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ABSTRACT

Motivation: Recent advances in genotyping technology has made
data acquisition for whole-genome association study cost effective,
and a current active area of research is developing efficient methods
to analyze such large-scale datasets. Most sophisticated association
mapping methods that are currently available take phased haplotype
data as input. However, phase information is not readily available
from sequencing methods and inferring the phase via computational
approaches is time-consuming, taking days to phase a single
chromosome.
Results: In this article, we devise an efficient method for scanning
unphased whole-genome data for association. Our approach
combines a recently found linear-time algorithm for phasing
genotypes on trees with a recently proposed tree-based method for
association mapping. From unphased genotype data, our algorithm
builds local phylogenies along the genome, and scores each tree
according to the clustering of cases and controls. We assess the
performance of our new method on both simulated and real biological
datasets.
Availability: The software described in this article is available at
http://www.daimi.au.dk/∼mailund/Blossoc and distributed under the
GNU General Public License.
Contact: mailund@birc.au.dk

1 INTRODUCTION
Utilizing the current chip technology, genome-wide scans with
hundreds of thousands of single nucleotide polymorphisms (SNPs)
in thousands of individuals is affordable for large-scale association
studies (Barrett and Cardon, 2006). Several genome-wide studies
have already been published (Amundadottir et al., 2006; Arking
et al., 2006; Smyth et al., 2006; The Wellcome Trust Case Control
Consortium, 2007) and as the genotyping price continues to drop,
we expect to see many more in the near future. With datasets of
such sizes, the need for efficient, accurate association mapping
methods is evident. Many studies resort to a marker-by-marker
approach—e.g. a simple Fisher’s exact test or χ2-test—but, unless
the trait-influencing variants are typed, its power is limited by the
indirect testing through linkage disequilibrium (LD), and multi-
marker approaches are generally preferred (Pe’er et al., 2006).
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A trade-off must be made, however, between sophistication and
computational tractability.

Recently, one of us has developed a new multi-SNP method called
Blossoc (Mailund et al., 2006) that, although of similar accuracy,
is orders of magnitude faster than other multi-SNP methods, and
is capable of analyzing whole-genome data in a few CPU hours.
Blossoc resembles other recent methods, e.g. that of Zöllner and
Pritchard (2005), Minichiello and Durbin (2006) and Clark et al.
(2007). It constructs local tree-like genealogies along the genome
and scores those genealogies according to how the cases and controls
are clustered, the motivation being that near a disease-predisposing
SNP, the cases will tend to cluster together in the underlying
genealogy. Compared with the other methods, Blossoc achieves
its much faster running time by taking a simpler approach to how
local trees are constructed. Instead of sampling local trees from
the coalescent with recombination and averaging scores over the
sampled trees, it relies on a deterministic, efficient algorithm to build
a single tree for each locus, assuming the infinite-sites model of
mutation. Sevon et al. (2006) have recently proposed a method that
also constructs a single tree per locus. Their approach differs from
Blossoc in how local trees are constructed and scored. Whereas
Sevon et al. (2006) use a time-consuming permutation test to score
trees, Blossoc considers each tree as a decision tree and scores it
with standard methods from the data mining literature (see Mailund
et al., 2006 for details). Tachmazidou et al. (2007) construct local
trees using the same approach as Blossoc, but score them using a
sophisticated MCMC algorithm that is relatively time consuming.

As a consequence of its simple approach to tree construction
and scoring, Blossoc is very computationally efficient. Further,
computer experiments shown in Mailund et al. (2006) indicate
that this efficiency is achieved with little, if any, loss in accuracy
compared with more sophisticated methods. However, a major
limitation of the original version of Blossoc, as is also true for other
methods, is its reliance on having phased haplotype data. Even with
fastPHASE (Scheet and Stephens, 2006), phasing a whole-genome
dataset requires tens of days of CPU time, making this step the major
bottleneck when using computationally efficient methods such as
Blossoc for analysis.

In this article, we devise a method that eliminates the need for
preanalysis phasing of genotypes into haplotypes. Our approach
combines the ideas in Blossoc with a recently found linear-time
algorithm (Ding et al., 2005, 2006) for phasing genotypes on trees.
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This way, our new method builds local phylogenies directly from
unphased data. Inferring trees from unphased genotype data is
slightly slower than inferring trees from phased haplotype data, but
our method is still capable of scanning the entire human genome in a
few days. We also develop a new Bayesian score for the association
between a local tree and the disease phenotype. Using simulated
datasets, we compare the mapping results for unphased data with
that for the true haplotype data and show that there is little loss
in accuracy or ranking quality. As a proof of principle, we apply
our method to analyze a genome-wide dataset for Parkinson disease
(Fung et al., 2006). We remark that our tree construction algorithm
is not restricted to Blossoc; other association mapping methods
based on scoring local genealogies, such as Sevon et al. (2006) and
Tachmazidou et al. (2007), may also be generalized in the same way,
enabling them to analyze unphased data.

