close contact. Results from several investigations have demonstrated that electrofusion
can generate genuine DC-TC hybrids (22,28,33). In FACS profiles and confocal micrographs,
fused cells appear as a distinct population that are dually fluorescent for individual cell-specific
markers and are clearly distinguishable from DCs or tumor cells alone that remain in the
mixture. Furthermore, hybrids can be seen as individual multinucleated cells on Giemza-
stained cytocentrifuge slides.

Vaccinations with DC-TC hybrids generated by electrofusion have been shown to be
therapeutic in murine tumor models (28). Namely, intranodal injection of DC-TC fusion cells
with IL-12 as an adjuvant eradicated established s.c. GL261 gliomas and D5LacZ3 pulmonary
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metastases. To adapt this technology to human clinical trials, we evaluated the ability of
electrofused human DC-TC hybrids to present tumor-associated Ags in the context of both
MHC class I and class II molecules. Allogeneic DC-TC hybrids were produced by fusing DCs
expressing HLA-A*0201, -DRβ1*0401, and -DRβ1*0701 with melanoma cells (888mel) that
express none of these HLA molecules. The generation of membrane-fused DC-888mel hybrids
was verified using a combination of FACS and fluorescence microscopy. Based on specific
IFN-γ secretion by six unique tumor-reactive CTL lines, DC-888mel hybrids presented
immunodominant epitopes from the melanoma Ags, MART-1, gp100, tyrosinase, and an
alternate isoform of tyrosinase-related protein (TRP) 2 (TRP2-6b) in the context of HLA-
A*0201. Furthermore, these hybrids were specifically recognized by CD4+ T cell lines reactive
with gp100 epitopes in the context of HLA-DRβ1*0401 and -DRβ1*0701. These results
suggest that electrofused human DC-TC hybrids may elicit both CD4+ and CD8+ T cell
responses, and hence, may be useful in human cancer vaccine trials. They may also be useful
for the identification of new human tumor-associated Ags, particularly for cancers for which
it has been difficult to establish tumor-reactive T cell populations by traditional means. In
addition, human DC-TC hybrids may enable the ex vivo generation of tumor-reactive T
lymphocytes for use in adoptive therapy protocols.

Materials and Methods
Cell lines and reagents

Human melanoma cell lines and EBV-transformed B cells were routinely cultured in RPMI
1640 supplemented with 10% heat-inactivated FBS and 2 mM L-glutamine (Invitrogen,
Carlsbad, CA). Human lymphocytes were cultured in complete medium consisting of RPMI
1640, 2 mM L-glutamine, 50 U/ml penicillin, 50 μg/ml streptomycin (Invitrogen) and 10% heat-
inactivated human AB serum (Gemini Bio-Products, Woodland, CA; Valley Biomedical,
Winchester, VA). Multiple melanoma-reactive T cell lines and clones (38-45) were used to
evaluate the presentation of MHC-restricted epitopes by DC-TC hybrids as presented in Table
I.

Expression of MART-1 and gp100 in melanoma cell lines was assessed by FACS using mAbs
(M2-7 C10 from Dr. Y. Kawakami (Keio University School of Medicine, Tokyo, Japan; Ref.
46; HMB45 from Enzo Diagnostics (Farmingdale, NY)), and the presence of tyrosinase was
assessed by immunohistochemistry (13). Expression of TRP2-6b and NY-ESO-1 was
previously evaluated on the basis of specific IFN-γ secretion by two T cell clones, MB4 and
M8, respectively, that specifically recognize peptides from these proteins in the context of
HLA-A*0201 (41). Although the 888 melanoma cell line (888mel) did not express HLA-
A*0201, recognition of this cell line, and hence, expression of TRP2-6b and NY-ESO-1, was
evaluated after stable transfection with cDNA encoding HLA-A*0201. The F002R melanoma
cell line (F002Rmel) did not naturally express gp100, but it had previously been transduced
with a vesicular stomatitis virus (VSV)-pseudotyped retroviral vector encoding either gp100
or green fluorescence protein (GFP) (44). Expression of HLA class II molecules on the surfaces
of melanoma cells was up-regulated by transduction with a retroviral construct encoding the
HLA class II transactivator (CIITA) gene as previously described (47). The expression of cell
surface HLA class I and class II molecules on melanoma cells was confirmed by FACS using
mAbs against HLA-A2 (One Lambda, Conestoga, CA), HLA-DR (L243; BD Biosciences,
Franklin Lakes, NJ), HLA-DR4 (Accurate Chemical and Scientific, Westbury, NY), and HLA-
DR7 (Pel-Freez Biologicals, Rogers, AR). In addition, HLA haplotypes of cell lines were
determined by DNA sequencing in the HLA Laboratory (National Institutes of Health). The
expression of MART-1, gp100, tyrosinase, TRP2-6b, NY-ESO-1, HLA-A*0201, HLA-
DRβ1*0401, and HLA-DRβ1*0701 in melanoma cell lines was as follows: 888mel
(MART-1+, gp100+, tyrosinase+, TRP2-6b weak, NY-ESO-1−, HLA-A*0201−, HLA-

