Table 2.
Number of classes obtained for various clustering methods applied to simulated data
| Case 1 (5 true classes) | Case 2 (4 true classes) | |||||||
| Method | J | Median | Mean | SD | J | Median | Mean | SD |
| DynTree | 25 | 3 | 2.5 | 0.50 | 25 | 2 | 2.0 | 0.00 |
| 50 | 3 | 2.5 | 0.50 | 50 | 2 | 2.0 | 0.00 | |
| 500 | 3 | 2.7 | 0.58 | 500 | 2 | 2.0 | 0.00 | |
| 1000 | 3 | 2.8 | 0.59 | 1000 | 2 | 2.0 | 0.00 | |
| HOPACH (best) | 25 | 40 | 38.0 | 12.10 | 5 | 17 | 18.9 | 9.10 |
| 50 | 35 | 35.4 | 11.38 | 10 | 14 | 15.0 | 8.27 | |
| 500 | 23 | 23.0 | 9.52 | 25 | 25 | 24.7 | 9.80 | |
| 1000 | 23 | 23.1 | 9.47 | 50 | 25 | 25.3 | 7.34 | |
| HOPACH (greedy) | 25 | 8 | 13.4 | 14.41 | 5 | 5 | 7.1 | 6.35 |
| 50 | 6 | 11.9 | 12.66 | 10 | 5 | 7.1 | 7.11 | |
| 500 | 5 | 6.6 | 5.19 | 25 | 7.5 | 10.8 | 8.52 | |
| 1000 | 4 | 6.2 | 4.41 | 50 | 8 | 10.1 | 7.85 | |
| RPMM | 25 | 8 | 7.7 | 2.00 | 5 | 2 | 2.0 | 0.10 |
| 50 | 5 | 5.6 | 1.32 | 10 | 2 | 2.4 | 2.28 | |
| 500 | 5 | 5.0 | 0.22 | 25 | 4 | 4.0 | 0.20 | |
| 1000 | 5 | 5.0 | 0.00 | 50 | 4 | 4.1 | 0.58 | |
DynTree = Hierarchical clustering with classes determined by dynamic tree cutting
HOPACH(best) = HOPACH with 'best' number of classes
HOPACH(greedy) = HOPACH with 'greedy' number of classes
RPMM = Recursively partitioned mixture model employing BIC
J = Number of loci considered in analysis