2 ALGORITHM
At a given position in the genome, a sample of chromosomes will
be related by a genealogical tree. Consider a polymorphic site in the
genome and its corresponding tree. If a mutation that occurred at
that site affects the probability that an individual has a disease, then
it induces a non-random distribution of cases and controls at the
leaves of the corresponding tree. Therefore, one approach to find a
location in the genome that harbors a disease-predisposing mutation
is to test for a significant clustering of affected individuals in local
trees. In practice, however, local trees are not known and can only
be partly inferred from molecular genetic data. Previous methods
of inferring local genealogies and testing for association include
Mailund et al. (2006); Minichiello and Durbin (2006); Wu (2007);
Zöllner and Pritchard (2005). In what follows, we describe a novel,
efficient algorithm that can build and score local trees directly from
unphased genotype data. An outline of our algorithm is shown in
Figure 1.

2.1 Building local phylogenies
We infer local trees in two different ways, depending on whether a
perfect phylogeny—i.e. a genealogy consistent with the infinite-sites
mutation model without recombination—exists for a sufficiently
wide region around the local site we wish to score. When building
trees, we require at least m markers be used in the inference, where
m is an option to the Blossoc program. In general, we recommend
using larger (respectively, smaller) values of m in regions with high
(respectively, low) LD. When m markers are compatible with the
infinite-sites and no recombination assumption, we say that a perfect
phylogeny exists, and we can construct trees directly from unphased
data. When the m markers are incompatible with the assumptions,
we perform a local phase inference for the m markers only and
construct a tree using heuristics from Mailund et al. (2006).

Given a set G of n genotypes of the same length, the Perfect
Phylogeny Haplotyping (PPH) problem is to find n pairs of
haplotypes that explain G and fit a perfect phylogeny. Vijayasatya
and Mukherjee (2005) and Ding et al. (2005, 2006) have
independently developed linear-time algorithms for this problem.
In this article, we utilize the latter algorithm, called LPPH.

Our algorithm constructs a local tree for each marker,
incorporating neighboring markers as follows. To construct a local

Fig. 1. An outline of our algorithm. PPH, ‘Perfect Phylogeny Haplotyping’;
LPPH, ‘Linear time Perfect Phylogeny Haplotyping’. See the main text for
details.

tree for a marker x, initialize X to be the set containing only x. Then,
alternate the following two steps until neither is possible:

(1) If X and the next marker immediately to the left together admit
a PPH solution, then add that marker to X.

(2) If X and the next marker immediately to the right together
admit a PPH solution, then add that marker to X.

Selecting a set of markers in this way keeps the focal marker x near
the center of the region.

If the resulting X contains at least m markers, where m is specified
by the user, we score the tree as described in the next section.
However, for a large sample size and high recombination rate, the
size of regions for which PPH solutions exist tends to be very small.
Such a region will contain only few markers and consequently the
corresponding inferred tree will contain only few edges, making
it difficult to infer reliably the clustering of cases and controls.
A region with a set of m markers that does not admit a PPH
solution is called an incompatible region. For such a region, we
use an entropy minimization algorithm—previously considered by
Halperin and Karp (2005) and Gusev et al. (2007)—to locally infer
the phase of input genotypes and use the tree building algorithm
described in Mailund et al. (2006) to build local phylogenies from
the inferred haplotypes. The entropy minimization algorithm has
phasing accuracy slightly worse than that of other widely-used
methods such as fastPHASE (Scheet and Stephens, 2006) and HAP
(Halperin and Eskin, 2004), while being several orders of magnitude
faster (Gusev et al., 2007).

Given a haplotype h and a phasing solution φ for a set of n
genotypes in G, define the coverage of h under φ, denoted by
COV(h,φ), as the number of genotypes in G that are phased by h
and some other haplotype in φ, plus twice the number of genotypes
in G that are phased by the haplotype pair (h,h). For a fixed phasing
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solution φ, the sum of COV(h,φ) over all haplotypes in φ is equal
to 2n.

As in Halperin and Karp (2005) and Gusev et al. (2007), we define
the entropy of a phasing solution φ as

H(φ)=
∑

h:COV(h,φ)�=0

−COV(h,φ)

2n
log

COV(h,φ)

2n
.

Halperin and Karp (2005) first introduced the problem of finding a
phasing solution φ of G with the minimum entropy, and Gusev et al.
(2007) later developed an accurate and highly efficient algorithm to
solve the problem. Intuitively, the entropy of a phasing solution φ is
a measure of haplotype diversity in φ. As is shown in Gusev et al.
(2007), if the probability of a haplotype h is estimated by counting
the number of times that h appears in a phasing φ, then maximizing
the log-likelihood of phasing φ is equivalent to minimizing the
entropy of phasing φ.

