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Summary
One of the challenges in protein secondary structure prediction is to overcome the cross-validated
80% prediction accuracy barrier. Here, we propose a novel approach to surpass this barrier. Instead
of using a single algorithm that relies on a limited data set for training, we combine two
complementary methods having different strengths: Fragment Database Mining (FDM) and GOR
V. FDM harnesses the availability of the known protein structures in the Protein Data Bank and
provides highly accurate secondary structure predictions when sequentially similar structural
fragments are identified. In contrast, the GOR V algorithm is based on information theory, Bayesian
statistics, and PSI-BLAST multiple sequence alignments to predict the secondary structure of
residues inside a sliding window along a protein chain. A combination of these two different methods
benefits from the large number of structures in the PDB and significantly improves the secondary
structure prediction accuracy, resulting in Q3 ranging from 67.5 to 93.2%, depending on the
availability of highly similar fragments in the Protein Data Bank.

1 INTRODUCTION
Accurate prediction of protein secondary structure is essential for many bioinformatics
applications. It allows structural alignments based on secondary structure topology (Krissinel
and Henrick, 2004), provides certain structural understanding of proteins when homologous
tertiary structures are not available in the PDB (Wray and Fisher, 2007) [especially for
membrane proteins (Kashlan et al., 2006)], and leads to more accurate tertiary structure
predictions (Jayaram et al., 2006; Meiler and Baker, 2003). For tertiary structure predictions,
we encounter two main limitations: (1) for certain proteins, tertiary structure prediction
methods cannot provide reliable 3D models, (2) when a model can be built, the model resolution
can vary widely from 2–3 Å to tens of Angstroms (Moult, 2006). In contrast, secondary
structure prediction methods always provide a secondary structure model, though with a
varying accuracy. Improved secondary structure prediction can also lead to enhanced structural
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searches and comparisons, as well as to the identification of distant homologies. Many tertiary
structure prediction methods, such as fold recognition or de novo (ab initio) modeling require
the derivation of sufficient structural constraints that include as precise as possible a description
of secondary structure. Of course information about the secondary structure is most useful for
template-free de novo modeling since it leads to significant reduction of the conformational
space in Monte Carlo simulations. The least important is for comparative modeling, especially
if the Protein Data Bank contains homologous proteins with sufficiently high sequence identity.

The most popular parameter measuring the accuracy of prediction is Q3, which counts the
percentage of residues correctly assigned to three secondary structure categories: alpha-helices,
beta-strands, and coil. However, secondary structure prediction methods based on a single
method cannot surpass a virtual barrier of around 80% Q3 accuracy (Kihara, 2005). In an effort
to overcome this barrier, we choose here to combine two complementary approaches developed
recently by us (Sen et al., 2006). One approach, Fragment Database Mining (FDM) (Cheng et
al., 2005) mines PDB structures and searches for sequence-based similarities to collect
structural fragments for a prediction. Another method, GOR V (Kloczkowski et al., 2002; Sen
et al., 2005), is based on statistical preferences for a given residue in the center of the sliding
window along a protein chain to assume a specific secondary structure.

The FDM method (Cheng et al., 2005) is our recently developed secondary structure prediction
method inspired by the success of Rosetta software (Simons et al., 1997), which uses structural
fragments to build 3D models. For a given query sequence, FDM BLASTs (Altschul et al.,
1990) the sequence against the PDB (Berman et al., 2000) and obtains a set of structural
fragments that are sequentially similar to the query. Then, the FDM program assigns weights
to each fragment based on the identity score of the alignment and calculates which structural
assignment is most probable for a given site. The performance of FDM is excellent; however,
only when highly similar fragments are available.

The GOR V method (Kloczkowski et al., 2002; Sen et al., 2005), on the other hand, is the latest
version of a successful and pioneering secondary structure prediction method based on
information theory and Bayesian statistics. Since the introduction of GOR in 1978 (Garnier et
al., 1978), the training database set has been significantly enlarged, the statistics of pairs of
residues have been added and many other improvements have been proposed (Garnier and
Robson, 1989; Garnier et al., 1996; Gibrat et al., 1987). The performance of GOR V, which
additionally uses evolutionary information contained in multiple sequence alignments, is
presently comparable to the best cross-validated secondary structure prediction methods such
as PHD (Rost, 1996, 2001) and PSIPRED (Jones, 1999). For example, the prediction accuracy
measured by Q3 is 73.5% for GOR V, 71.9% for PHD and 76.6% for PSIPRED.

