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In the majority of human tumors, expression of the c-MYC onco-
gene becomes constitutive. Here, we report that c-MYC directly
regulates the expression of AP4 via CACGTG motifs in the first
intron of the AP4 gene. Induction of AP4 was required for c-MYC-
mediated cell cycle reentry of anti-estrogen arrested breast cancer
cells and mitogen-mediated repression of the CDK inhibitor p21.
AP4 directly repressed p21 by occupying four CAGCTG motifs in the
p21 promoter via its basic region. AP4 levels declined after DNA
damage, and ectopic AP4 interfered with p53-mediated cell cycle
arrest and sensitized cells to apoptosis induced by DNA damaging
agents. AP4 expression blocked induction of p21 by TGF-� in
human keratinocytes and interfered with up-regulation of p21 and
cell cycle arrest during monoblast differentiation. Notably, AP4 is
specifically expressed in colonic progenitor and colorectal carci-
noma cells. In conclusion, our results indicate that c-MYC employs
AP4 to maintain cells in a proliferative, progenitor-like state.
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The proto-oncogene c-MYC is commonly activated in human
cancer by gene amplification, viral promoter insertion, or

chromosomal translocation but also because of mutations of
upstream regulators (reviewed in ref. 1). c-MYC is highly
expressed in proliferating cells and down-regulated when cells
cease to proliferate, e.g., during differentiation. Deregulated
c-MYC expression promotes cell proliferation and causes resis-
tance to antimitogenic stimuli (2). Furthermore, constitutive
expression of c-MYC sensitizes towards apoptosis (reviewed in
ref. 3). The c-MYC gene encodes a transcription factor of the
basic helix–loop–helix leucine-zipper (bHLH-LZ) class that
binds to the E-box motif CACGTG (reviewed in ref. 4). How-
ever, the mechanisms that underlie the mitogenicity of c-MYC
are only partially understood. It seems likely that the combined
actions of multiple genes regulated by c-MYC contribute to the
effects of c-MYC on proliferation (5).

The AP4 protein is a member of the bHLH-LZ subgroup of
bHLH proteins, exclusively forms homodimers and binds to the
E-box motif CAGCTG (6). Initially AP4 was shown to activate
transcription (7). More recent studies documented that AP4 also
represses viral and cellular genes (8–10). AP4 expression de-
clines during murine brain development (9).

Here, we identified the AP4 gene as a direct transcriptional
target of c-MYC, characterized the central cell cycle regulator
p21 as an AP4 target gene and determined the cellular effects of
AP4 activation.

Results
To identify genes regulated by c-MYC in human epithelial cells,
we performed a microarray-based gene expression analysis 12 h
after activation of c-MYC in MCF-7 breast cancer cells that had
been arrested in the G1 phase by treatment with the anti-estrogen
ICI182,780/Fulvestrant (ICI) (P.J. and H.H., unpublished re-
sults). Using this approach, we detected a 3.4-fold (P � 0.0027)
induction of AP4 mRNA (data not shown), which was confirmed
by quantitative real-time PCR (qPCR) (Fig. 1A). The increase in
AP4 expression was also observed at the protein level [support-
ing information (SI) Fig. S1]. AP4 mRNA and protein were also
induced after activation of a fusion protein consisting of c-MYC
and the hormone-binding domain of the estrogen receptor (ER)

in serum-starved human diploid fibroblasts (HDF) (Fig. 1 B and
C). Furthermore, c-MYC-ER activation induced AP4 mRNA in
the presence of the translation inhibitor cycloheximide, indicat-
ing that AP4 is directly transactivated by c-MYC (Fig. 1D). The
regulation of AP4 by c-MYC is conserved among species,
because AP4 expression was induced after activation of a
c-MYC-ER fusion protein in serum-deprived RAT1 fibroblasts
(Fig. S2). The first genomic intron of human AP4 contains a
cluster of four canonical c-MYC-binding sites (CACGTG), two
of which are conserved in mouse and rat (Fig. 1E). Stimulation
of MCF-7 cells with serum, which increased c-MYC levels (see
Fig. S3C), enhanced binding of c-MYC to a region containing
three of the four E-boxes in the first intron of AP4 (ampA�B),
as determined in a quantitative ChIP (qChIP) analysis (Fig. 1F).
A minor binding of c-MYC to this region was detected in
serum-starved MCF-7 cells, which express low levels of c-MYC
(Fig. 1F; see also Fig. 3C), whereas a region (ampC) located �13
kbp downstream of the transcriptional start site in intron 6 of
AP4 did not display occupation by c-MYC. Taken together, these
findings establish that AP4 is an evolutionarily conserved direct
c-MYC target gene.