The phasing algorithm in Gusev et al. (2007) employs a set of
short overlapping windows to phase long genotypes. In our work,
we typically deal with short genotypes and hence use the following
simple version of that algorithm:

(1) Generate a random phasing solution φ for genotypes G.

(2) Repeat the following:

(a) Find the pair (g, (h1, h2)) such that H(φ′) is minimized,
where φ′ is obtained from φ by re-explaining g∈G with
(h1, h2).

(b) If H(φ′)<H(φ), then let φ=φ′, else exit the loop.

(3) Output phasing solution φ.

Missing data are handled as follows. When using our algorithms
to obtain a phasing solution, we first phase those genotypes without
any missing entries and calculate the frequency of each distinct
haplotype in a solution φ′ to that subproblem. Then, for each
genotype g with one or more missing entries, we test whether the
non-missing entries in g can be phased using a haplotype in φ′ and
some other haplotype. If more than one haplotype in φ′ satisfies this
criterion, we choose the one with a higher frequency. (If there is a
tie, we choose an arbitrary one among them.) Missing entries in g
are then imputed according to that phasing. If none of the haplotypes
in φ′ can be used to phase g in this way, then g is resolved arbitrarily.

2.2 Scoring local phylogenies
Once a local phylogeny is constructed, it is scored according to how
well the tree helps explain the phenotype. We consider the tree a
hierarchical clustering of chromosomes: each partition of the tree
into subtrees defines a clustering. To each cluster c, we assign a
disease risk θc—assumed to be independent of other clusters—and
the disease status of a chromosome in cluster c is modeled as being
affected with probability θc and unaffected with probability 1−θc.

Given a clustering C ={c1,...,cn} and corresponding disease risks
�={θ1,...,θn}, the likelihood of the observed disease status is
given by

L(C,�)=
n∏

i=1

θ
Ai
i (1−θi)

Ui ,

where Ai denotes the number of affected leaves in cluster ci and
Ui the number of unaffected leaves in cluster ci. Assigning a

risk per cluster ignores that phenotype risk may be a function of
genotypes, and thus a function of two clusters rather than one. It
is a straightforward extension to model phenotype as a function
of genotypes, although the implementation of the score functions
would then get somewhat more involved.

When scoring a tree, the clustering and risks are nuisance
parameters that we integrate out in a Bayesian approach. For the
cluster specific risks, we follow the approach in Waldron et al. (2006)
and choose independent uninformative β-priors π (θ )=1 and obtain

L(C)=
n∏

i=1

∫ 1

0
θAi (1−θ )Ui π (θ )dθ =

n∏
i=1

B(Ai +1,Ui +1),

where B is the β function. To integrate out C, we again choose a
uniform prior on clusters, obtaining the following final score:

L= 1

|C|
∑
C

L(C),

where |C| denotes the total number of clusterings possible in the
tree. Summing over all clusterings is computationally prohibitive,
so in our implementation we only sum over all sub-trees and cluster
the chromosomes into only two clusters, those that are leaves in the
sub-tree and those that are outside. When there are more than one
perfect phylogeny consistent with a region, we average the scores
over all trees for that region. This corresponds to integrating over
the unknown tree with a flat prior over topologies.

As a Bayes factor, any number greater than 1 can be taken as
evidence for association, while any number smaller than 1 can be
taken as evidence against. However, some scores higher than 1 can
still occur by chance, so we recommend doing permutation tests to
judge the true significance of a score.

3 RESULTS
In this section, we evaluate our new algorithm in comparison with
previous methods. We first consider simulated data in which the
true disease-predisposing locus is known. When comparing with
methods that require phased data, we use the true phased data
obtained from simulation, thus yielding the best performance quality
that those methods can achieve. We then analyze the genome-wide
dataset from a Parkinson disease study described in Fung et al.
(2006). This is admittedly a small genome-wide dataset, with only
267 cases and 270 controls. As a proof of concept, however, it
demonstrates the scalability of our method.

3.1 Ranking experiments
In genome-wide association studies, false positives are a major
problem, meaning that potentially many leads may need to be
followed before a true hit can be found. Hence, the quality with
which a method ranks the true hits compared to spurious hits is one
of the most important measures of performance.