Parkhurst et al. Page 3

J Immunol. Author manuscript; available in PMC 2008 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



DRβ1*0401−, HLA-DRβ1*0701−), 624mel CIITA (MART-1+, gp100+, tyrosinase+,
TRP2-6b+, NY-ESO-1+, HLA-A*0201+, HLA-DRβ1*0401+, HLA-DRβ1*0701+), 526mel
CIITA (MART-1+, gp100+, tyrosinase+, TRP2-6b+, NY-ESO-1−, HLA-A*0201+, HLA-
DRβ1*0401+, HLA-DRβ1*0701−), F002Rmel CIITA-gp100 (gp100+, HLA-A*0201+, HLA-
DRβ1*0401−, HLA-DRβ1*0701+), F002Rmel CIITA-GFP (gp100−, HLA-A*0201+, HLA-
DRβ1*0401−, HLA-DRβ1*0701+), 1088mel CIITA (gp100+, HLA-DRβ1*0401+, HLA-
DRβ1*0701−), 1978mel CIITA (gp100+, HLA-DRβ1*0401−, HLA-DRβ1*0701+), and
1861mel CIITA (gp100+, HLA-DRβ1*0401+, HLA-DRβ1*0701−).

Electrofusion of DCs and tumor cells
Immature DCs were prepared as previously described (48). Briefly, adherent PBMC were
cultured in RPMI 1640 with 10% heat-inactivated FBS containing 2000 IU/ml GM-CSF
(Amgen-Immunex, Seattle, WA) and 1000 IU/ml IL-4 (R&D Systems, Minneapolis, MN).
Five days later, DC maturation was induced with 10 ng/ml TNF-α (Sigma-Aldrich, St. Louis,
MO) and 1 μg/ml PGE2 (Sigma-Aldrich). On day 7, electrofusion of the DCs and 888mel cells
was performed as previously described with slight modification (28). In most experiments,
888mel cells were labeled with CFSE (Molecular Probes, Eugene, OR) before electrofusion:
107 cells/ml in HBSS were labeled in the presence of 5 μM dye for 10 min at 37°C, and labeling
was terminated by dilution with ice-cold HBSS. In all experiments, 888mel cells were
irradiated with 10,000 cGy before electrofusion. To induce fusion, DCs and irradiated tumor
cells were mixed at a ratio of 1:1 and were suspended in a 5% glucose solution containing 0.1
mM Ca(CH3COO)2, 0.5 mM Mg(CH3COO)2, and 0.3% BSA. The pH of the fusion medium
was adjusted to 7.2–7.4 with L-histidine (all chemicals from Sigma-Aldrich). After
centrifugation, the cells were resuspended in the same medium in the absence of BSA.
Routinely, 1 ml of cell suspension containing 1 × 107 cells were processed using a specially
designed concentric fusion chamber. For electrofusion, a pulse generator (model ECM 2001;
BTX Instruments, Genetronics, San Diego, CA) was used for application of the field pulses.
Cell alignment was first induced by dielectrophoresis with an alternating current (ac) pulse of
150 V/cm for 10 s. Subsequently, cell fusion was triggered by application of a single square
wave direct current (dc) pulse of 1200 V/cm for 25 μs. The fusion mixture was allowed to rest
for 5 min before suspension in RPMI 1640 with 10% heat-inactivated FBS. After overnight
incubation at 37°C, cells were separated on the basis of adherence. The nonadherent population
was aspirated and consisted primarily of residual DCs. The adherent population was harvested
using a solution of 0.05% trypsin and 0.02% EDTA (Trypsinversene; BioWhittaker,
Walkersville, MD) and contained predominantly fusion hybrids and tumor cells.