It was reported that ectopic expression of c-MYC abrogates a
cell cycle arrest induced by the anti-estrogen ICI in MCF-7 cells
(11). We could reproduce this observation, because c-MYC
activation increased the fraction of cells in S-phase from �7%
to �16% in the presence of ICI (Fig. 2A). When AP4 expression
was down-regulated by RNA interference (RNAi) concomi-
tantly with activation of c-MYC, the number of cells reentering
the cell cycle and performing complete cell divisions was re-
duced (Fig. 2 A, Fig. S3). Therefore, the induction of AP4
contributes to the c-MYC-mediated proliferation in the presence
of ICI. Because the CDK inhibitor p21 is known to mediate
G1-arrest induced by ICI (12), we determined whether expres-
sion of p21 is modulated by AP4. Indeed, down-regulation of
AP4 by RNAi resulted in increased p21 levels in MCF-7 cells
(Fig. 2B). Furthermore, serum stimulation of MCF-7 cells
rapidly induced the expression of endogenous c-MYC followed
by an increase in AP4, whereas expression of p21 was strongly
suppressed (Fig. 2C). RNAi-mediated down-regulation of AP4
prevented the repression of p21 by serum addition (Fig. 2D).
Therefore, induction of AP4, which is presumably mediated by
c-MYC, is required for the down-regulation of p21 expression
after serum stimulation of MCF-7 cells.

Interestingly, the induction of a conditional AP4 allele de-
creased the amount of p21 mRNA and protein (Fig. 2 E and F
and Fig. S4). The p21 promoter contains four E-boxes (5�-
CAGCTG-3�) in the vicinity of its transcriptional start site, which
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were occupied by AP4 in vivo (Fig. 2 G and H). Expression of
AP4 drastically reduced the activity of a wild-type p21 reporter
construct, whereas mutation of the two proximal AP4-binding
sites A3 and A4 was sufficient to largely alleviate the repressive

effects of AP4 (Fig. 3 A and B). Mutation of all four binding sites
completely prevented repression by AP4. Interestingly, mutation
of putative Miz1-binding sites within a c-MYC-responsive p21
promoter region, which was reported to largely alleviate the
positive effect of Miz1 on p21 expression (13), did not affect
repression of p21 by AP4 (Fig. 3C, Fig. S5A). A p21 promoter
construct containing one E2F and four Sp1/3-binding sites but
no E-box (13), was not responsive to AP4 (Fig. 3C). Moreover,
deletion or mutation of the AP4 basic region (Fig. 3D) rendered
AP4 unable to repress a p21 reporter (Fig. 3E, Fig. S5B) and
endogenous p21 protein in U-2OS cells (Fig. 3F). These results
show that repression of p21 by AP4 occurs directly via the E-box
motifs in the p21 proximal promoter and is not mediated by Miz1
or Sp1/3.

