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The Neural Representation of Speed in Macaque Area MT/V5
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Tuning for speed is one key feature of motion-selective neurons in the middle temporal visual area of the macaque cortex (MT, or V5). The
present paper asks whether speed is coded in a way that is invariant to the shape of the moving stimulus, and if so, how. When tested with
single sine-wave gratings of different spatial and temporal frequencies, MT neurons show a continuum in the degree to which preferred
speed depends on spatial frequency. There is some dependence in 75% of MT neurons, and the other 25% maintain speed tuning despite
changes in spatial frequency. When tested with stimuli constructed by adding two superimposed sine-wave gratings, the preferred speed
of MT neurons becomes less dependent on spatial frequency. Analysis of these responses reveals a speed-tuning nonlinearity that
selectively enhances the responses of the neuron when multiple spatial frequencies are present and moving at the same speed. Consistent
with the presence of the nonlinearity, MT neurons show speed tuning that is close to form-invariant when the moving stimuli comprise
square-wave gratings, which contain multiple spatial frequencies moving at the same speed. We conclude that the neural circuitry in and
before MT makes no explicit attempt to render MT neurons speed-tuned for sine-wave gratings, which do not occur in natural scenes.
Instead, MT neurons derive form-invariant speed tuning in a way that takes advantage of the multiple spatial frequencies that comprise
moving objects in natural scenes.
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Introduction
Many of our behaviors depend on accurate information about
changes in our environment. To make appropriate responses for
a moving object, like catching a baseball in a glove, we need
accurate information not only about the shape of the object, but
also about its motion. Ideally, the shape of the object should not
interfere with the estimation of its motion, and its location or
motion should not cause errors in identifying the object. We have
studied the influence of object form on visual motion processing
in the extrastriate middle temporal visual area (MT).

In the visual system, it has been traditional to think of motion
by characterizing the visual scene according to its spatial and
temporal sine-wave components in Fourier space. For example,
sine-wave gratings are characterized by “spatial frequency,” de-
fined in cycles per degree as the inverse of the width of a single
cycle of the grating, and “temporal frequency,” defined in cycles
per second as the inverse of the time required for the intensity of
a single pixel to go through a full cycle of sinusoidal modulation.
The speed of a moving grating is the ratio of the temporal fre-
quency and the spatial frequency. Although sine-wave gratings
are commonly used in the laboratory setting to assess the re-
sponse properties of neurons, moving real-world objects are

more complex than sine-wave gratings and contain multiple spa-
tial and temporal frequencies. In the present paper, we have
tested whether motion processing by the brain is different for real
objects containing a broad spectrum of spatial and temporal fre-
quencies, rather than for the unnatural grating stimuli used in the
laboratory.

In principle, motion-sensitive neurons could be truly tuned
for speed, meaning that the tuning is independent of the form of
the moving stimulus (Movshon, 1975; Tolhurst and Movshon,
1975). Then, neurons would have the same preferred speed at
different spatial frequencies, and temporal frequency tuning
would vary as a function of spatial frequency. Alternatively,
motion-sensitive neurons could have separate, independent tun-
ings for spatial and temporal frequency. Most models of motion-
selective neurons are based on separable responses to spatial and
temporal frequency, and early data demonstrated such responses
in the primary visual cortex (V1) of the cat (Tolhurst and Movs-
hon, 1975; Holub and Morton-Gibson, 1981; Friend and Baker,
1993). In an earlier study of this question, Perrone and Thiele
(2001) concluded that neurons in visual area MT are tuned for
speed.

In the present paper, we show that the neural processing of
speed is both more complex and more interesting than implied by
either of the alternatives outlined above. First, by correcting a
flaw in the data analysis of Perrone and Thiele (2001), we show
that only a minority of MT neurons are speed-tuned in the sense
that preferred speed is independent of spatial frequency. Second,
we demonstrate that speed tuning depends less on spatial fre-
quency for stimuli constructed by adding two sine-wave gratings.
Speed tuning results from a nonlinearity that facilitates or sup-
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presses responses when the two component gratings have the
same or different speeds. We conclude that the absence of true
speed tuning in area MT for sine-wave gratings does not pose a
problem for representing the speed of real-world objects because
they contain many spatial frequencies.

