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Abstract
Chronic inflammation is a risk factor for several gastrointestinal malignancies, including esophageal,
gastric, hepatic, pancreatic and colorectal cancer. It has long been known that long-term use of
nonsteroidal anti-inflammatory drugs (NSAIDs) reduces the relative risk of developing colorectal
cancer. NSAIDs exert their anti-inflammatory and anti-tumor effects primarily by inhibiting activity
of cyclooxygenase (COX) enzymes. Cyclooxygenase enzymes catalyze the conversion of
arachidonic acid into prostanoids, including prostaglandins (PGs) and thromboxanes (TXs).
Emerging evidence demonstrates that prostaglandins play an important role in inflammation and
cancer. In this review, we highlight recent breakthroughs in our understanding of the roles of the
different prostaglandins in colorectal cancer (CRC) and inflammatory bowel disease (IBD). These
findings may provide a rationale for the development of new anti-inflammatory therapeutic
approaches to cancer prevention and/or treatment.
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Introduction
Clinical and epidemiologic studies suggest that chronic inflammation caused by infectious or
autoimmune diseases is clearly associated with increased risk of cancer, including colorectal
cancer (CRC) [1] and chronic inflammation contributes to the development of approximately
15–20% of malignancies worldwide [2]. Experimental studies indicate that inflammation
promotes tumor growth, in part, through stimulation of proliferation and angiogenesis as well
as inhibition of apoptosis and immune surveillance. The best evidence for the link between
inflammation and tumor progression come from recent epidemiologic studies and clinical trials
showing that long-term use of nonsteroidal anti-inflammatory drugs (NSAIDs) reduced the
relative risk of developing colorectal cancer by 40–50% [3]. NSAIDs are thought to exert their
anti-inflammatory, analgesic and anti-pyretic effects mainly by targeting cyclooxygenase
(COX) enzymes [4]. The COX enzyme exists in three isoforms commonly referred to as
COX-1, COX-2, and COX-3. COX-1 is constitutively expressed in a broad range of cells and
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tissues and its expression remains constant under most physiological or pathological
conditions. COX-1 contributes to maintenance of the gastric mucosa, regulation of renal blood
flow in the afferent vessels of the kidney, and regulation of platelet aggregation. By contrast,
COX-2 is an immediate-early response gene normally absent from most cells but is induced
mainly at sites of inflammation in response to inflammatory stimuli including pro-
inflammatory cytokines such as IL-1α/β, IFN-γ, and TNF-α produced by inflammatory cells
[5]. COX-2 is involved in inflammation and tumorigenesis. COX-3 is an acetaminophen-
sensitive splice variant of COX-1 and its function remains unknown. Therefore, COX-2 is a
pro-inflammatory mediator and NSAIDs and specific COX-2 inhibitors are currently used to
treat acute pain as well as the signs and symptoms of osteoarthritis and rheumatoid arthritis
[6].

The gastrointestinal mucosa forms a complex, semi-permeable barrier between the host and
the largest source of foreign antigens. The mucosal immune system has the ability to mount
an immune response to pathogens while maintaining tolerance to the vast array of benign
luminal antigens from food and commensal bacteria. Many inflammatory processes are self-
limiting, supporting the existence of endogenous anti-inflammatory mechanisms. An abnormal
mucosal immune response is thought to result in chronic inflammation such as arthritis and
inflammatory bowel disease (IBD). IBD in humans is a complex class of disorders that has
been grouped into two major forms, ulcerative colitis (UC) and Crohn’s disease (CD). These
chronic conditions of the gut ordinarily affect individuals between the age of 16 and 40 and
can cause significant morbidity. Chronic IBD (especially pan-colitis) significantly increases
the risk of developing colorectal cancer [7]. IBD is thought to result from inappropriate
activation of immune responses and/or a deficient feedback system that normally down-
regulates the mucosal response to luminal factors.

