
INTRODUCTION

Clonorchis sinensis is a prevalent parasitic helminth in humans
that is endemic in East Asia, including Korea. The main histo-
logical features of C. sinensis infection are irregular dilatation of
the bile ducts and glandular hyperplasia [1-4]. Over time, infec-
tion with C. sinensis can lead to cholangiocarcinoma; therefore,
C. sinensis is classified as a carcinogen [3]. Hamsters that are
infected with liver flukes such as C. sinensis or Opisthorchis viver-

rini are at the greater risk of developing cholangiocarcinoma
through dimethylnitrosamine (DMN)-induced or inflamma-
tion-mediated carcinogenesis [5,6]. When the bile duct epithe-
lial cells of an infected animal are exposed to high concentra-
tions of N-nitroso compounds, neoplastic transformation may
result [5-7]. The N-nitroso compounds cause nitrosative and
oxidative damage to nucleic acids, which may participate in the
initiation and/or promotion of cholangiocarcinogenesis [8].
Using this phenomenon, DMN is commonly used as an initia-
tor of carcinogenesis in rodent models. DNA damage and repar-

ative cellular replication examined to confirm the effects of
chemicals such as DMN on hepatocytes [8,9].

The mechanisms underlying the proliferation of somatic cells
are regulated by cell cycle-related proteins, including cyclins,
CDKs, CDK inhibitors, retinoblastoma (Rb) family proteins,
and E2F transcription factors [10]. Cell division is a tightly reg-
ulated process that is influenced by innate cues and environ-
mental signals that ultimately control gene expression, post-
translational modification, and the proteolysis of multiple reg-
ulatory proteins [11,12]. 

Rb proteins function as cancer suppressors by controlling
cellular growth through their interaction with E2F and the
cyclin A-CDK2 kinase complex [12,13]. In fact, the Rb-E2F
pathway is one of the most important regulatory pathways
controlling cellular proliferation and differentiation in animals
and plants [14,15]. A number of studies have demonstrated
the role of E2Fs in controlling the expression of genes that reg-
ulate the G2/M phase of the cell cycle, as well as cell cycle pro-
gression and DNA replication [16]. In particular, the control of
cdc2 and cyclin B1 transcription is mediated by the interaction of
E2Fs with endogenous and G2/M-regulated promoters [16-19].
E2F1 is also a key factor in the development of cancer because
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a number of proto-oncogenes are regulated by E2Fs [20,21].
Although the induction of cholangiocarcinoma by C. sinensis

infection and DMN treatment has been demonstrated in a
hamster model [6], the cascade involved in carcinogenesis is
unknown. We examined the proliferative effects of excretory/
secretory products (ESP) from C. sinensis and of DMN on
human epithelial cells in vitro. 

In cells treated with ESP and DMN, cellular proliferation and
the proportion of cells in G2/M phase were increased. Further,
the activity of the transcription factor E2F1 was highest when
the ESP and DMN were added simultaneously. Our results
indicate that ESP and DMN synergistically affect the regulation
of cell cycle-related proteins. 

MATERIALS AND METHODS

Preparation of C. sinensis excretory/secretory products 
To prepare the ESP, metacercariae of C. sinensis were collect-

ed from naturally infected freshwater fish (Pseudorasbora parva)
at Gyungsangnam-do, an endemic site in Korea. Pepsin-HCl
was used to digest the flesh of the fish to obtain the metacercari-
ae, which were then introduced into 6-wk-old Sprague-Dawley
rats. After 2 months, C. sinensis adults were collected from the
bile ducts of the rats and washed several times with phosphate-
buffered saline (PBS) containing 100 μg/ml penicillin and 100
U/ml streptomycin. The freshly isolated worms were then incu-
bated in sterile PBS containing antibiotics for 24 hr in an atmos-
phere of 5% CO2 at 37℃. After incubation, the medium was
centrifuged for 10 min at 800 rpm to remove the worms and
debris. The supernatant was then further centrifuged for 10 min
at 3,000 rpm and filtered with a syringe-driven 0.45-μm filter
unit. The amount of protein in each extract was measured using
the Bradford assay (Bio-Rad, Hercules, California, USA). 

Cell culture and experimental groups
Human embryonic kidney cells (HEK293T) were cultured in

Dulbecco’s modified Eagle’s medium (DMEM) (Gibco, Rock-
ville, Maryland, USA) supplemented with 10% heat-inactivated
fetal bovine serum (FBS) (Gibco), 2 mM L-glutamine, 100 μg/
ml penicillin, and 100 U/ml streptomycin at 37℃ in a humid-
ified atmosphere of 5% CO2. Based on the hypotheses to be
tested, the cells were divided into 4 groups and cultured for 72
hr: control, cultured in plain medium; DMN, cultured in medi-
um containing 10 μg/ml DMN; ESP, cultured in medium con-
taining 10 μg/ml ESP; and DMN + ESP, cultured in medium

containing 10 μg/ml each DMN and ESP.

