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Abstract
Background: The developing mouse limb is widely used as a model system for studying tissue
patterning. Despite this, few references are available that can be used for the correct identification
of developing limb structures, such as muscles and tendons. Existing textual references consist of
two-dimensional (2D) illustrations of the adult rat or mouse limb that can be difficult to apply when
attempting to describe the complex three-dimensional (3D) relationship between tissues.

Results: To improve the resources available in the mouse model, we have generated a free, web-
based, interactive reference of limb muscle, tendon, and skeletal structures at embryonic day (E)
14.5 http://www.nimr.mrc.ac.uk/3dlimb/. The Atlas was generated using mouse forelimb and
hindlimb specimens stained using immunohistochemistry to detect muscle and tendon. Limbs were
scanned using Optical Projection Tomography (OPT), reconstructed to make 3D models and
annotated using computer-assisted segmentation tools in Amira 3D Visualisation software. The
annotated dataset is visualised using Java, JAtlasView software. Users click on the names of
structures and view their shape, position and relationship with other structures within the 3D
model and also in 2D virtual sections.

Conclusion: The Mouse Limb Anatomy Atlas provides a novel and valuable tool for researchers
studying limb development and can be applied to a range of research areas, including the
identification of abnormal limb patterning in transgenic lines and studies of models of congenital
limb abnormalities. By using the Atlas for "virtual" dissection, this resource offers an alternative to
animal dissection. The techniques we have developed and employed are also applicable to many
other model systems and anatomical structures.
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Background
The mouse is a frequently used model for studying limb
development and the anatomical similarities between
mouse and human limbs make it an excellent system for
understanding human limb defects. An advantage of the
mouse model is that many molecular techniques have
been established for studying the genetic pathways regu-
lating limb development, so it is possible to link genetic
mechanisms with patterning events. Typically, limb pat-
terning is studied using two-dimensional (2D) micros-
copy of whole mount or histological sections of tissues or
embryos. A significant limitation of these approaches is
that they do not allow the interpretation of the complex
physical relationship between individual limb elements
in three-dimensional (3D) space as development pro-
ceeds. Increasingly, 3D imaging techniques, including
Optical Projection Tomography (OPT), High-Resolution
Episcopic Microscopy (HREM), ultrasound and ultrami-
croscopy are being used to study mouse and human
embryonic development and anatomy [1-6]. Some of
these techniques have been used to generate interactive
atlases of developing organs and 3D gene expression data-
bases (ie. EADHB [7], EMAP [8], EMAGE [9], DGEMap
[10], MRIMA [11], and FishNet [12]).

Recently, we have demonstrated that 3D imaging can be
used to study the embryonic mouse limb, providing an
unprecedented amount of detailed information about the
patterning and growth of this structure [13]. A difficulty
we experienced in analysing the 3D organisation of limb
tissues was the lack of accessible, intuitive resources for
studying the relationship between structures. Identifica-
tion of embryonic mouse limb patterning is typically
based on reference books of adult mouse or rat limb anat-
omy [14,15]. These 2D references are challenging to apply
to 3D data and are often not appropriate for interpreting
embryonic structures that are not fully developed or
organised in their final adult pattern.

To address this lack of resources, we have generated inter-
active 3D models of normal mouse embryonic limb anat-
omy as a reference tool for researchers studying limb
development in transgenic and disease models. Our Atlas
provides models of the forelimb and hindlimb of mice at
E14.5 days gestation generated using OPT. Using plat-
form-independent, Java-based, JAtlasView software [16],
users navigate 3D models of limbs where individual struc-
tures are colour-coded and linked to an anatomy key. The
3D view is cross-linked to a 2D dataset, where colour-
coded structures are viewed in orthogonal or user-defined
sections. Unlike textual atlases, our digital atlas allows
users to navigate from the ontology to the spatial repre-
sentation of the embryo in 3D and 2D, and vice versa. 2D
and 3D models feature over 60 individual muscles, ten-
dons and bones linked to a colour-coded key. Stage E14.5

was chosen as this is the earliest time-point at which the
individual limb elements that comprise the adult limb are
easily, morphologically distinguishable.