The first evidence linking COX-2 to carcinogenesis emerged from studies on CRC [8]. Several
subsequent reports confirmed that elevated COX-2 expression was found in approximately
50% of adenomas and 85% of adenocarcinomas [9,10]. Similarly, COX-2 is induced in large
intestinal epithelium in active human IBD and in inflamed tissues of IL-10 deficient mice (a
mouse model of IBD) [11,12]. An increasingly large body of evidence from population-based
studies and clinical trials have shown that regular use of NSAIDs, including aspirin and related
drugs, over a 10–15 year period reduces the relative risk of developing colorectal cancer and
adenomas by 40–50% [3]. In particularly, aspirin specifically prevents the subgroup of colon
cancers in which COX-2 is most highly induced [13]. Furthermore, NSAID use leads to the
regression of preexisting adenomas in patients with the hereditary colon cancer syndrome,
familial adenomatous polyposis coli (FAP) [14,15]. Direct molecular evidence that COX-2
plays a key role in colorectal carcinogenesis was obtained from studies in animal models.
Genetic studies demonstrate that deletion of COX-2 gene results in decreased tumor formation
in both the small intestine and colon of ApcMin mice (a mouse model of CRC) [16] as well as
in ApcΔ716 mice, another Apc mutant model [17]. Although the effects of COX-2
overexpression upon colorectal carcinogenesis in transgenic mouse models have not been
reported, overexpression of COX-2 in transgenic mice using a murine mammary tumor virus
(MMTV) promoter induced breast carcinomas formation [18]. Moreover, transgenic mice with
COX-2 expression driven by the keratin-5 promoter did not develop skin cancer spontaneously,
but were much more sensitive to carcinogen-induced tumor formation [19].

The COX enzymes convert free arachidonic acid into prostanoids, including prostaglandins
(PGs) and thromboxanes (TXs). The key regulatory step in this process is the enzymatic
conversion of arachidonate to PGG2, which is then reduced to an unstable endoperoxide
intermediate, PGH2. Specific PG synthases in turn metabolize PGH2 to at least five structurally
related bioactive lipid molecules, including PGE2, PGD2, PGF2α, PGI2, and thromboxane
A2 (TxA2), in a cell type-specific manner. PGs are unstable compounds that are rapidly
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metabolized in vivo [20]. PGE2 and PGF2〈 are rapidly metabolized to a stable 13,14-
dihydro-15-keto-PGA2 (PGEM) and 13,14-dihydro-15-keto-PGF2〈 in vivo by the enzyme 15-
hydroxy prostaglandin dehydrogenase (15-PGDH), respectively. PGI2 is non-enzymatically
hydrated to 6-keto PGF1〈, and then quickly converted to the major urinary metabolite, 2,3-
dinor-6-keto PGF1〈 and PGD2 is also rapidly metabolized to 15-deoxy-Δ12, Δ14PGJ2
(15dPGJ2) and 11β-PGF2〈 in vivo. Moreover, TXA2 is rapidly hydrolyzed to TXB2 in a non-
enzymatic manner. Prostaglandins exert their cellular functions by binding cell surface
receptors that belong to the family of seven transmembrane G protein-coupled rhodopsin-type
receptors. These cell surface receptors are designated DP for the PGD2 receptor, EP (EP1, EP2,
EP3, and EP4) for the PGE2 receptors, FP for the PGF2α receptor, IP for the PGI2 receptor,
and TP for the TxA2 receptor. In some cases, however, certain prostaglandins and their
metabolites bind nuclear receptors such as peroxisome proliferator-activated receptors
(PPARs). It has been shown that PGI2 can transactivate PPARδ [21], while 15dPGJ2 is a natural
ligand for PPARγ [22]. Moreover, recent studies show that PGE2 indirectly induces PPARδ
activation in certain contexts [23].

Prostaglandins and colorectal cancer
The prostanoids are involved in a variety of pathophysiologic processes, including modulation
of the inflammatory reaction, gastrointestinal cytoprotection and ulceration, angiogenesis,
cancer, hemostasis and thrombosis, renal hemodynamics, and progression of kidney disease.
Multiple lines of evidence demonstrate that overexpression of COX-2 in epithelial,
mesenchymal, and inflammatory cells leads to the production of multiple PGs, which in turn
promote angiogenesis, protect against apoptosis, stimulate proliferation, induce metastasis, and
suppress cell-mediated immune responses. A great effort has been made to identify which of
the individual PGs are directly involved in CRC. A large body of evidence has demonstrated
that PGE2 mediates the tumor-promoting effects of COX-2 in colorectal cancer. Less evidence
supports a role for other prostaglandins in CRC.