We have combined FDM and GOR V in the following manner: we define a sequence identity
threshold to distinguish highly similar fragments obtained with the BLAST search from those
less similar. In our previous work, we found the optimum value for the sequence identity score
to be 55% (Sen et al., 2006). We have chosen the fragments (up to 5000 for the CDM server)
with sequence identity above this threshold as an input for FDM. Because of this initial
fragment sifting, FDM predicts the secondary structure only for sites having highly similar
fragments. The secondary structure for the remainder of the sites is then predicted by GOR V,
since GOR V relies on statistical averages and not on the sequence similarity of available
fragments. The details of the CDM method and its performance are discussed in our recent
paper (Sen et al., 2006). The Q3 prediction accuracy of CDM ranges from 67.5 to 93.2%
depending on the availability of both sequentially similar structural fragments and multiple
sequence alignments. These results demonstrate that CDM is one of the best secondary
structure methods currently available, and we expect its accuracy to improve as the Protein
Data Bank includes more structures. Here the lower end of the Q3 range, 67.5%, refers to the
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cross-validated GOR V Q3 predictions based on single sequences without evolutionary
information from multiple sequence alignments. The higher end of the range, 93.2%, refers to
the case when all the sequences are predicted by FDM. Note that the prediction by FDM
requires the availability of highly similar fragments in the PDB, and therefore such Q3 cannot
be cross-validated, but is strongly biased by the type and distribution of the sequences present
in the PDB. However, it is important to note that the CDM secondary structure predictions will
approach this upper limit of Q3, as more and more proteins become available in the PDB,
significantly enhancing performance of FDM in the future.

In order to further validate this point, we culled 76 proteins recently deposited in the PDB, with
<30% sequence similarity between each other, and an average length of 235 amino acids. We
used the BLAST nr database generated before the deposition of these 76 proteins to the PDB.
We calculated and compared Q3 values from GOR V, FDM, and CDM against PSIPRED
predictions. Note that none of the Q3 values is cross-validated here, and they may contain
biases since we did not check for similarity of these 76 sequences with the training data sets
for all servers. All servers were treated equally because none of them contained information
on these newly deposited PDB sequences. We found that for these sequences, the PSIPRED
predicted Q3 =0.796 and CDM Q3 =0.755, at the sequence identity cutoff of 55%. However,
the most striking feature in these calculations was the FDM value of Q3 computed as a function
of sequence identity cutoff shown in Table 1. The increase of the sequence identity cutoff
allows FDM to use fragments with higher similarities, and in turn, leads to higher values of
Q3 for the predicted regions. These results substantiate our view that with the availability of
more proteins in the PDB, the Q3 values of the secondary structure predictions by FDM will
be constantly increasing and will exceed performance of other methods that do not rely on the
structural templates.

2 IMPLEMENTATION
A user can obtain the secondary structure prediction of a sequence using our new CDM server.
On the homepage of the CDM server (http://gor.bb.iastate.edu/cdm), the user is asked to enter
his/her e-mail address and sequence information as a series of one-letter amino acid codes, up
to 5000 residues in length. Once the information is submitted, the server checks the reliability
of the e-mail address and the sequence information, and then sends a confirmation page to the
browser (or an error notice if there is a problem). At this point, the server accepts the job and
the user can close the web browser anytime without disturbing the job run. Another perl script
then runs BLAST against pdb, and PSI-BLAST against the nr (non-redundant) database. The
results of these searches are then used as inputs to FDM and GOR V, respectively. When the
FDM, GOR V, and CDM runs are completed, the following information is sent to the user’s
e-mail address (as html links to the output files on the server): the secondary structure
predictions of FDM, GOR IV, GOR V, and CDM; the secondary structure prediction weights
for each site for GOR V; the fragment alignments and their identity scores used by FDM. The
predictions for FDM, GOR V, and CDM are provided in two formats: either as a single line
(for each method of prediction), or formatted so that each line contains up to 80 residues. These
two formats should be sufficient for most users to facilitate their visualization of the prediction
results.

The CDM server uses the RedHat Enterprise 3.0 system, built on a Dell Xeon with 4.6 GB
memory. The server side CGI script is a combination of html and perl, and the program code
is written in C++ (FDM and CDM) and Fortran (GOR V). The server is housed at the LH Baker
Center for Bioinformatics and Biological Statistics, Iowa State University.
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3 CONCLUSION
We have combined two complementary algorithms having different strengths, FDM and GOR
V, to improve the performance of the secondary structure prediction. We have developed the
CDM web server available for public and private use. As we showed in our previous work
(Sen et al., 2006), combining FDM and GOR V benefits from the availability of experimentally
determined structures and considerably enhances the secondary structure prediction. We are
also planning to register our CDM server with EVA (EValuation of Automatic protein structure
prediction) initiative (Eyrich et al., 2001) to benchmark the CDM performance in predicting
protein secondary structure.
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Table 1

The Q3 values for FDM predictions as a function of the sequence identity cutoff

Sequence identity cutoff Percentage of residues predicted by FDM Q3 for the regions predicted by FDM

0.4 76.4 0.794
0.5 57.2 0.836
0.6 46.0 0.875
0.7 41.1 0.891
0.8 40.0 0.898
0.9 32.9 0.898
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