In this section, we describe how well Blossoc performs
in ranking. We simulated 100 case/control datasets, each with
1000 cases and 1000 controls, under an additive disease model
with varying genetic relative risk. With A denoting the disease-
predisposing allele and a the wild-type, the genotype relative risk
of the heterozygote Aa is denoted by GRR. Since we assumed
an additive model in our simulations, the GRR of the mutant
homozygote AA was 2×GRR−1. Experiments with dominant or
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Table 1. Ranking experiment results showing the average number of top-10 ranked markers within a given distance of the true disease-predisposing locus

ρ WR GRR 1 kb 10 kb 100 kb

χ2 P U χ2 P U χ2 P U

100 5% 1.2 0.08 0.11 0.12 0.63 0.76 0.86 4.88 4.89 4.58
100 5% 1.4 0.06 0.09 0.08 0.66 0.75 0.82 4.97 5.36 5.47
100 5% 1.6 0.13 0.13 0.13 0.97 1.43 1.24 5.34 6.14 5.99
100 5% 1.8 0.10 0.21 0.22 1.14 1.75 1.78 6.04 6.51 6.40
100 5% 2.0 0.20 0.21 0.19 1.26 1.59 1.56 5.82 6.11 6.20

100 10% 1.2 0.12 0.11 0.09 0.70 0.71 0.69 4.42 4.50 4.72
100 10% 1.4 0.09 0.05 0.06 0.85 0.81 0.90 5.37 5.29 5.20
100 10% 1.6 0.12 0.16 0.18 1.25 1.83 1.84 6.02 6.90 6.84
100 10% 1.8 0.09 0.14 0.12 1.03 1.64 1.62 5.50 6.58 6.52
100 10% 2.0 0.07 0.16 0.17 1.06 1.80 1.70 5.82 6.62 6.54

400 5% 1.2 0.01 0.01 0.03 0.37 0.40 0.43 2.25 2.46 2.67
400 5% 1.4 0.04 0.05 0.03 0.40 0.47 0.36 2.45 2.78 2.81
400 5% 1.6 0.01 0.03 0.02 0.55 0.73 0.69 2.78 3.54 3.26
400 5% 1.8 0.03 0.05 0.06 0.50 0.80 0.63 2.89 4.02 3.74
400 5% 2.0 0.07 0.09 0.09 0.64 0.95 0.86 3.24 4.61 4.27

400 10% 1.2 0.07 0.03 0.03 0.24 0.30 0.27 1.77 2.23 2.27
400 10% 1.4 0.13 0.15 0.16 0.44 0.66 0.61 2.75 3.46 3.29
400 10% 1.6 0.07 0.12 0.11 0.68 0.82 0.83 2.89 3.26 3.42
400 10% 1.8 0.10 0.08 0.07 0.60 0.72 0.61 3.32 4.18 4.10
400 10% 2.0 0.10 0.14 0.14 0.81 1.19 1.20 3.58 4.84 4.70

Based on 100 simulated datasets each with 1000 case and 1000 control individuals. Columns denoted χ2 correspond to single-marker χ2-test results, while columns denoted ‘P’
(‘U’, respectively) correspond to Blossoc results using m=5 for phased (unphased, respectively) data. GRR, ‘Genetic Relative Risk’; WR,‘Wildtype Risk’.

recessive (instead of additive) disease models produce similar results
(results not shown). The wild-type risk (denoted WR in Tables 1 and
2) of being diseased was varied between 5% and 10%, while GRR =
1.2,1.4,1.6,1.8 and 2.0 were used. The SNP density was also varied;
we used 100 SNP markers with the population-scaled recombination
rates ρ =4,Nec=100 and 400, where Ne denotes the effective
population size and c the recombination rate per generation per
sequence. Assuming Ne =10000 and a recombination rate of 10−8

per adjacent pair of sites per generation, ρ =100 and 400 correspond
to 250 kb and 1 Mb, respectively. Sequences were simulated using
the coalescence based simulator CoaSim (Mailund et al., 2005) with
the infinite-sites mutation model, and were then paired up randomly
to construct diploid individuals. After assigning disease status, the
disease-predisposing SNP was removed from the data.

We performed analysis both using the original phase-known
version of Blossoc (Mailund et al., 2006) on the true phased data,
and using our new algorithm on unphased data. We first studied how
the performance of Blossoc depends on the minimum number m
of markers to include when building a tree. In general, larger values
of m should be used for regions with high LD and smaller values
for regions with low LD. In our experiment, we tried using m=3,5
and 10, and found m=5 to be slightly superior to m=3 and m=10,
for both ρ =100 and ρ =400 (results not shown). In what follows,
we therefore use only m = 5.

As a way of summarizing the ranking results, we considered the
mean fraction of top-10 ranked markers found within 1, 10 or 100 kb
of the disease-predisposing marker location. See Table 1 for results.
The results for an 2×2 allelic χ2-test, applicable to an additive
disease model, are also shown there. For each parameter setting,
we have highlighted the best performing method in bold print.