Materials and Methods
Physiological preparation. Extracellular single-unit microelectrode re-
cordings were made in the MT of nine anesthetized, paralyzed monkeys
(Macaca fascicularis). Anesthesia was induced with ketamine (5–15 mg/
kg) and midazolam (0.7 mg/kg), and cannulae were inserted into the
saphenous vein and the trachea. The animal’s head was then fixed in a
stereotaxic frame and the surgery was continued under an anesthetic
regimen of isoflurane (2%) inhaled in oxygen. A small craniotomy was
performed and the dura was reflected directly above the superior tempo-
ral sulcus (STS). The animal was maintained under anesthesia using an
intravenous opiate, sufentanil citrate (8 –24 �g � kg �1 � hr �1), for the
duration of the experiment. To minimize drift in eye position, paralysis
was maintained with an infusion of vecuronium bromide (Norcuron, 0.1
�g � kg �1 � hr �1; Oragnon, West Orange, NJ) and the animal was artifi-
cially ventilated with medical-grade air. The body temperature was kept
at 37°C with a thermostatically controlled heating pad. The electrocar-
diogram, electroencephalogram, autonomic signs, and rectal tempera-
ture were monitored continuously to ensure the anesthetic and physio-
logical state of the animal. The pupils were dilated using topical atropine
and the corneas were protected with �2 diopters gas-permeable hard
contact lenses. Supplementary lenses were selected by direct ophthal-
moscopy to make the lens conjugate with the display. The locations of the
foveae were recorded using a reversible ophthalmoscope.

Tungsten-in-glass electrodes (Merrill and Ainsworth, 1972) were in-
troduced by a hydraulic microdrive into the anterior bank of the STS and

were driven down through the cortex and across the lumen of the STS
into the MT. The location of unit recordings in the MT was confirmed by
histological examination of the brain after the experiment, using meth-
ods described by Lisberger and Movshon (1999). After the electrode was
in place, agarose was placed over the craniotomy to protect the surface of
the cortex and to reduce pulsations. Single units were isolated using a
dual-time-window discriminator (DDIS-1, BAK Electronics, German-
town, MD) and action potentials were amplified conventionally and dis-
played on an oscilloscope. Both a filtered version of the neural signals and
a tone indicating the acceptance of a waveform as an action potential
were played over a stereo audio monitor, and the time of each accepted
waveform was recorded to the nearest 10 �sec for subsequent analysis.
The recording sessions lasted between 84 and 120 hr. The units included
in this study are from recordings in nine monkeys.

All experiments followed protocols that had received prior approval by
the Institutional Animal Care and Use Committee at University of Cali-
fornia, San Francisco.

Stimulus presentation. After isolating a single unit in the MT, we mapped
its receptive field on a tangent screen by hand. We recorded the spatial
position of each receptive field and, for many of the neurons, the size of the
minimum response field. All of the neurons reported in this paper had re-
ceptive field centers within 12° of the fovea. Visual stimuli were then pre-
sented on a video monitor (CCID 121; Barco, Poperinge, Belgium), and
were generated by a video frame buffer (Cambridge Research, Kent, UK).
The video system had a noninterlaced refresh rate of 100 Hz. The spatial
resolution of the monitor was 1024 � 768 pixels and the screen subtended
33.6 cm horizontally and 25.2 cm vertically. Because the monitor was placed
65 cm from the monkey’s eyes, there were at least 19 pixels per visual degree.
The video monitor always had a mean luminance of 68 candelas per degree.
We positioned a mirror so that stimuli presented on the video monitor fell
within the receptive field of the isolated neuron.

Experiments consisted of a sequence of brief trials with an intertrial
interval of �700 msec. All trials began with the appearance of a stationary

stimulus surrounded by a gray background of
the mean luminance. For all trials, the stimulus
appeared and was stationary for 250 msec be-
fore starting to move. After the motion was
completed, the stimulus remained visible for
an additional 250 msec. For each neuron, we
first assayed the preferred direction by record-
ing the responses to a 1000 msec motion of a
32% contrast sine-wave grating in 16 direc-
tions. We then assessed the preferences of the
neuron for spatial and temporal frequency by
measuring the response to gratings moving in
the preferred direction for all combinations of
six spatial frequencies (0.125, 0.25, 0.5, 1, 2,
and 4 cycles per visual degree) and nine tem-
poral frequencies (0, 0.25, 0.5, 1, 2, 4, 8, 16, and
32 cycles per second). For 5 of 104 neurons, the
response to the lowest spatial frequency was
not measured. For many neurons, gratings
were presented at two contrasts, 32 and 8%, in
randomly interleaved trials. Next, we tested the
responses of 48 neurons with stimuli that con-
tained two spatially overlapping gratings.
Dual-grating stimuli were created by tempo-
rally interleaving frames in which each of the
gratings were displayed individually. Because
the refresh rate of the monitor was 100 Hz, the
refresh rate to display both gratings was 50 Hz.
To allow fair comparison to the dual gratings,
single sine-wave gratings were displayed with a
temporal refresh rate of 100 Hz, but frames
containing the grating were temporally inter-
leaved with a blank (gray) stimulus of the same
mean luminance.