PGE2

Recent research has indicated that PGE2 is a key mediator of acute inflammatory responses
[24], stem cell differentiation [25], arthritis [26], and inflammatory bowel disease (IBD) [27].
Direct evidence came from observations that blocking either PGE2 synthases or PGE2 receptors
impaired both acute and chronic inflammatory responses. Mice deficient in PGE2 synthase
displayed a marked reduction in acute pain during the inflammatory response and collagen
antibody-induced arthritis (an animal model of rheumatoid arthritis) [28]. EP1 receptor-
deficient mice exhibited a reduction of their pain-sensitivity responses in two acute
prostaglandin-dependent models [29]. Moreover, EP4 receptor-deficient mice showed
decreased incidence and severity of collagen antibody-induced arthritis [30] with a possible
contribution of EP2 [31]. These studies support the notion that PGE2 mediates the effects of
COX-2 during acute pain and arthritis. In an experimental model for IBD, PGE2 appears to
have a dual effect. High levels of PGE2 exacerbate the inflammatory process [27]. On the other
hand, PGE2 signaling suppresses colitis symptoms and mucosal damage by protecting the
integrity of the epithelial intestinal wall, presumably through the enhancement of epithelial
survival and regeneration [32]. Moreover, a genetic study reveals that only EP4-deficient mice
and not mice deficient in either EP1, EP2, EP3, DP, FP, IP, or TP are more sensitive to DSS
treatment and developed severe colitis [33]. Further studies are necessary to define the role of
PGE2 in IBD.

Pro-inflammatory PGE2 plays a predominant role in promoting colorectal tumor growth.
PGE2 is the most abundant PG found in human colorectal cancer tissues [34]. The steady-state
cellular levels of PGE2 depend on the relative rates of COX-2/PGE synthase-dependent
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biosynthesis and 15-hydroxyprostaglandin dehydrogenase (15-PGDH)-dependent
degradation. 15-PGDH is highly expressed in normal colon mucosa but is ubiquitously lost in
most human colorectal cancers [35]. A recent study showed that PGE2 treatment dramatically
increased both small and large intestinal adenoma burden in ApcMin/+ mice and significantly
enhanced colon carcinogen azoxymethane (AOM)-induced colon tumor incidence and
multiplicity [23,36]. Furthermore, elevated endogenous PGE2 via loss of 15-PGDH promoted
colon tumor growth in ApcMin/+ and AOM mouse models [37]. Similarly, increased
endogenous PGE2 by overexpressing both COX-2 and microsomal prostaglandin E synthase-1
in the stomach is sufficient to induce gastric tumor formation [38]. PGE2 also protects small
intestinal adenomas from NSAID-induced regression in ApcMin/+ mice [39]. The central role
of PGE2 in colorectal tumorigenesis has been further confirmed by evaluating mice with
homozygous deletion of PGE2 receptors [40–42].

To understand mechanism(s) underlying effects of PGE2 on cancer progression, researchers
have been investigating precisely how PGE2 promotes tumor growth and its signaling
pathways. Several reports have shown that PGE2 promotes colorectal tumor growth by
stimulating angiogenesis, cell invasion, cell growth and inhibiting apoptosis [43]. These
essential cellular processes are regulated by PGE2 activated signaling pathways, including
EGFR-PI3K-Akt, Ras-MAPK, PPARδ, VEGF, Bcl-2, chemokines and their receptors [43,
44]. PGE2 also activates canonical Wnt signaling by activating Tcf-4 transcription factors via
stabilizing β-catenin in CRC cells [45]. Conversely, many of the downstream pathways of
PGE2 also upregulates COX-2 expression. Such feedback loops may amplify the activity of
the COX-2 pathway and may magnify the potency of COX-2 inhibitors.

TxA2

Although the role of TxA2 in atherogenesis has been established [46], few studies have
delineated the biological function of TxA2 in CRC and IBD. TxA2 is the only other COX-2
derived prostaglandins implicated in oncogenesis. TxA2 has been shown to promote tumor
growth and tumor-associated angiogenesis [47]. Moreover, it has been reported that TxA2
synthase inhibitor blocks colorectal carcinoma liver metastasis in an in vivo study [48].
However, disruption of TP receptor doesn’t affect colon tumor formation in AOM-treated mice
[41]. Additional research is needed to determine the role of TxA2 signaling in CRC. In an
animal model of IBD, conflicting results have emerged regarding the role of TxA2-TP system
in IBD. Treatment of a TP antagonist significantly reduced the colonic damage [49], while
deletion of TP didn’t affect colitis formation caused by DSS [33]. These conflicting data dictate
the need of additional research to address the role of TxA2 in CRC and IBD.