Table 2 shows the fraction of datasets with at least one top-10
ranked marker within 1, 10 or 100 kb of the disease-predisposing
marker. Measured this way, we see that, close to the true disease-
predisposing marker, the phase-known Blossoc method performs
the best, followed by our new phase-unknown Blossoc method, and
then the χ2-method. Farther, away from the disease-predisposing
marker (the 100 kb columns), however, the χ2-method generally
outperforms both Blossoc methods. An explanation for this is the
higher correlation between neighboring markers in the Blossoc
method. One spurious signal will tend to give spurious signals at
neighboring markers, and a high scoring marker far from the true
locus can therefore move most (or all) of top-10 away from the
true locus. Consequently, considering a raw ranking—ignoring the
correlation between markers—is probably not optimal for Blossoc.
Future work will include ways of ranking Blossoc scores in a more
meaningful way.

3.2 Localization experiments
Another important criterion for assessing the performance of a
fine-mapping method is localization; that is, how accurately the
position of an untyped disease-predisposing SNP can be estimated.
In our localization study, we simulated case-control datasets using
CoaSim for a region corresponding to 100 kb physical distance
(or ρ =40). We assumed that the region contains exactly one
disease-predisposing SNP. We used GRR =1.4,1.6,1.8 and 2.0, and
assumed that the wild-type risk is 5%. We simulated 100 datasets
with 500 case and 500 control individuals, as well as 100 datasets
with 2000 case and 2000 control individuals.
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Table 2. Ranking experiment results showing the fraction of data sets with at least one top-10 marker within a given distance of the true disease-predisposing
locus

ρ WR GRR 1 kb 10 kb 100 kb

χ2 P U χ2 P U χ2 P U

100 5% 1.2 0.13 0.13 0.12 0.42 0.46 0.39 0.98 0.90 0.86
100 5% 1.4 0.15 0.22 0.20 0.71 0.74 0.70 0.99 0.95 0.98
100 5% 1.6 0.27 0.29 0.28 0.73 0.82 0.80 0.99 0.99 0.99
100 5% 1.8 0.19 0.30 0.28 0.79 0.83 0.80 1.00 0.98 0.98
100 5% 2.0 0.19 0.30 0.28 0.81 0.85 0.84 1.00 1.00 1.00

100 10% 1.2 0.11 0.11 0.14 0.59 0.52 0.51 0.98 0.94 0.96
100 10% 1.4 0.24 0.27 0.27 0.73 0.66 0.63 0.98 0.96 0.95
100 10% 1.6 0.16 0.26 0.24 0.74 0.82 0.73 1.00 0.98 0.99
100 10% 1.8 0.23 0.30 0.30 0.85 0.85 0.83 1.00 1.00 1.00
100 10% 2.0 0.28 0.42 0.43 0.85 0.86 0.91 1.00 1.00 1.00

400 5% 1.2 0.05 0.04 0.04 0.39 0.27 0.28 0.91 0.75 0.80
400 5% 1.4 0.08 0.07 0.09 0.46 0.51 0.46 0.95 0.88 0.86
400 5% 1.6 0.08 0.13 0.11 0.45 0.55 0.53 0.96 0.88 0.94
400 5% 1.8 0.12 0.16 0.15 0.70 0.78 0.77 0.99 0.99 0.98
400 5% 2.0 0.16 0.19 0.20 0.69 0.73 0.73 1.00 0.99 1.00

400 10% 1.2 0.04 0.03 0.04 0.27 0.32 0.23 0.89 0.75 0.73
400 10% 1.4 0.03 0.06 0.05 0.47 0.51 0.48 0.93 0.88 0.91
400 10% 1.6 0.12 0.14 0.13 0.68 0.73 0.74 0.98 0.96 0.97
400 10% 1.8 0.14 0.16 0.17 0.69 0.76 0.77 0.99 0.99 0.99
400 10% 2.0 0.13 0.13 0.12 0.69 0.75 0.74 1.00 0.98 0.98

Based on 100 simulated datasets each with 1000 case and 1000 control individuals. Columns denoted χ2 correspond to single-marker χ2-test results, while columns denoted ‘P’
(‘U’, respectively) correspond to Blossoc results using m=5 for phased (unphased, respectively) data. GRR, ‘Genetic Relative Risk’; WR, ‘Wildtype Risk’.

Table 3. Percentage of datasets with the highest scoring marker within
distance ε (in kb) from the disease-predisposing SNP, which is untyped

ε GRR= 1.4 GRR= 1.6 GRR= 1.8 GRR= 2.0

χ2 P U χ2 P U χ2 P U χ2 P U

500 case and 500 control individuals
10 38 23 19 44 41 33 41 47 45 42 51 45
20 50 47 42 64 62 57 61 70 64 62 72 69
30 59 64 54 77 69 68 69 82 79 73 82 84
40 69 71 69 82 79 80 77 86 86 80 88 91
50 78 81 82 89 85 85 81 89 91 85 91 93
60 85 86 86 90 88 89 88 94 93 94 94 97
70 92 92 90 94 92 94 93 95 94 97 96 98
80 98 96 97 98 97 99 98 97 97 99 97 99

2000 case and 2000 control individuals
10 44 48 45 44 52 52 49 65 68 57 72 74
20 68 63 66 62 72 69 72 78 79 77 88 88
30 76 81 80 74 88 82 79 88 88 89 95 94
40 84 87 90 84 92 87 86 92 89 95 96 97
50 88 93 97 94 96 91 91 94 92 96 98 99
60 95 97 98 97 99 96 95 98 97 97 99 100

Based on 100 simulated datasets for each setting, with 5% WR and ρ =40. Columns
denoted χ2 correspond to single-marker χ2-test results, while columns denoted ‘P’
(‘U’, respectively) correspond to Blossoc results using m=5 for phased (unphased,
respectively) data.