For a subset of 71 neurons, we measured the
speed tuning for random dots that moved

Figure 1. Two models for the creation of motion-sensitive neural responses A, D, Response contours indicating the strength of
responses as a function of the position of the stimulus and time. Red contours indicate regions of increasing response to dark
stimuli, whereas blue contours indicate the response to light stimuli. The response fields in A and D are diagrams contrived to
represent motion filters that would and would not have a dependence of speed tuning on the spatial frequency of sine-wave
gratings. B, E, The contour lines show the receptive field of each model after transformation into Fourier space. The parallel, dashed
lines indicate isospeed contours, with speed indicated by the number at the top right of each line. C, F, Each curve shows the speed
tuning of the model at one spatial frequency; different colors indicate different spatial frequencies and the colors of the curves are
coordinated with those of the arrows above B and E, The graphs inset at the top right of C and F plot preferred speed as a function
of spatial frequency. C and F were derived exactly from the contour plots in B and E.
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within a window placed over the receptive field of the neuron (Priebe et
al., 2002). Random dots were presented on an analog oscilloscope (mod-
els 1304A and 1321B, P4 phosphor, Hewlett-Packard, Palo Alto, CA),
using signals provided by digital-to-analog converter outputs from a
personal computer (PC)-based digital signal processing board (Spec-
trum Signal Processing, Burnaby, Canada). This system allows a tempo-
ral refresh rate of 500 or 250 Hz and a nominal spatial resolution of
64,000 by 64,000 pixels. The display was positioned 65 cm from the
animal and subtended 20 o horizontally by 20 o vertically. Because of the
dark screen of the display, background luminance was beneath the
threshold of the photometer, less than 1 mcd/m 2. For all random-dot
trials, textures appeared and were stationary for 256 msec before moving
for 512 msec. After the motion was completed, the dots remained visible
for an additional 256 msec. After identifying the preferred direction of
each neuron, we determined its preferred speed by moving the random-
dot texture in the preferred direction at 11 speeds: 0.125, 0.25, 0.5, 1, 2, 4,
8, 16, 32, 64, and 128°/sec.

Data acquisition and analysis. Experiments were controlled by a com-
puter program running on a UNIX workstation and a Windows NT PC
running the real-time extension RTX (VenturCom, Waltham, MA). The
two computers were networked together: the UNIX workstation pro-
vided an interface for programming target motion and customizing it
during recording from a neuron; the PC provided real-time control of
target motion and data acquisition. The times of spikes were recorded by
the PC and sent over the network to the UNIX workstation, which stored
them for subsequent analysis, along with codes indicating the target mo-
tion that had been commanded. Each experiment consisted of a list of
trials, in which each trial presented a different stimulus motion. Trials
were sequenced by shuffling the list and presenting the trials in a random
order until all the trials in the list had been presented. The list was then
shuffled and repeated again until enough repetitions of each stimulus had
been obtained. The mean number of repetitions for each trial condition
was 15.3 � 5.27 (mean � SD).

Data were analyzed by aligning all the responses to identical trajecto-
ries of grating motion on the onset of motion and accumulating post-
stimulus time histograms with a bin width of 1 msec. For presentation,
the histograms were built with a bin width of 50 msec. Background
responses were eliminated by creating a histogram for trials that pre-
sented a stationary stimulus, computing the mean firing rate during the
interval when stimuli for other trials were moving, and subtracting this
scalar from the firing rate in every bin of every other histogram. We then
measured the firing rate from the background-corrected histograms to
determine the stimulus selectivity of each neuron and to quantify the
results of each experiment. Fits to the data were made by extracting the
firing rate from each cell on a trial-by-trial basis. The extracted firing
rates were then passed to a Matlab (MathWorks, Natick, MA) function
(“nlinfit”) that fit the data using the equations presented in the Results
section of the paper. Confidence intervals for parameter estimates were
computed from the Jacobian matrix and the residuals using the Matlab
function “nlparci.” Specific analyses are presented in the relevant places
in the Results.