Because p21 is a central mediator of cell cycle inhibition by
p53, we studied the potential involvement of AP4 in the DNA
damage response. Treatment of MCF-7 cells with the topoisom-
erase II inhibitor etoposide reduced c-MYC and AP4 protein
levels, whereas p53 and p21 levels increased (Fig. 4A). Induction
of ectopic AP4 strongly interfered with p53-mediated transac-
tivation of p21 after DNA damage and, presumably as a conse-
quence of the diminished CDK inhibition, prevented the for-
mation of hypophosphorylated pRb (Fig. 4B, Fig. S6A), which
inhibits cell cycle progression by binding to E2F family members.
Furthermore, AP4 suppressed the p53-mediated induction of a
p21 reporter construct (Fig. 4C). This inhibitory effect of AP4
was alleviated by mutation of the two putative AP4-binding sites
A3 and A4 in the p21 promoter (Fig. 4C), demonstrating that the
suppression of p53-mediated induction of p21 by AP4 involves
direct binding to E-boxes. Simultaneous treatment with etopo-
side and ectopic AP4 expression sensitized cells to apoptosis, as
evidenced by the accumulation of sub-G1 cells (Fig. 4D, Fig.
S6B). Furthermore, AP4 expression allowed cells to enter S
phase in the presence of etoposide (Fig. 4D). Interestingly, these
cells displayed extensive �-H2AX staining after treatment with
etoposide (data not shown). Therefore, the AP4-mediated re-
pression of p21 presumably allowed cells to continue DNA
replication in the presence of DNA damage. It was previously
shown that loss of p21 allows cells to continue DNA replication
in the presence of DNA damage (14–16), which could explain
the sensitization of cells to apoptosis observed here. These
results show that down-regulation of AP4 is a requirement for a
coordinated DNA damage response.

Constitutive expression of c-MYC blocks the induction of p21
by all members of the TGF-� superfamily (17). Therefore, we
determined whether AP4 interferes with the TGF-�/Smad-
mediated induction of p21. In HaCAT cells ectopic AP4 effi-
ciently suppressed the increase of p21 protein and mRNA after
exposure to TGF-�, whereas the induction of the CDK inhibitor
p15Ink4b was not affected (Fig. 5 A and B). Similar results were
obtained with an AP4-ER fusion protein (Fig. S7). Therefore,
AP4 represents a candidate mediator of resistance to TGF-�
caused by oncogenic activation of c-MYC.

Ectopic v-myc expression prevents 12-O-tetradecanoylphor-
bol-13-acetate (TPA)-induced differentiation of the my-
elomonoblast cell line U-937 (18). Interestingly, c-MYC has
been reported to block differentiation by interfering with the
induction of p21 expression (13). Treatment of U-937 cells with
TPA reduced the expression level of endogenous AP4 (Fig. 5C),
presumably by down-regulation of c-MYC expression (SI Text
and Fig. S8 A). Simultaneously, the expression of p21 was
induced. Interestingly, ectopic expression of an AP4 allele under
control of a zinc inducible metallothionein-1 promoter (19) in
U-937 cells interfered with TPA-mediated induction of p21 (Fig.
5D). However, at later time points a minor induction of p21 was
observed (Fig. 5D). U-937 cells ectopically expressing AP4 failed
to stably arrest in the G1-phase after TPA treatment and instead
underwent apoptosis to a larger extent than control cells (Fig.
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Fig. 1. Characterization of AP4 as a direct c-MYC target gene. (A) Quanti-
fication of AP4 mRNA after activation of c-MYC. MCF-7-PJMMR1 cells were
treated with ICI (1 �M) for 60 h before activation of c-MYC by addition of
doxycycline (DOX, 1 �g/ml) for the indicated periods, and RNA was subjected
to qPCR analysis. (B) Quantification of AP4 mRNA after c-MYC activation.
HDF-MYC-ER cells were serum-deprived for 48 h. After addition of 4-OHT (200
nM), total RNA was isolated at the indicated time points from biological
triplicates. AP4 mRNA expression was determined by qPCR analysis. Error bars
indicate standard deviations. (C) AP4 protein expression after c-MYC activa-
tion. Protein lysates were prepared from HDF-MYC-ER cells at the indicated
time points. Expression of AP4 and �-actin was determined by immunoblot-
ting. (D) HDF-MYC-ER cells were grown to confluence and treated with 4-OHT
(200 nM) and CHX (70 nM), as indicated. The expression level of AP4 after
combined CHX/4-OHT treatment was normalized to cells treated with CHX
alone. Expression of AP4 and, for normalization, �-actin mRNA was deter-
mined by qPCR. Analyses were performed in triplicates. Error bars indicate
standard deviations. (E) Comparison of the mouse, rat, and human AP4
promoter regions. ‘‘�1’’ indicates the transcription start site. ‘‘amp’’ indicates
PCR amplicons used for qChIP analysis with their positions relative to the
transcription start site. Arrows indicate the approximate positions of canon-
ical c-MYC-binding sites (CACGTG). The positions of these sites relative to the
transcription start site (‘‘�1’’) are �660, �1262, �1645, and �1766 for human
AP4; �560 and �1620 for the mouse tcfap4; and �666 and �1725 for the rat
tcfap4, respectively. (F) Detection of c-MYC at the AP4 promoter. MCF-7 cells
were serum-starved (0.1% serum) for 48 h or restimulated (10% serum) for
12 h. Chromatin was cross-linked and subjected to qChIP analysis with a
c-MYC-specific antibody and, as a control, rabbit IgG. qPCR analysis was
performed with primers flanking three of the four canonical E-boxes in the
first AP4 intron (‘‘ampA’’ and ‘‘ampB’’; see also Fig. 1C) or a control primer pair
(‘‘ampC’’) localized in the last intron of AP4. For normalization, a fragment not
containing E-boxes from chromosome 16q22 was used.
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are the median expression values and standard errors of two independent transfection experiments. p21 prom. wt, mA3 � 4, mA2–4, and mA1–4: reporter
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pcDNA3-VSV backbone in H1299 cells. Shown are the median expression values and standard errors of two independent transfection experiments. (D) Schematic
representation of AP4 mutants. B: Basic region, HLH: helix–loop–helix, LZ1/2: leuzine zipper motif 1 and 2, TIV: conserved motif of unknown function containing
the amino acid sequence TIV. The amino acid sequence of the basic region (underlined) and flanking residues are indicated for the wild type and mutant AP4
versions. Altered residues are represented in bold. (E) Effect of AP4 variants on p21 reporter activity in H1299 cells. Cells were transfected in 12-well plates with
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of AP4-VSV, p21, and �-actin proteins was detected by immunoblot analysis 24 h after induction of conditional wild-type or mutant AP4 alleles in U-2OS cells.
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5E). Moreover, ectopic AP4 increased the fraction of U-937 cells
undergoing DNA synthesis after treatment with TPA (Fig. S8B).
Taken together, these results indicate that ectopic AP4 inter-
feres with the cell cycle arrest, which is part of the terminal
differentiation program of myelomonoblasts.