All data and software is free for users to download. This
database provides a standardisation of the names of limb
structures used by biologists [17]. Feedback on the assign-
ment of annotated structures, ease of use and robustness
of software and suggestions on how this resource could be
improved are welcomed. The techniques we have
employed to generate the database are applicable to other
model systems and anatomical structures.

Construction and content
Transgenic mice and immunohistochemistry
Tendons were visualised with the Scleraxis(Scx)-GFP
reporter line on a C57Bl6 background [13,18]. Mouse
embryos were staged according to Kaufman (1992) [19].
Noon on the day a vaginal plug was observed was taken as
E0.5 day gestation. Embryos were harvested at E14.5,
immediately exsanguinated and fixed as previously
described [13]. Embryonic forelimbs and hindlimbs were
skinned and stained using antibodies against GFP and
muscle myosin as previously described [13].

Optical Projection Tomography and segmentation
OPT scanning and 3D reconstructions of data were per-
formed as described previously [13]. Digital scans of the
specimen were used to reconstruct "virtual" transverse sec-
tions and render 3D images depicting tissues. With bio-
logical material some variation in samples is inevitable.
To identify a 'standardised' E14.5 forelimb and hindlimb,
a total of over 75 E14.5 limbs were analysed using various
histological methods to analyse the morphology of the
skeleton, muscles and tendons. Up to 15 different E14.5
forelimbs and hindlimbs were analysed by OPT scanning.
Representative examples of the forelimb and hindlimb
were chosen as standardised samples for the Anatomy
Atlas.

Reconstructed datasets containing GFP (Tendon) and
Texas-Red (Muscle) scans of Scx-GFP reporter forelimbs
and hindlimbs were merged and converted to 8-bit greys-
cale to create a single dataset showing both tendon and
muscle. The image stack was loaded in Amira 3D Visuali-
sation software (version 3.1, Mercury Computer Systems,
Germany) and structures of the limb were segmented and
annotated using computer-assisted segmentation. Struc-
tures were assigned using semi-automated segmentation.
Structures were manually outlined in every 10th section in
the z-axis and the automatic propagation tool in Amira
was used to find the boundaries of structures between
defined sections. All automatic segmentation was checked
manually for accuracy and boundary adjustments were
made where necessary.
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Each OPT stack is 670 pixels in the z axis. The limb
extends across approximately 600 pixels in each stack
(equivalent to 600 of the 670 OPT sections) in the z axis.
Since an E14.5 limb is approximately 8000 μm in length,
we estimate optical slice thickness to be approximately
8000/600 = 13 μm. The voxel dimension is therefore esti-
mated to be 13 × 13 × 13 μm.

High-resolution Episcopic Microscopy (HREM)
Forelimbs and hindlimbs were dissected from exsanguin-
ated E14.5 embryos and dehydrated overnight in 95%
ethanol. Limbs were infiltrated with polymer embedding
solution (JB-4 Embedding Kit, Polysciences, Warrington,
PA) containing JB-4 Solution A (monomer), Benzoyl Per-
oxide catalyst (12.5 mg/ml) and coloured dyes Orasol
black (1 mg/ml; Ciba, Macclesfield, UK), Eosin B (2.75
mg/ml; Sigma, St. Louis, MO), and Acrydine Orange (0.55
mg/ml; Sigma, St. Louis, MO) overnight at 4°C. Speci-
mens were embedded in molds using the infiltration solu-
tion with added JB-4 Solution B (Accelerator) for
polymerisation. Samples were allowed to set at room tem-
perature overnight. Polymerised blocks were sectioned
using HREM as previously described [3].

Identification of skeletal elements, muscles, and tendons
Bones were identified from references for the adult rat
[14] and adult mouse [20]. Muscles and tendons were
identified using anatomical references for the adult rat
[14,15,21]. Structures were positively identified on the
basis of shape, position and orientation in relation to
other elements. Tendons were identified as belonging to
specific muscles on the basis of their myotendinous junc-
tions. Muscles were identified on the basis of morphol-
ogy, as well as associated tendon origin and insertion sites
on skeletal elements.

During segmentation of the hindlimb samples, we were
unable to detect a structure that could be identified as the
rectus femoris muscle that is described in one reference
[14] but is not illustrated in another [15]. This muscle is
in a deep location so it is very unlikely to have been lost
in processing. A possible reason we were unable to iden-
tify the rectus femoris muscle is that it is not a morpholog-
ically distinct muscle block in the E14.5 mouse.