If a unique marker had the highest score, then it was chosen as
our estimate of causal SNP position. Otherwise, if k >1 consecutive

markers i1,...,ik had the highest score, we took the midpoint
between markers i1 and ik as our estimate. We did not encounter any
case in which two markers with the highest score were separated by
a marker with a lower score.

Empirical cumulative distributions of localization error ε (in kb)
are shown in Table 3 for 500 case and 500 control individuals, and
2000 case and 2000 control individuals. Three different methods
were used to analyze the data: single-marker χ2-test, Blossoc on
phased data and Blossoc on unphased data; we used m = 5 when
using Blossoc. The faster the cumulative distribution approaches 1
as ε increases, the better the method. Several things are worthwhile
noting. First, the localization results of Blossoc on phased data and
that of the method developed here for unphased data are comparable.
Second, both versions of Blossoc (for phased and unphased data)
perform better than χ2 as GRR increases. Third, the amount of
improvement increases as the number of case/control individuals
increases.

We also compared Blossoc with Margarita, the method
developed by Minichiello and Durbin (2006). Figure 2E of
Minichiello and Durbin (2006) shows a plot of empirical cumulative
distribution of localization error for 1000 case and 1000 control
individuals, under an additive model with GRR= 2.0 and the
frequency of the disease-predisposing allele equal to 0.04. In their
simulation, a region of size 1 Mb with ρ =440 was used and
300 tagging SNPs were selected. We used Blossoc to analyze
the same simulated datasets. Table 4 compares the localization
results of the χ2-test, Blossoc and Margarita. Clearly, both
Blossoc and Margarita are more accurate than the χ2-test in terms

2219



Z.Ding et al.

Table 4. Percentage of datasets with the highest scoring marker within
distance ε (in kb) from the disease-predisposing SNP, for 1000 case and
1000 control individuals, and GRR= 2.0

ε χ2 Blossoc results Margarita results

P U P U

50 34 42 46 58 64
100 56 62 70 80 80
150 68 70 78 84 88
200 74 78 84 86 90
250 76 80 86 90 92
300 78 82 88 92 94
350 82 84 90 94 96

Based on simulated datasets from Minichiello and Durbin (2006); each dataset was for
a 1 Mb region with ρ =440 and 300 tagging SNPs. Columns denoted χ2 correspond to
single-marker χ2-test results, while columns denoted ‘P’ (‘U’, respectively) correspond
to results for phased (unphased, respectively) data. We used m=5 in running Blossoc.
The results for Margarita correspond to Figure 2E of Minichiello and Durbin (2006).

of localization. Further, Blossoc is more accurate on unphased data
than on phased data; the same behavior was observed in Margarita.
In general, Margarita is more accurate than Blossoc, but this
increase in accuracy is obtained at the expense of significantly longer
running time; for the simulation study shown in Table 4, Blossoc
took about 3 s per phased dataset and 905 s per unphased dataset,
while Margarita took 118 620 s per phased dataset and 300 512 s
per unphased dataset. That is, Margarita is slower than Blossoc by
a factor of 40 000 for phased data and a factor 300 for unphased data.
Such increases in running time can make the difference between a
feasible and an infeasible analysis. More results on running time are
discussed in Section 3.4.

3.3 Coriell Parkinson’s disease genome-wide dataset
Parkinson’s disease is a progressive neurodegenerative disorder,
affecting more than one per thousand individuals (Kuopio et al.,
1999). Fung et al. (2006) carried out a genome-wide SNP genotyping
assay of publicly available samples from a cohort of 267 Parkinson’s
disease patients and 270 neurologically normal controls. A total
of 408 803 unique SNPs were used from the Illumina Infinium I
and HumanHap300 assays. We only considered markers with less
than 5% missing data, but applied no other filters. We analyzed
the unphased version of this dataset using Blossoc with option
m=5. The entire analysis took about 4 h on an Intel(R) Pentium(R)
4 CPU 3.00 GHz, 512 Mb RAM. In comparison, it took fastPHASE
2 days to phase only chromosome 21 of the dataset (containing 6612
SNPs). Beagle (Browning and Browning, 2007), a much faster phase
inference tool, is capable of phasing the entire dataset in a reasonable
time, but still takes about 8 h, while Blossoc takes 4 h including the
association test.