FACS analyses and fluorescence microscopy
In some experiments, 888mel cells were labeled with CFSE before electrofusion to enable
visualization with FACS or fluorescence microscopy. After fusion, DC-888mel hybrids were
detected by staining with PE-conjugated mAbs against DC cell surface markers including
CD11c, CD40, CD80, CD86, CD83, and HLA-DR (BD PharMingen, San Diego, CA).
Alternatively, in other experiments, 888mel cells were not labeled before fusion, and DC-TC
hybrids were detected by costaining with mAbs against markers expressed on either cell type.
Namely, FITC-conjugated anti-HLA-DR was used as a DC marker concomitantly with mAbs
against gp100 (Enzo Diagnostics) or HLA-A24 (One Lambda), both of which were only
expressed in the 888mel cells. These Abs were visualized using a secondary PE-conjugated
goat anti-mouse IgG (Caltag Laboratories, Burlingame, CA).

Cytokine release assays
Recognition of target cells by melanoma-reactive CD8+ and CD4+ T cell lines and clones was
evaluated on the basis of specific IFN-γ secretion. In one set of experiments, cytokine secretion
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was measured in response to immature DCs loaded with recombinant gp100 protein or
melanoma cell lysates, as well as DCs transduced with an adenoviral vector encoding gp100.
Recombinant proteins were commercially produced and purified (Novavax, Columbia, MD).
DCs expressing HLA-A*0201 and HLA-DRβ1*0701 were incubated with 10 μg/ml gp100
protein (or NY-ESO-1 as a negative control), overnight at 37°C in 96-well plates (1 × 105 cells/
well; 100 μl/well). Alternatively, lysates of F002Rmel CIITA-gp100 cells (or F002Rmel
CIITA-GFP as a negative control) were prepared by exposing the cells to five freeze-thaw
cycles. Lysates were incubated with DCs at a ratio of one DC to one melanoma cell equivalent
overnight at 37°C in 96-well plates (1 × 105 cells/well; 100 μl/well). DCs were also transduced
with recombinant adenoviruses encoding gp100 (or MART-1 as a negative control) (Genzyme,
Cambridge, MA) as previously described (10) and were incubated 24–48 h at 37°C in 96-well
plates (1 × 105 cells/well; 100 μl/well). As positive controls for T cell function, specific IFN-
γ secretion was measured in response to peptide-loaded DCs and melanomas. For HLA-
A*0201-restricted CD8+ T cell populations, DCs were incubated with 1 μg/ml of the
appropriate peptide 1–3 h at 37°C. For HLA class II-restricted CD4+ T cells, DCs were
incubated with 50 μg/ml of the appropriate peptide ∼3 h at 37°C. In addition, the melanoma
cell lines, F002Rmel CIITA-gp100 and -GFP, were harvested. Responder T cells (105) were
coincubated with 105 stimulator cells (250 μl total) ∼20 h at 37°C, and the concentration of
human IFN-γ in coculture supernatants was measured by ELISA (Pierce-Endogen, Cambridge,
MA).

Recognition of DC-888mel hybrid cells by melanoma-reactive CD8+ and CD4+ T cell lines
and clones was also evaluated on the basis of specific IFN-γ secretion. Responder T cells
(105) were coincubated with 1–4 × 104 fusion cells in 96-well plates ∼20 h at 37°C, and the
concentration of human IFN-γ in coculture supernatants was measured by ELISA (Pierce-
Endogen). As positive controls for T cell function, specific IFN-γ secretion was measured in
response to peptide-loaded target cells and melanomas. For HLA-A*0201-restricted CD8+ T
cell populations, T2 cells were incubated with 1 μM of the appropriate peptide 1–3 h at 37°C.
For class II HLA-restricted CD4+ T cells, EBV-transformed B cells expressing HLA-
DRβ1*0401 or HLA-DRβ1*0701 were incubated with 50 μM of the appropriate peptide ∼3 h
at 37°C. In addition, melanoma cell lines expressing various combinations of HLA-A*0201,
HLA-DRβ1*0401, and HLA-DRβ1*0701, were harvested. Responder T cells (105) were
coincubated with 105 stimulator cells, and the concentration of human IFN-γ in coculture
supernatants was measured by ELISA (Pierce-Endogen).