Antibodies
Polyclonal or monoclonal antibodies were used to detect the

expression of several cell-cycle-related proteins. All antibodies
were purchased from Santa Cruz Biotechnology (Santa Cruz,
California, USA) and used at 1 : 1,000 dilution, including anti-
cyclin E (sc-247), anti-cyclin B1 (sc-245), anti-E2F1 (sc-193),
and anti-CDK2 (sc-163). Antibodies against calnexin (BD
610523) were purchased from Transduction Laboratories (BD
Biosciences, Mountain View, California, USA) and used at 1 :
2,000 dilution. Anti-mouse, anti-rabbit, and anti-goat IgG anti-
sera conjugated with horseradish peroxidase (HRP) were pur-
chased from DAKO (Glostrup, Denmark). 

Cellular proliferation assay 
We used the XTT formazan method to evaluate the degree of

cellular proliferation. For each assay, cells were seeded at a den-
sity of 5 × 103 cells/well on 96-well plates. After 24 hr of incu-
bation, the medium was replaced with 2% FBS-RPMI 1640
without phenol red. The cells were then incubated in the pres-
ence of PBS (vehicle) or 10 μg/ml ESP with or without 10 μg/
ml DMN for another 72 hr. XTT (1 mg/ml) was dissolved in
warm medium (without phenol red), and 1.25 mM phenazine
methosulfate (PMS) was prepared in PBS. Following the incu-
bation of the cells for the indicated periods, 50 μl of the XTT-
PMS mixture (final concentration of XTT = 0.3 mg/ml) was
added to each well. The plates were then incubated for 4 hr.
The conversion of XTT to formazan was quantified by measur-
ing the absorbance at 492 and 690 nm using a microtiter plate
reader [17]. 

Western blotting
For Western blots, cells were lysed using 1% Nonidet P-40 in

a buffer containing 150 mM NaCl, 10 mM NaF, 1 mM PMSF,
200 μM Na3VO4, and 50 mM HEPES, pH 7.4. Equal amounts
of protein were separated by 8 and 10% SDS-PAGE and trans-
ferred to polyvinylidene fluoride (PVDF) membranes (Immo-
bilon) (Millipore, Bedford, Massachusetts, USA). The mem-
branes were then probed with antibodies against E2F1, CDK2,
cyclin B1, pRb, p-pRb, cyclin E, and calnexin. The primary anti-
bodies were detected using goat anti-rabbit or rabbit anti-mouse
secondary antibodies conjugated with HRP and visualized using
an enhanced chemiluminescence kit (ECL) (Amersham Phar-
macia Biotech, Buckinghamshire, UK). 
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Cell cycle analysis
For cell cycle analysis, HEK293T cells were plated in 6-well

culture plates at 2 × 105 cells/well in 2 ml of DMEM contain-
ing 10% FBS. They were then treated with 10 μg/ml ESP with or
without 10  μg/ml DMN for 72 hr and stained with propidium
iodide (PI). The PI-stained cells were analyzed using a FACSCa-
libur multicolor flow cytometer (BD Biosciences), and the data
were analyzed using CellQuest software (BD Biosciences). 

Luciferase assay
To analyze the transcriptional activity of E2F1, HEK293T cells

(1 × 106 cells per 60-mm plate) were transfected with either
10 μg of pXP2-luciferase as a reporter gene (control) or a dihy-
drofolate reductase (dhfr) promoter-driven luciferase reporter
construct [22]. Transfection was performed using Lipofecta-
mineTM 2000 (Invitrogen, Carlsbad, California, USA), and the
transfected cells were treated with 10 μg/ml ESP with or with-
out 10 μg/ml DMN for an additional 72 hr. Cell extracts were
then prepared using 1 × passive lysis buffer (Promega, Madison,
Wisconsin, USA), and luciferase activity was measured over 30 sec
using a luciferase assay system and luminometer (Turner Designs
TD-20/20) (Promega). 

Statistics
Data were expressed as mean value ± standard deviation.

The differences between control and the other groups were

assessed by the nonparametric Mann-Whitney U test. P < 0.05
was considered to be significant.