The top-10 highest scoring SNPs found by Blossoc are shown
in Table 5. Fung et al. (2006) performed a single-marker genotypic
χ2 association test and found 26 SNPs with uncorrected p values
less than 10−4. However, none of the SNPs showed significant
association after Bonferroni correction. One of the 26 SNPs was
in the set of top-100 SNPs ranked by Blossoc, and other 13 of the
26 SNPs were within 100 kb from at least one SNP in Blossoc’s
top-100.

Table 5. Top-10 highest scoring SNPs in the Parkinson disease dataset (Fung
et al., 2006) analyzed using Blossoc

Chromosome dbSNP ID Location Blossoc score

10p12 rs792456 22214547 29.9567
10p12 rs792455 22233428 29.4246
10p12 rs2666781 22245682 29.4223
10p12 rs2807982 22255866 25.9754
10p12 rs2666750 22259562 25.9754

7p15 rs7793103 21920080 16.1051
7p15 rs7798144 21920802 16.1051
7p15 rs11760455 21921256 16.1051
7p15 rs3829757 21921944 16.1051
8p22 rs7824519 14267167 13.1250

Locations correspond to that of NCBI Build 36.1.

Table 6. Running times of Blossoc

Number of Individuals m Number of SNPs Running time (h)

500 5 100,000 0.81
500 5 200,000 1.67

1000 5 100,000 9.17
1000 5 200,000 19.15
2000 5 100,000 50.83
4000 5 50,000 114.17

500 10 100,000 2.93
500 10 200,000 5.58

1000 10 100,000 33.83
1000 10 200,000 64.04
2000 10 100,000 149.17

See the main text for the computer spec.

We also compared the SNPs in Blossoc’s top-100 with the
set of top-100 loci ranked by single-marker χ2-test. One third of
Blossoc’s top-100 were within 20 kb of at least one top-100 χ2-SNP
while 58 where farther than 1 Mb away from any χ2 top 100. Such an
overlap seems reasonable between multi-marker and single-marker
association methods.

3.4 Running time
We examined the running time of Blossoc on datasets simulated
using FREGENE (Hoggart et al., 2007), software capable of
simulating large-scale sequence data. Table 6 shows a summary
of running time results. In light of the fact that fastPHASE takes
3 days to phase a dataset with 500 individuals and 10 000 SNPs,
speed clearly is a notable advantageous feature of Blossoc. Note
that the running time of Blossoc is roughly linear in the number
of SNPs, and it depends more on the number of individuals than on
the number of SNPs.

4 DISCUSSION
We have presented a multi-locus association mapping method that
builds local phylogenies directly from unphased genotype data,
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thus avoiding the time-consuming step of phasing the genotype data
before analysis. We have shown that, for both ranking quality and
localization accuracy, the performance of our method on unphased
data is comparable to that for the case in which the true phase of the
data is known.

The current algorithm deals with incompatible regions by using an
entropy minimization algorithm to infer the phase of input genotypes
and uses the tree building algorithm described in Mailund et al.
(2006) to build local phylogenies from the inferred haplotypes. In
our algorithm, using larger values of the parameter m results in
more incompatible regions, and it is not yet clear how much of
the false-positive associations and localization errors are caused by
the entropy minimization algorithm. In our experiments, we found
m=5 to be slightly superior to m=3 and m=10, for both ρ =100
and ρ =400 (results not shown). Future work will include ways of
finding the optimal setting for m for different datasets. One possible
way is through analyzing the differences in LD patterns within and
between datasets.

We found in our experiments that most of the running time of
our method was spent on phasing incompatible regions. As a result,
one observes a significant increase in the running time when one
increases the value of m or the number of individuals. Hence,
developing more efficient algorithms to deal with incompatible
regions will be worthwhile.

Our approach builds local phylogenies to test for a significant
clustering of affected individuals in local trees. As a consequence,
population structure within a sample can result in false-positive
associations. We would advise caution when applying our algorithm
to datasets from heavily isolated populations.

A potential problem with the Blossoc approach is selecting
candidate markers for replication. For single marker analysis, highly
ranked SNPs are candidates to be tested in a replication cohort to
distinguish true signals from spurious ones. In Blossoc, scores are
based on local phylogenies inferred from contiguous sets of markers,
and retyping large regions for potential replication can be costly. We
are currently considering ways of finding minimal haplotypes around
top loci ranked by Blossoc that can tag a disease-predisposing SNP
better than can any single marker.

ACKNOWLEDGEMENTS
T.M. is grateful to Mikkel Schierup and Søren Besenbacher for
fruitful discussions of the scoring approach and the software design
of Blossoc. We thank Mark Minichiello for providing us with the
simulation data used in Minichiello and Durbin (2006).