Results
Characterization of human DC-melanoma cell hybrids

Phenotypic analysis of human DCs and hybrids of DCs fused with 888 melanoma cells
(DC-888mel) was performed by FACS. Before electrofusion, DCs displayed markers
consistent with those of mature DCs (Fig. 1); they expressed CD11c but not the monocyte/
macrophage marker CD14 or the NK cell marker CD57. In addition, they expressed HLA class
I and class II molecules, costimulatory molecules B7.1 and B7.2, and maturation markers CD40
and CD83. In >50 experiments in which entire viable cell populations were gated, >90% of
cells simultaneously expressed these DC markers while <4% expressed the T cell marker CD3,
and <1% expressed the B cell marker CD19 or the monocyte/macrophage marker CD14.

Electrofusion of DCs and 888mel cells generated heterokaryons that expressed both green
fluorescence (CFSE) from the tumor cells and several DC markers (Fig. 2). After electrofusion,
cells were incubated overnight at 37°C and were subsequently separated on the basis of
adherence. The majority of dually fluorescent fusion cells were detected in the adherent cell
population. Also contained in the adherent fraction was a significant population of melanoma
cells that were only positive for CFSE. As estimated by FACS analyses characteristic of those
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presented in Fig. 2, the percentages of DC-TC fusion cells in adherent populations ranged from
12 to 52%. In contrast, the nonadherent population primarily contained DCs, with smaller
populations of hybrid cells and melanoma cells.

FACS analyses are useful for estimating fusion efficiencies, but they may be misleading
because dually fluorescent events could represent cell aggregates or DCs that have engulfed
tumor cell debris as opposed to membrane-fused hybrids. To evaluate whether true cell fusions
were produced in the experiments presented in this study, fluorescence microscopy was used
to evaluate the quality of dual fluorescence on individual cells. CFSE-labeled 888mel cells
were fused with DCs, and the adherent population was stained with PE-conjugated anti-HLA-
DR as a DC marker (Fig. 3). As a negative control, adherent 888mel cells that had undergone
the electrofusion process were also stained with PE-conjugated anti-HLA-DR. In the
DC-888mel fusion population, individual cells were clearly positive for both CFSE and HLA-
DR. Also, some cells were observed that were only positive for green fluorescence, as expected
from the FACS analyses. However, in the preparation consisting only of tumor cells, no HLA-
DR expression was observed. Close examination of these cytospin slides also revealed that
dually positive fusion cells contained multiple nuclei further suggesting that true cell fusion
had occurred.

Although the fluorescence micrographs suggested that cell fusion had, in fact, occurred, the
argument could still be made that dually fluorescent cells represent DCs that had engulfed
tumor cell debris because CFSE is an intracellular stain. Therefore, to evaluate whether fusion
of cell membranes had occurred, we costained DC-888mel fusion cells with Abs against two
distinct surface markers (Fig. 4). In these experiments, 888mel cells were not prelabeled with
CFSE. 888mel cells expressed HLA-A24 on their surfaces whereas DCs from donor 7 did not.
After electrofusion of either DCs and unlabeled 888mel cells or of 888mel cells alone, the
adherent populations were stained with anti-HLA-A24 that was indirectly coupled to PE
through a labeled secondary Ab. Subsequently, the cells were counterstained with FITC-
conjugated anti-HLA-DR. In the DC-888mel fusion population, individual cells were clearly
positive for both HLA-A24 and HLA-DR. Also, some cells were observed that only expressed
individual cell markers. However, only HLA-A24+ cells were found in the tumor cell alone
preparation.