Viewing 3D models
The forelimb and hindlimb datasets and JAtlasView are
available as free downloads accessible from our webpage
(see Availability and Requirements section). The datasets
include Woolz (.wlz) and Visualisation Toolkit (.vtk) for-
mat files in a structured folder hierarchy (reflecting the
anatomy) for generating the stack of reconstructed images
and segmented structures of the limb. The webpage
includes instructions for downloading datasets and soft-
ware and instructions on how to use the Atlas (Additional

file 1). First, the forelimb.wlz or hindlimb.wlz data set is
opened in JAtlasView (Fig. 1A). The 'Anatomy Tree' is then
loaded, showing the ontology of structures (Fig. 1C).
Structures are organized by region of the limb (ie. hand,
lower arm), with sub-categories for muscles and bones. By
clicking on the names of structures, users can build a 3D
model showing selected muscles, tendons, and bones of
the limb as separate coloured objects. Rotation, transla-
tion, and magnification of the model are controlled by
keyboard or mouse buttons. The 'Anatomy Key' shows the
name of each structure in the 3D model, its full name in
the structure hierarchy and colour code (Fig. 1B). The col-
our of an object can be changed by clicking on the col-
oured box in the Anatomy Key. To switch off/on the
object in the 3D view, the '+/-' icon on the Anatomy Key
is clicked. For example, if the user wanted to only see the
skeleton of the limb, muscles can be switched off (Fig. 2).
JAtlasView runs as a Java Network Launching Protocol
(.jnlp) program that connects to a host server at HGU-
MRC. Updates to the software will be provided, so that the
latest version is downloaded. After the first time the .jnlp
program is launched, a version of the software is cached
on the computer and can run off-line.

Viewing 2D models
The 3D model is linked to a series of 2D sections in
orthogonal XY, XZ, and YZ, or user-defined axes under
"View Section" in JAtlasView. If structures are switched on
in the 3D view, they are defined in the section view (Fig.
3A). The name of an undefined structure in a section can
be determined by selecting "Mouse Click Anatomy" under
"Show" in the 2D window. Then, when a structure is
clicked on in the 2D view, its name will appear at the top
of the 2D window (Fig. 3A). A scroll bar allows panning
through the stack, and the plane of section is visible in the
3D view (Fig. 3A and 3B). To switch off/on the object in
the 2D view, click on the '+/-' icons on the Anatomy Key.
For user-defined sectioning, "Control" and "rotation" on
the 2D viewer allows changes to the "yaw" and "pitch" of
the section (Fig. 3B). To see HREM sections of a stage-
matched E14.5 forelimb or hindlimb, the "high-res
image" button in the 2D viewer (Fig. 3C) links to a Java-
based Section Viewer program showing an HREM section
equivalent (but not identical) to the OPT-generated sec-
tion in the 2D viewer. Users can move arrows to pan
through the stack, magnify and translate sections.
Although the HREM section series is not annotated, by
comparing sections with the annotated 2D series users can
find the names of structures.

Utility
This resource is aimed for use by biologists interested in
limb anatomy, although we encourage other members of
the scientific and educational community to use it. As a
3D tool, the Atlas is useful for comparative anatomy of
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JAtlasViewFigure 1
JAtlasView. A: JAtlasView showing an interactive 3D model of the muscles, tendons and bones of the embryonic mouse fore-
limb at E14.5. B: Anatomy key. Shows the name of each structure in the 3D model, its ontogeny and colour code. Structures 
can be switched off/on in the viewer window by clicking on the '+/-' icon in the Anatomy Key. C: Anatomy Tree. Shows the 
ontogeny of structures. Names can be clicked so structures appear in the 3D model.
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whole mount prepared samples, as a dissection aide and
as an alternative to animal dissection. At present, most
biologists studying limbs do not routinely have access to
3D imaging technology, but study 2D histological sec-
tions of limbs. The 2D section series of the Atlas allows the
user to compare sections of mutant limbs with wild-type
limbs. By adjusting the plane of section, users can find the
exact plane of section of their histological sample (Fig.
3C). Using the point-and-click feature, users can quickly
and easily find out the names of structures and see where
in the 3D model the section is cut. As 3D imaging
becomes a routinely used technology, we envisage that the
Atlas will become an increasingly valuable resource for
interpreting 3D data. Additionally, as computer-auto-
mated segmentation technology is continually improving
[22,23], it will be possible in the future to rapidly segment
3D datasets of mutant limbs to make models that can be
compared with wild-type references.