Immunohistochemical analyses revealed that the expression of
AP4 protein is restricted to the base of human colonic crypts,
which is populated by nondifferentiated, proliferating stem and
progenitor cells, as evidenced by the proliferation marker Ki67
and the absence of p21 expression (Fig. 6A). The expression
pattern of AP4 was identical to the pattern described for c-MYC
(20, 21). In the differentiated upper part of colonic crypts AP4
expression was not detectable, whereas p21 expression increased
toward the top of the crypts, which contains terminally differ-
entiated cells (21–23) (Fig. 6A). These results suggest that AP4
may be involved in maintaining cells in a proliferative progen-
itor-like state. Primary colorectal carcinomas derived from 12
patients showed strong expression of AP4, which correlated with
c-MYC and Ki67 protein expression in all cases analyzed (Fig.
6B, Fig. S9). Given the results described above, AP4 may
represent an important mediator of c-MYC’s oncogenic effects
in colorectal carcinomas.

Discussion
In summary, our results establish AP4 as a c-MYC-inducible
repressor of p21. In colorectal cancer c-MYC is generally
deregulated because of mutations in the APC/�-catenin pathway
(21, 24). Down-regulation of p21 consistently occurs during
colorectal carcinogenesis (20, 25). Therefore, the AP4-mediated
repression of p21 may have an important role in colorectal
carcinogenesis. Interestingly, repression of p21 by c-MYC was
also shown to play a critical role in anti-estrogen resistance
during breast cancer therapy (26, 27).

The AP4 transcription factor forms a complex with geminin
and the co-repressor SMRT that represses the human PAHX-

AP1 gene through recruitment of histone deacetylase 3
(HDAC3) (9). Other studies indicate that AP4 may block access
of the TATA-box-binding protein (TBP) to the TATA box (8,
28). However, further studies are warranted to determine the
molecular mechanism through which AP4 represses transcrip-
tion.