Lack of cross-presentation of gp100 by DCs
DCs are potent APCs that are sometimes able to cross-present MHC class I-restricted epitopes
from exogenously loaded Ags (1,6). To determine whether gp100 protein could be cross-
presented by DCs, IFN-γ secretion by two CTL lines (CK3H6 and tumor-infiltrating
lymphocyte (TIL) 1200) that recognize gp100 epitopes in the context of HLA-A*0201 was
measured in response to three different HLA-A*0201+ DCs loaded with recombinant gp100
protein or lysates of melanoma cells expressing gp100 after retroviral transduction (F002Rmel
CIITA + VSV-gp100) (Table II). DCs loaded with recombinant NY-ESO-1 protein and lysates
of gp100− melanoma cells expressing GFP after retroviral transduction (F002Rmel CIITA +
VSV-GFP) were included as negative controls. In addition, whole F002Rmel CIITA cells that
naturally expressed HLA-A*0201 were included as controls for T cell function after
transduction with VSV-gp1000 or VSV-GFP. Furthermore, DCs were pulsed with relevant
peptides (gp100:209-217 for CK3H76 and gp100:154-162 for TIL 1200) and were transduced
with an adenoviral vector encoding gp100 as positive control for Ag presentation by the DCs
in the context of HLA-A*0201. CK3H6 specifically recognized each of the three DC
populations after pulsing with gp100:209-217 and after transduction with adenovirus encoding
gp100. However, no specific IFN-γ secretion was observed in response to DCs loaded with
whole gp100 protein or melanoma cell lysates. The same trend was observed for TIL 1200 that
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specifically recognized gp100:154-162; however, the total amounts of IFN-γ secreted were
significantly lower.

We also evaluated MHC class II-restricted Ag presentation by these same DC populations.
IFN-γ secretion was measured by a CD4+ T cell clone (B104) that specifically recognized
gp100:170-190 in the context of HLA-DRβ1*0701, which was concomitantly expressed on all
three DCs. B104 specifically recognized DCs that had been pulsed with gp100:170-190 and
those that had been adenovirally transduced with gp100. In addition, B104 specifically released
IFN-γ in response to DCs loaded with recombinant gp100 protein and lysates of melanoma
cells expressing gp100. These results demonstrated the integrity of the gp100 protein and lysate
preparations in that DCs were capable of processing exogenously loaded Ags and presenting
relevant epitopes in the context of MHC class II molecules.

Presentation of MHC class I- and class II-restricted epitopes by DC-888mel hybrids
To determine whether DC-TC hybrids presented relevant MHC class I-restricted tumor-
associated epitopes, IFN-γ secretion by multiple HLA-A*0201-restricted, melanoma-reactive
CTLs was measured in response to allogeneic DC-888mel hybrids consisting of HLA-
A*0201+ DCs and HLA-A*0201− 888mel cells (Table III). Three gp100-reactive CTL lines,
each of which recognized a unique peptide, specifically released IFN-γ in response to
DC-888mel fusions prepared from two different donors. These T cells did not recognize a
physical mixture of DCs and irradiated 888mel cells, nor did they secrete IFN-γ in response to
888mel cells that had undergone the electrofusion procedure alone. Furthermore, in a separate
experiment, these T cells were not stimulated by fusions of HLA-A*0201− DCs and 888mel
cells. Similar results were also observed using HLA-A*0201-restricted CTLs that specifically
recognized epitopes from MART-1, tyrosinase, and TRP2-6b. The amounts of IFN-γ secreted
by several of these CTLs in response to cells from the adherent fraction of the DC-888mel
fusion preparations were comparable to that released in response to HLA-A*0201+ melanoma
cells. This suggested that DC-888mel hybrids were potent stimulators because significantly
fewer cells were used in these samples compared with melanoma cells. For example, in the
first experiment described in Table III, 3.75 × 104 total fusion cells were used as targets as
opposed to 105 tumor cells. However, only 29% of the adherent DC-888mel fusion population
from donor 4 were hybrid cells as estimated by FACS analysis. Because heterokaryons were
not separated from tumor cells or DCs, 104 DC-888mel hybrids from donor 4 stimulated
secretion of comparable amounts of IFN-γ by several CTL lines as 105 melanoma cells. Two
CTL populations, CK3H6 and GA3D, also secreted cytokine in response to the nonadherent
fraction of the DC-888mel fusion samples. This was probably due to the small numbers of
hybrids present in these fractions as observed by FACS (Fig. 2). As an additional negative
control, an HLA-A*0201-restricted, NY-ESO-1-reactive CTL line was included because
888mel cells do not efficiently express this protein. These T cells did not recognize HLA-
A*0201+ DC-888mel hybrids.