RESULTS

ESP and DMN synergistically affect the proliferation of
HEK293T cells

To investigate the role of ESP and DMN in the proliferation
of HEK293T cells XTT assay was performed. Cellular prolifera-
tion in HEK293T cells treated with ESP and/or DMN was in-
creased compared to that in the controls (Fig. 1). Although
each compound increased proliferation when used alone, co-
stimulation with DMN and ESP had the greatest effect on cell
growth. The average increase compared to the control was:
DMN, 132%; ESP, 152%; and DMN + ESP, 199% (P = 0.0002).
Thus, DMN and ESP synergistically affect cellular proliferation.
All experiments were performed in triplicate.

Cell cycle distribution upon DMN and/or ESP treatment in
HEK293T cells 

Cellular proliferation is tightly connected with cell cycle pro-
gression; thus, we monitored cell cycle progression using PI
staining (Fig. 2). In HEK293T cells treated with ESP, DMN, or
ESP + DMN for 24 hr, the number of cells in the G0/G1 phase
decreased. In contrast, the number of cells in the G2/M phase,
which included cells undergoing rapid proliferation, was in-
creased compared to the control (Fig. 2). Fewer S-phase cells
were identified in the ESP and ESP + DMN groups. The per-
centage of G2/M-phase cells in each group was: control, 33.8%;
DMN, 32.1%; ESP, 50.1%; and ESP + DMN, 63.7% (P = 0.0065).
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Fig. 1. Effects of ESP of C. sinensis and DMN on the proliferation
of human embryonic kidney cells (HEK293T). Cellular proliferation
in each treatment was determined using the XTT assay. Bars and
whiskers indicate cell growth as the percentage of the control ±
standard deviation (n = 4).
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Fig. 2. Effects of ESP of C. sinensis and DMN on the cell cycle dis-
tribution of HEK293T. Bars and whiskers indicate cell growth as
the percentage of the control ± standard deviation (n = 4).
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Modulation of cell cycle-related proteins by the addition of
DMN and ESP 

We used immunoblotting to detect the regulation of cell-
cycle-related proteins in each group with calnexin as a loading
control. The expression of several proteins, including E2F1,
pRb, p-pRb, CDK2, and cyclin B, was upregulated, especially in
the ESP + DMN group (Fig. 3). In contrast, the p-pRb level was
slightly decreased, implying that pRb degradation occurred.
DMN alone induced CDK2 expression, whereas ESP enhanced
the phosphorylation of pRb and slightly upregulated the level
of CDK2. These results support the view that DMN and ESP
synergistically affect cell cycle progression (Fig. 2). As expected,
the highest level of expression of cyclin B and CDK2 was detect-
ed in the DMN + ESP group. However, the level of CDK4 and
cyclin E expression was similar in all of the groups (Fig. 3).

Co-stimulation with ESP and DMN increases E2F1 activity 
To determine whether the modulation of E2F1 activity is due

to increased transcription of E2F1, we performed transient trans-
fection experiments using a luciferase reporter gene (dhfr-luc)
with pXP2-luc as a control [25]. The gene dhfr encodes an en-
zyme that catalyzes the synthesis of purines and thymidylate,
which are necessary for DNA replication during S phase [23,24].
Furthermore, dhfr contains E2F binding elements; thus, its expres-

sion is correlated with E2F1 mRNA expression [16,25]. At 24 hr
post-transfection, the HEK293T cells were plated and treated with
ESP and/or DMN as indicated for an additional 24 hr. Luciferase
activity was markedly increased in the transfected cells that were
co-stimulated with ESP and DMN (P = 0.014) (Fig. 4).

DISCUSSION

Infection by C. sinensis stimulates the bile duct epithelium,
leading to the differentiation and proliferation of bile duct or
periductal cells in infected individuals [10]. Chronic inflamma-
tion induced by liver fluke infection is an important factor in
cholangiocarcinogenesis, along with certain carcinogens, includ-
ing nitrosamine compounds [8,26]. These compounds may be
obtained from endogenous sources or from parasites [7]. For
example, NO synthesis is an important determinant of endoge-
nous nitrosamine production in O. viverrini-infected hamsters
[9]. In rats and hamsters infected with C. sinensis, small ductu-
lar or periductal cells were the proliferation and differentiation
[6,11,12]. In addition, we reported that ESP from C. sinensis

induces the proliferation of HEK293T cells [22]. In this study,
we examined whether the carcinogen DMN has any influence
on the proliferative effect of ESP in vitro. 