Funding: National Science Foundation (NSF) (IIS-0513910 to
Z.D.); Danish Research Agency – Forskningsrådet for Natur og
Univers (FNU) (272-07-0380 to T.M.) National Institute of Health
(1K99-GM080099 and 4R00-GM080099 to Y.S.S.).

Conflict of Interest: none declared.

REFERENCES
Amundadottir,L.F. et al. (2006) A common variant associated with prostate cancer in

European and African populations. Nat. Genet., 38, 652–658.
Arking,D.E. et al. (2006) A common genetic variant in the NOS1 regulator NOS1AP

modulates cardiac repolarization. Nat. Genet., 38, 644–651.
Barrett,J.C. and Cardon,L.R. (2006) Evaluating coverage of genome-wide association

studies. Nat. Genet., 38, 659–662.
Browning,S.R. and Browning,B.L. (2007) Rapid and accurate haplotype phasing and

missing-data inference for whole-genome association studies by use of localized
haplotype clustering. Am. J. Hum. Gen. 81, 1084–1097.

Clark,T.G. et al. (2007) Bayesian logistic regression using a perfect phylogeny.
Biostatistics, 8, 32–52.

Ding,Z. et al. (2005) A linear-time algorithm for the perfect phylogeny haplotyping.
In Proceedinds of the 9th Annual International Conference on Research in
Computational Molecular Biology (RECOMB), Vol. 3500 of Lecture Notes in
Bioinformatics. Springer-Verlag, Berlin, Germany, pp. 585–600.

Ding,Z. et al. (2006) A linear-time algorithm for the perfect phylogeny haplotyping
(PPH) problem. J. Comput. Biol., 13, 522–553.

Fung,H.C. et al. (2006) Genome-wide genotyping in Parkinson’s disease and
neurologically normal controls: first stage analysis and public release of data. Lancet
Neurol., 5, 911–916.

Gusev,A. et al. (2007) Highly scalable genotype phasing by entropy minimization.
IEEE/ACM Trans. Comput. Biol. Bioinform, 5, 252–261.

Halperin,E. and Eskin,E. (2004) Haplotype reconstruction from genotype data using
imperfect phylogeny. Bioinformatics, 20, 1842–1849.

Halperin,E. and Karp,R. (2005) The minimum-entropy set cover problem. Theor.
Comput. Sci., 348, 240–250.

Hoggart,C.J. et al. (2007) Sequence-level population simulations over large genomic
regions. Genetics, 177, 1725–1731.

Kuopio,A.-M. et al. (1999) Changing epidemiology of Parkinson’s disease in
southwestern Finland. Neurology, 52, 302–308.

Mailund,T. et al. (2005) CoaSim: a flexible environment for simulating genetic data
under coalescent models. BMC Bioinformatics, 6, e6.

Mailund,T. et al. (2006) Whole genome association mapping by incompatibilities and
local perfect phylogenies. BMC Bioinformatics, 7, 454.

Minichiello,M.J. and Durbin,R. (2006) Mapping trait loci by use of inferred ancestral
recombination graphs. Am. J. Hum. Genet., 79, 910–922.

Pe’er,I. et al. (2006) Evaluating and improving power in whole-genome association
studies using fixed marker sets. Nat. Genet., 38, 663–667.

Scheet,P. and Stephens,M. (2006) A fast and flexible statistical model for large-
scale population genotype data: applications to inferring missing genotypes and
haplotypic phase. Am. J. Hum. Genet., 78, 629–644.

Sevon,P. et al. (2006) TreeDT: tree pattern mining for gene mapping. IEEE/ACM Trans.
Comput. Biol. Bioinform., 3, 174–185.

Smyth,D. et al. (2006) A genome-wide association study of nonsynonymous SNPs
identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region.
Nat. Genet., 38, 617–619.

Tachmazidou,I. et al. (2007) Genetic association mapping via evolution-based clustering
of haplotypes. PLoS Genet., 3, e15.

The Wellcome Trust Case Control Consortium (2007). Genome-wide association study
of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447,
661–678.

Vijayasatya,R. and Mukherjee,A. (2005) An efficient algorithm for perfect phylogeny
haplotyping. In Proceedings of the IEEE Computer System Bioinformatics
Conference. IEEE Computer Society, Los Alamitos, USA, pp. 103–110.

Waldron,E.R.B. et al. (2006) Fine mapping of disease genes via haplotype clustering.
Genet. Epidemiol., 30, 170–179.

Wu,Y. (2007) Association mapping of complex diseases with ancestral recombination
graphs: models and efficient algorithms. In Proceedings of the 11th Annual
Internationnal Conference on Research in Computational Molecular Biology
(RECOMB), Springer-Verlag, Berlin, Germany, pp. 488–502.

Zöllner,S. and Pritchard,J.K. (2005). Coalescent-based association mapping and fine
mapping of complex trait loci. Genetics, 169, 1071–1092.

2221