Presentation of MHC class II-restricted tumor-associated epitopes by DC-888mel hybrids was
also evaluated. IFN-γ secretion by a gp100-reactive HLA-DRβ1*0401-restricted CD4+ T cell
line and by an HLA-DRβ1*0701-restricted T cell clone was measured in response to allogeneic
DC-888mel hybrids consisting of DCs expressing both of these MHC class II molecules and
888mel cells that express neither (Table IV). Both of these T cell populations specifically
released cytokine in response to DC-888mel fusions prepared from two different donors. These
T cells did not recognize a physical mixture of DCs and irradiated 888mel cells, nor did they
secrete IFN-γ in response to 888mel cells that had undergone the electrofusion procedure alone.
Furthermore, in a separate experiment, these T cells were not stimulated by fusions of 888mel
cells with DCs that did not express HLA-DRβ1*0401 or -DRβ1*0701.
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Discussion
The absence of an effective T cell-mediated immune response to cancer in many patients may
be the result of inefficient Ag processing and presentation by tumor cells (49,50). Down-
regulation of MHC molecules as well as defective Ag processing has been observed in
neoplastic cells (51,52). In addition, tumor cells do not generally express costimulatory and/
or adhesion molecules that may be necessary to mount a primary immune response (53). To
overcome this unresponsiveness, a variety of vaccination strategies have been developed to
stimulate T lymphocytes that recognize Ags expressed in tumor cells. Sporadic clinical
responses have been observed in trials in which Ags or peptide epitopes have been used directly
to immunize patients (54). However, these approaches have largely been unsuccessful
especially when the target Ags are nonmutated self proteins (55). Therefore, the use of DCs as
an adjuvant in cancer vaccine trials is currently being intensively studied because DCs are
potent APCs capable of initiating primary immune responses.

Many methods have been developed for loading DCs with Ags including transfection with
tumor-derived RNA or DNA (18,19), transduction with recombinant viruses (7-12), and
loading with killed tumor cells (14), tumor lysates (15,16), recombinant protein (6), or synthetic
peptides (3,55). Alternatively, hybrids of DCs and tumor cells have been produced using PEG
or electrofusion (20-22). Theoretically, DC-TC hybrids are appealing because they should
induce a polyclonal immune response, including both CD4+ Th cells and CD8+ CTL, against
a multitude of shared and unique tumor-associated Ags. In preclinical murine models, DC-TC
hybrids have stimulated potent protective and therapeutic immune responses to carcinomas,
lymphomas, melanomas, and gliomas (23-29). However, in two recent human clinical trials,
fusions of DCs and autologous tumor cells were primarily ineffective for the treatment of
patients with melanoma and glioma (35,36). In both of these protocols, PEG was used as the
fusogenic reagent. In one previous investigation, electrofusion was preferred over PEG-
mediated fusion specifically because fusion efficiency was very low with PEG, ranging from
only 0.5 to 4.5% (33). In another investigation, a direct comparison was made between DC-
TC fusions made using PEG and electrofusion in a prophylactic DA3 mammary carcinoma
model (25). In that study, DCs were labeled with 5-(and-6)-(((4-chloromethyl)benzoyl)amino)
tetramethylrhodamine (CMTMR) before fusion and tumors cells were prelabeled with CFSE
such that fusion efficiency was monitored by FACS for dual fluorescent events. The conclusion
was drawn that no significant differences were observed in either the quality of the fusion cells
or in the ability of those cells to mediate protective immunotherapy. However, the FACS profile
for PEG-fused cells appeared nearly identical to that for DCs and tumor cells that had simply
been cocultured. Namely, both profiles indicated that these cell populations predominantly
contained two separate cell types, one green and one red, with very few dual fluorescent cells.
Alternatively, cells generated by electrofusion appeared to contain a much more obvious
population of dual fluorescent cells. Furthermore, we have previously attempted to generate
DC-TC hybrids using PEG but could not demonstrate effective fusion, partly because Abs
against DC markers bound nonspecifically to tumor cells alone after PEG treatment (data not
shown). Therefore, we have focused our analysis on DC-TC hybrids generated by electrofusion
and have verified the occurrence of chimeric hybrids using a series of stringent criteria.