Several previous studies addressed the molecular basis of
repression of p21 by c-MYC and multiple alternative mecha-
nisms have been proposed (reviewed in ref. 29). One mode of
repression of p21 by c-MYC occurs via interference with the
transcription factor Miz1 (30). Because the c-MYC transactiva-
tion domain, which is dispensable for binding of c-MYC to Miz1,
is essential for repression of p21, other factors beside Miz1 have
been proposed to participate in the c-MYC-mediated repression
of p21 (13). The c-MYC responsive region in the p21 promoter
has been mapped between �49 and �16 (13) and overlaps with
two of the four AP4-binding sites characterized here. Here, these
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two sites (A3�A4) were sufficient for p21 repression by AP4,
and their mutation rendered the p21 promoter largely unrespon-
sive to AP4. Mutations within putative Miz1-binding sites did not
abolish p21 repression by AP4, therefore suggesting a Miz1-
independent mechanism. Other authors provided evidence that
repression of p21 by c-MYC may be mediated via interactions
with Sp1/Sp3 and independently of the Inr sequence (31). Our
results show that AP4 is not able to repress p21 via Sp1/Sp3
transcription factor-binding sites.

TGF-� signaling provokes cell cycle arrest in the G1-phase by
inhibition of c-MYC and induction of the CDK inhibitors p15Ink4b

and p21 (reviewed in refs. 32 and 33). We could demonstrate that
AP4 interferes with TGF-�-mediated induction of p21. However,
AP4-mediated repression of p21 did not prevent the TGF-�-
mediated cell cycle arrest (data not shown). Presumably, regu-
lation of other genes by TGF-�, as p15Ink4b or CDC25A (32, 34)
is sufficient to mediate cell cycle arrest in HaCaT keratinocytes.
Other functions normally mediated by TGF-�-induced p21, such
as terminal differentiation (35), may be affected in cells with
deregulated c-MYC and AP4 genes. Moreover, deregulation of
AP4 may contribute to the morphogenetic changes observed
during colon cancer formation by antagonizing the TGF-�
pathway (36).

Down-regulation of c-MYC is required for terminal differen-
tiation of many cell types (37). Elevated expression of c-MYC in
the midgestational mouse is indicative of proliferation, whereas
proliferative arrest and the onset of differentiation are accom-
panied by down-regulation of c-MYC (38). Decreased expres-
sion of c-MYC presumably explains the down-regulation of AP4
observed after TPA-mediated differentiation of myelomono-
blasts and might also account for the decline of AP4 levels during
the development of mouse brain observed by Kim et al. (9).

Constitutive c-MYC expression blocks TPA-induced differenti-
ation of U-937 cells by repressing p21 (13, 18). p21 itself plays an
important role in monocytic differentiation and supports sur-
vival of differentiated cells by maintaining a stable cell cycle
arrest (39, 40). In agreement with these findings, ectopic AP4
interfered with a stable G1-arrest and increased the fraction of
TPA-treated cells in S-phase. This effect of AP4 is likely due to
repression of p21 and the resulting increased CDK activity.

As p21 is a potent inhibitor of cyclin-dependent kinases; its
repression by AP4 may contribute to the ability of c-MYC to
activate CDKs (41–43). c-MYC-mediated repression of p21 was
shown to modulate the response to DNA damage by favoring the
initiation of apoptosis vs. cell cycle arrest (44). In line with this
observation, we found that expression of AP4 sensitizes cells
toward DNA damaging agents, which are commonly used in
cancer therapy. Further analyses of the processes regulated by
AP4 may allow to selectively increase the sensitivity of AP4-
expressing cancer cells to therapeutic agents in the future.

Materials and Methods
The analyses were performed as described previously (45–48). For details, see
the SI Text. This contains paragraphs describing plasmids and siRNAs, cell lines,
cell culture and reagents, generation of cell lines, Western blot analysis and
antibodies, cell-based reporter assays, qPCR, ChIP assays, BrdU labeling for
detection of DNA synthesis, DNA content analysis by FACS, proliferation assay,
indirect immunofluorescence, tissue samples and immunohistochemistry, and
generation of recombinant adenoviruses and infection of target cells. Fur-
thermore, tables listing oligonucleotides used for site-directed mutagenesis
(Table S1), qPCR (Table S2), or qChIP analyses (Table S3) are provided.
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