Infection of C. sinensis is regarded as an important, but pre-
ventable, cause of cancer [27]. It has been more than 50 yr since
cholangiocarcinogenesis was first associated with liver flukes
[27,28]. Although co-treatment with DMN and metacercariae
of C. sinensis can induce cholangiocarcinoma in a hamster model
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Fig. 4. Treatment of ESP and DMN upregulated dhfr promoter-dri-
ven luciferase activity in HEK293T cells transfected with the lucife-
rase reporter gene dhfr-luc (DHFR) or pXP2-luc (XP2, control). Bars
and whiskers indicate the mean ± standard deviation (n = 3).
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Fig. 3. Expression of cell-cycle-related proteins in response to the
ESP and DMN in HEK293T. Each sample was subjected to immu-
noblotting and probed with the indicated antibodies. Quantitative
densitometry confirmed the observations presented in each blot
and is shown as numbers.
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[6], the underlying mechanism is unknown. To understand
how target cells respond to C. sinensis antigens, we developed
an in vitro system using the human epithelial cell line HEK293T.
We stimulated HEK293T cells with ESP from C. sinensis worms
and/or the carcinogen DMN to provide a biological environ-
ment similar to that reported to cause cancer [29]. We also
focused on the proliferative activity in each group because uncon-
trolled proliferation is a key step in carcinogenesis. 

As previously reported [22], treatment with ESP increased
the proliferation of the cells compared to the control level and
was more effective than treatment with DMN (Fig. 1). When
HEK293T cells were co-stimulated with DMN and ESP, howev-
er, the degree of proliferation was increased further (Fig. 1). 

We also investigated the cell cycle distribution of the cells
(Fig. 2). Treatment with DMN did not result in a change in the
cell cycle, whereas treatment with ESP decreased the propor-
tion of cells in the G0/G1 and S phases and increased the pro-
portion of G2/M-phase cells (Fig. 2). Treatment with DMN +
ESP maximized the proportion of G2/M-phase cells, implying
that DMN and ESP synergistically affect cell cycle progression
(Fig. 2). 

Cell cycle progression is driven by the coordinated regulation
of activating CDKs and their positive regulatory cyclins. The
cdc2 and cyclin B1 promoters are directly related to E2F [20,25].
Various studies have shown that E2F proteins influence the
expression of genes that are involved in regulating the cell cycle
at the G2/M phase, cell cycle progression, and DNA replication
[15,21]. The role of E2Fs in controlling the transcription of cdc2

and cyclin B1 involves interactions with endogenous and G2/
M-regulated promoters [16,18]. E2F1 is also a key factor in the
development of cancer, given that several proto-oncogenes are
regulated by E2Fs [24,27]. We therefore analyzed the expres-
sion of a number of cell-cycle-related proteins (Fig. 3), includ-
ing cyclin B1, which is an essential regulator of the G2/M tran-
sition [15,25]. Co-stimulation with ESP and DMN upregulated
E2F1, cdK2, cyclin B1, and pRb phosphorylation, but the level
of pRb was slightly reduced (Fig. 3). Rb proteins physically
interact with E2Fs, blocking their function as transcription fac-
tors and eventually causing cell cycle arrest. Once an Rb pro-
tein is phosphorylated, E2F molecules are free to move to the
nucleus, where they function as transcription factors with DP
[16,20]. The phosphorylation of pRb (Fig. 3) implies that E2F1
may induce cell cycle progression, resulting in cellular prolifer-
ation, by acting as a transcription factor. 

E2F1 expression is correlated with tumor proliferation, and

the over-expression of E2F1 may produce very aggressive tumors
with a high proliferation rate [30]. In our system, co-stimula-
tion with ESP and DMN induced the over-expression of E2F1
and down-regulation of pRb, indicating the involvement of the
Rb-E2F1 pathway. The loss of Rb expression is consistent with
Rb inactivation, and the hyperphosphorylation of pRb may
release E2F1, reversing its growth-suppressive effect [12,15,29]. 

The negative effect of strong E2F1 expression on Rb suppres-
sor function may also be related to DNA damage and/or repair.
ESP from C. sinensis stimulates the proliferation of human em-
bryonic kidney cells by increasing E2F1 expression [29]. We
hypothesized that the regulation of E2F1 is a key factor in the
development of cancer in response to infection with liver fluke
and exposure to a carcinogen such as DMN. We performed a
dhfr-promoter assay to determine whether the up-regulation of
E2F1 occurs at the transcriptional level. Luciferase activity was
markedly increased in cells co-stimulated with ESP and DMN
(Fig. 4).

In summary, the co-stimulation of human embryonic kid-
ney cells (HEK293T) with the excretory/secretory products of
C. sinensis and the carcinogen DMN induced cell proliferation
via a synergistic effect on cell cycle progression. In particular,
DMN up-regulated the expression of CDK2 while ESP induced
the phosphorylation of pRB. Thus, treatment with DMN and
ESP affects cellular proliferation, possibly initiating and promot-
ing carcinogenesis. Although other changes may be involved in
carcinogenesis, e.g., changes in the expression of cancer-related
proteins, this hyper-proliferative effect may be the first step in
the malignant transformation of normal cells.  
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