Prelabeling of DCs and tumor cells coupled with FACS analysis is a convenient means of
assessing fusion efficiency. However, FACS data can be misleading because dual fluorescent
events may represent cell aggregates or DCs that have engulfed tumor cell debris. Results from
some previous investigations have been difficult to interpret because it was unclear whether
immune responses were mediated by true membrane-fused cells or by DCs presenting Ag
through uptake of tumor-associated material. In fact, several investigations have demonstrated
that physical mixtures of DCs and tumor cells can elicit potent immune responses (34). To
evaluate whether true fusion was achieved in the current study, we used a combination of FACS
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analysis and fluorescence microscopy. In the adherent fraction of the fusion population, there
was clearly a distinct population of cells that were positive for CFSE from the prelabeled
melanoma cells and for several DC markers by both FACS (Fig. 2) and microscopic analyses
(Fig. 3). Fluorescence micrographs also revealed that dually colored cells were multinucleated
because CFSE is a cytoplasmic dye that does not stain cell nuclei. However, the argument
could still be made that these cells were DCs that had engulfed tumor cell debris. Therefore,
we evaluated expression of two distinct cell surface markers, namely HLA-A24 that was only
expressed on 888mel and HLA-DR that was only present on the DCs before fusion. In the
adherent fraction of the fusion population, there were cells that expressed both of these markers
suggesting that we had, in fact, generated membrane-fused hybrids (Fig. 4).

The primary theoretical advantages of DC-TC hybrids over DCs loaded with Ags by other
means are 2-fold: 1) they should be able to present epitopes from multiple tumor-associated
Ags simultaneously, and 2) they should be able to present relevant epitopes in the context of
both MHC class I and class II molecules. DCs have unique Ag processing pathways that enable
exogenously loaded proteins to be presented in the context of MHC class I molecules (1).
However, cross-presentation is, generally, not very efficient in the absence of carrier proteins
or particles (6). As an example, we have never observed cross-presentation of the melanoma
Ag gp100, either in the form of a recombinant protein or tumor cell lysate (Table II). In contrast,
hybrids of HLA-A*0201+ DCs and HLA-A*0201− gp100+ melanoma cells were clearly
recognized by three CTL lines, each of which was reactive with a unique HLA-A*0201-
restricted gp100 epitope (Table III). In addition, DC-888mel hybrids presented MHC class I-
restricted epitopes from other melanoma Ags including MART-1, tyrosinase, and TRP2-6b.
Furthermore, DC-888mel hybrids presented class II MHC-restricted epitopes from gp100.
These results suggest that DC-TC hybrids may be able to induce both CTL and Th cell
responses against a variety of different tumor-associated Ags.