An objective of this project has been to provide a freely
available resource, avoiding the accessibility issues
involved in using some printed resources and commercial
software. Since the nomenclature for limb structures can
vary between printed references, an additional aim of this
project is to provide a standardised naming system for
limb structures. A glossary of forelimb and hindlimb mus-
cle names used in the 3D database and how they may dif-
fer in other text references are available via the 3D Atlas
website.

Discussion and conclusion
The Mouse Limb Anatomy Atlas is a free, web-based,
standardised reference of limb muscle, tendon and skele-
tal structures at embryonic day 14.5. The Atlas features

interactive and annotated 2D and 3D models of the fore-
limb and hindlimb, showing over 60 individually seg-
mented structures. This is the first complete reference tool
for studying the embryonic mouse limb and the first 3D
atlas of limb anatomy. This resource presents a novel,
accessible, intuitive approach for studying mouse limb
anatomy that will facilitate analysis of limb morphology
and the characterisation of mutant limb phenotypes. We
also expect it will be an excellent reference tool for a broad
range of the scientific community and be a particularly
useful educational tool.

We hope that as the Atlas is used, we will get feedback
from users about any discrepancies in ontology with exist-
ing references and how features of the datasets and soft-
ware can be improved. We plan to modify the 3D atlas
where possible to increase its functionality. In the future,
it will be possible to add datasets for different stages of
development and models of other tissues of the limb,
including the limb vascular and neural structures.

Availability and requirements
• Project name: The Mouse Limb Anatomy Atlas.

• Project home page: http://www.nimr.mrc.ac.uk/
3dlimb/

• Forelimb and Hindlimb datasets downloads: http://
www.nimr.mrc.ac.uk/3dlimb/downloads/

JAtlasView download: http://genex.hgu.mrc.ac.uk/Soft
ware/JavaTools/JAtlasViewer/intro.html

• Operating system(s): Solaris, Linux, Mac OSX. The
viewer can run successfully on Windows 2000 – Internet
Explorer6, Windows 2000 (installed Java) – Internet
Explorer6, Vista – Internet Explorer7, Windows XP – Inter-
net Explorer6, Windows XP (installed Java) – Internet
Explorer7 and Firefox 2.0.

• Other requirements: Java 1.4, Java 2 Platform Standard
Edition Runtime Environment, Version 5.0 or later (J2RE)

• Any restrictions to use by non-academics: None.

Authors' contributions
AD prepared, scanned, segmented the limb data, and
reconstructed the HREM section series. NB and RB made
improvements to JAtlasView software. RB converted data-
sets to Woolz and vtk formats. NB generated the Java Sec-
tion Viewer dataset. DD made suggestions for
implementing the Atlas and helped coordinate communi-
cation between NIMR and HGU-MRC. TM set-up the OPT
scanning system and reconstruction software. MB per-
formed the HREM sectioning. ML is the main supervisor

JAtlasView showing an interactive 3D model of the skeletal structures of the embryonic mouse forelimb at E14.5 after switching off muscles and tendons in the Anatomy KeyFigure 2
JAtlasView showing an interactive 3D model of the 
skeletal structures of the embryonic mouse forelimb 
at E14.5 after switching off muscles and tendons in 
the Anatomy Key.
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JAtlasView showing 2D section views through the hindlimbFigure 3
JAtlasView showing 2D section views through the hindlimb. A: XY section view. Using the point-and-click function of 
the 2D viewer, structures can be clicked on in the section and the name appears at the top of the 2D window. The plane of 
section is visible in the 3D view. B: A user-defined section. The plane of section is changed by adjusting 'yaw' and 'pitch'. C: 
High-resolution section viewer. By clicking on "high-res image" in the 2D viewer, the Java Section Viewer is launched. Users 
can move arrows to pan through the stack, magnify and translate sections. This section is equivalent to the section shown in 
3A.
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