PGD2

Although PGD2 have been implicated as an anti-inflammatory regulator of the IBD [50], the
role of PGD2 in colon cancer is not defined. PGD2 and/or its metabolites may have tumor
inhibitory effects. Recent study shows that disruption of the gene for hematopoietic PGD
synthase in ApcMin/+ mice accelerates intestinal tumor growth, while ApcMin/+ mice with
transgenic human hematopoietic PGD synthase exhibit fewer intestinal adenomas than controls
[51]. These results suggest that PGD2 serves as tumor suppressor in colorectal cancer.
However, the evidence from DP receptor studies in CRC mouse models don’t support the
hypothesis that PGD2 has tumor inhibitory effects. For example, disruption of the DP receptor
didn’t affect colon tumor formation in AOM-treated mice [41]. Treatment with a selective DP
antagonist significantly reduced susceptibility of post-colitis rats to the development of
aberrant crypt foci [52]. One possible explanation for the differences in phenotype caused by
PGD synthase versus DP in mouse models may be due to a fact that PGD2 exerts its biological
functions through either DP or/and PPARγ receptor. It is possible that the anti-tumor effect of
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PGD2 is mediated by PPARγ since PGD2 can be metabolized to 15dPGJ2, which is a
endogenous ligand for the PPARγ. Activation of PPARγ results in growth arrest of colon
carcinoma cells through induction of cell differentiation and inhibition of cell proliferation or
induction of apoptosis. Alternatively, overexpression of PGD synthase may shift the
conversion of PGH2 away from PGE2, which in turn suppresses tumor growth.

PGF2α

Although the emerging data support the role of PGF2α in acute and chronic inflammation
[53], However, one study showed that FP is not involved in the progression of chronic
inflammation in IBD [33]. Furthermore, there are no clear studies showing that PGF2α
participates in IBD. Similarly, the observation that PGF2α failed to induce cell proliferation in
CRC cell lines and deletion of FP receptor didn’t affect colon tumor formation in AOM-treated
mice suggests that PGF2α is not involved in colorectal cancer progression [41,54].

PGI2
In normal physiological processes, COX-1-derived PGI2 is a major prostaglandin product in
the gastrointestinal tract and plays a role in the cytoprotection of gastric mucosal surfaces and
in maintaining normal vasculature [55]. Under pathological conditions, PGI2 serves as a
mediator of acute and chronic inflammation. Loss or inhibition of IP (the prostacyclin receptor)
reduces pain and inflammation in a chronic model of inflammatory arthritis [56]. In an animal
model of IBD, another study showed that IP is not involved in chronic inflammation [33].
There is also no other report showing that PGI2 is implicated in IBD. Although one study
showed that the IP receptor is not involved in colon tumor formation in AOM-treated mice
[41], little is known about the role of PGI2 and IP in CRC. Since PGI2 can activate PPARδ in
CRC cells [21] and activation of PPARδ accelerates intestinal tumor growth in ApcMin/+ mice
[57], it is conceivable that PGI2 may participate in the colon tumor progression through
PPARδ. Further work is necessary to explore the role of PGI2 and IP in colon carcinogenesis.

Conclusions
Prolonged use of high doses of NSAIDs (except for aspirin) is associated with unacceptable
cardiovascular side effects [58–60]. The mechanism of the side effects of NSAIDs is unclear.
A potential explanation for the cardiovascular side effects of NSAIDs is proposed based on
the following observations. The synthesis of PGI2 depends principally on COX-2 activity in
the vascular wall, whereas the production of TxA2 in platelets is dependent on COX-1. Since
PGI2 antagonizes the biological functions of TxA2 produced by platelets, inhibition of PGI2
may shift the homeostatic balance toward more the pro-thrombotic TxA2 effects. The potential
inhibition of endothelial cell–derived COX-2 activity and subsequent PGI2 production by
COX-2 selective inhibitors may promote platelet aggregation and lead to increased the risk of
coronary thrombosis and stroke [61]. In addition, PGI2 appears to serve an important role in
protecting cardiomyocytes from oxidant stress, which is a key risk factor for atherogenesis
[62]. Therefore, it will be important to develop chemopreventive agents that do not inhibit
production of other prostanoids, such as the anti-thrombotic PGI2. Given that PGE2 appears
to be the main pro-carcinogenic eicosanoid, more selective pharmacological inhibition of
PGE2 production downstream of COX-2 may be superior and result in fewer side effects. Thus,
it is now crucial to evaluate whether PGE2 receptor antagonists and inhibitors of PGE2
synthases have better specificity for the prevention of colon cancer and result in minimal
adverse effects. Of course, another option may be to modulate the expression levels of 15-
PGDH in order to decrease the levels of PGE2 in the tumor microenvironment.
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