Several in vitro and in vivo applications can be envisioned for the use of electrofused DC-TC
hybrids as APCs. The immuno-therapeutic potential of these hybrid cells can be evaluated in
human clinical vaccination trials. In addition, they may be useful for the identification of new
tumor-associated Ags. If DC-TC hybrids can stimulate tumor-reactive CD8+ and CD4+ T
lymphocytes, the antigenic specificities of those T cells could be ascertained by-screening
tumor-derived cDNA libraries (56,57) or peptides eluted from tumor cells for recognition
(58,59). Furthermore, fusions of DCs and tumor cells may be useful in vitro for generating
populations of tumor-reactive T cells for use in adoptive therapy protocols. In several
investigations, significant objective clinical response rates have been achieved by the adoptive
transfer of autologous tumor-reactive T cells (60). For patients with melanoma, it has been
comparatively easy to raise these T cell populations from TIL. In addition, melanoma cells
seem to be uniquely immunogenic in that they are often directly able to stimulate tumor-reactive
CTL in vitro without manipulation such as the introduction of costimulatory molecules or
cytokine adjuvants. In contrast, it has been significantly more difficult to raise such T cell
populations for other cancers. Even in the context of renal cell carcinoma, which is often
responsive to immunotherapy with IL-2 (61), it has been difficult to raise tumor-reactive T
cells in vitro, either from TIL or from PBMC stimulated with whole tumor cells. In addition,
mounting evidence suggests that CD4+ T lymphocytes may play a critical role in the induction
and persistence of tumor-reactive CD8+ T cells (60,62-64). Therefore, the use of DC-TC
hybrids as APCs may be a viable means for raising heterogeneous populations of tumor-
reactive CD8+ and CD4+ T cells for adoptive transfer for patients with cancer.
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FIGURE 1.
DC phenotype before electrofusion. DCs from donor 4 were stained with FITC- (x-axis; FL1-
H) and PE- (y-axis; FL2-H) conjugated mAbs as indicated and analyzed by FACS.
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FIGURE 2.
FACS analyses of DC-TC hybrid cells generated by electrofusion. 888 melanoma cells were
labeled with CFSE (x-axis; FL1-H) and were fused with DCs from donor 4. After overnight
culture, both adherent and nonadherent cell populations were stained with PE- (y-axis; FL2-
H) conjugated mAbs as indicated.
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FIGURE 3.
Fluorescence micrographs of hybrid cells generated by electrofusion. A–C, 888 melanoma cells
were labeled with CFSE (A) and were fused with DCs from donor 4. After overnight culture,
the adherent cell population was stained with PE-conjugated anti-HLA-DR (B). Finally, a two-
color overlay was prepared to enable visualization of double-positive cells (C). As estimated
by FACS analysis, 29% of cells in the adherent fraction of DC-888mel fusion cells from donor
4 in this experiment were positive for both CFSE and HLA-DR. White arrows indicate
melanoma cells that were only positive for CFSE. D–F, As a control, 888 melanoma cells were
labeled with CFSE (D) and were fused in the absence of DCs. After overnight culture, the
adherent cell population was stained with PE-conjugated anti-HLA-DR (E). Finally, a two-
color overlay was prepared to enable visualization of double-positive cells (F).
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FIGURE 4.
Fluorescence micrographs of hybrid cells generated by electrofusion. A–C, 888 melanoma cells
(without prior CFSE labeling) were fused with DCs from donor 7. After overnight culture, the
adherent cell population was concomitantly stained with FITC-conjugated anti-HLA-DR (A)
and anti-HLA-A24 that was indirectly coupled to PE (B). Finally, a two-color overlay was
prepared to enable visualization of double-positive cells (C). The white arrow indicates an
individual tumor cell that only expressed HLA-A24, and the blue arrow indicates a single DC
that only expressed HLA-DR. D–F, As a control, 888 melanoma cells (without prior CFSE
staining) were fused in the absence of DCs. After overnight culture, the adherent cell population
was concomitantly stained with FITC-conjugated anti-HLA-DR (D) and anti-HLA-A24 that
was indirectly coupled to PE (E). Finally, a two-color overlay was prepared to enable
visualization of double-positive cells (F).
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Table I
Characteristics of Ag-reactive T cell lines and clones

T Cell Clone/Line CD4/CD8 HLA Restriction Element Peptide Specificity Reference

TIL 1200 CD8 HLA-A*0201 gp100:154–162 38,39
CK3H6 CD8 HLA-A*0201 gp100:209–217 40
JR1E2 CD8 HLA-A*0201 gp100:280–288 40
MB4 CD8 HLA-A*0201 TRP2-6b:403–411 41
JB2F4 CD8 HLA-A*0201 MART-1:27–35 40
GA3D CD8 HLA-A*0201 tyrosinase:368–377(370D) 42
TH1F2L CD8 HLA-A*0201 NY-ESO-1:157–165 43
B104 CD4 HLA-DRβ1*0401 gp100:170–190 44
BR-B8 CD4 HLA-DRβ1*0701 gp100:44–59 45
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