Results
Theoretical basis for the experiments
Most models of motion selectivity are based on a comparison of
luminance or contrast signals across time and space. Although
many models have been shown to extract the direction of motion
accurately, the details of the filters in the models determine
whether they signal the speed of motion independently of object
shape or object contrast. For example, one of the most influential
models of motion selectivity, the motion energy model originally
developed independently by Adelson and Bergen (1985) and
Watson and Ahumada (1985), can take forms in which speed
tuning does (Fig. 1, top) or does not (Fig. 1, bottom) depend on
spatial frequency. Figure 1, A and D, shows diagrams of the re-
sponse field, in space and time, of two possible configurations of
filters that might arise from the motion– energy model. Both con-
figurations are oriented in the space–time coordinate system and

would respond selectively to the motion of an object from the
right to the left. However, the envelope of the filter in Figure 1A is
not oriented in space–time, whereas that in Figure 1D is oriented.
When these filters are viewed in Fourier space, they are accord-
ingly nonoriented as in Figure 1B and oriented as in Figure 1E.
We will refer to the response viewed in frequency domain as
oriented and nonoriented motion filters. In Fourier space, for a
sinusoidal grating stimulus, speed follows the relationship:

Speed �
Temporal Frequency

Spatial Frequency
(1)

Because Figure 1, B and E, uses logarithmic axes, the contour lines
of equal speed are parallel to one another (dashed lines).

The Fourier transform of a nonoriented motion filter (Fig. 1B,
contour lines) reveals independence along the spatial and tempo-
ral frequency axes: the temporal frequency that gives the best
response is the same at each spatial frequency, and vice versa. As
a consequence, speed tuning for sine-wave grating stimuli
changes as a function of spatial frequency. As shown in Figure 1C,
the best response occurs at a speed of 8 o/sec when the stimulus
has a low spatial frequency of 1/8 cycles per degree. As spatial
frequency increases, the preferred speed decreases: when the spa-
tial frequency is 4 cycles per degree, the best response occurs at
0.25°/sec. Thus, for each subunit of the motion– energy model,
the preferred speed varies over a 32-fold range as a function of
spatial frequency. In contrast, the Fourier transform of the ori-
ented motion filter is tilted (Fig. 1E) so that its spatial and tem-
poral frequency tunings are not independent: as the spatial fre-

Figure 2. Responses of a representative MT neuron to moving sine-wave gratings with
different combinations of temporal and spatial frequency. Each histogram shows the average
firing rate in 50 msec bins for multiple repetitions of a single stimulus. The grating was visible
throughout each histogram, and the bold horizontal lines below the bottom row of histograms
indicate the time when the grating was moving.
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quency increases, the preferred temporal frequency also
increases. In Fourier space, the long axis of the response field now
lies on a contour of constant speed instead of crossing different
speed contours for each spatial frequency. When the speed tuning
is measured for each spatial frequency, shown in Figure 1F, the
speed tuning curves overlap one another; thus, the preferred
speed does not vary as the spatial frequency is changed.

In this paper, we will first ask whether the speed tuning of MT
neurons resembles better the predictions of the model in the top
or bottom row of Figure 1 by quantifying the relationship be-
tween preferred speed and spatial frequency of MT neurons:
stimuli will consist of sine-wave gratings chosen to tile the param-
eter space of spatial and temporal frequency. We will next dem-
onstrate that the responses to single gratings underestimate the
true speed tuning of MT neurons: stimuli will consist of spatially
overlapping pairs of sine-wave gratings, square-wave gratings,
and textures.

Speed tuning of MT neurons for single sine-wave gratings
We recorded the responses of 118 MT neurons to gratings mov-
ing in the preferred direction; 104 neurons provided adequate
data to allow a proper estimation of the response field in Fourier
space. Each combination of spatial and temporal frequency
yielded a single histogram, like those shown in Figure 2, which
summarizes the responses of one MT neuron to all combinations
of six spatial frequencies and eight temporal frequencies. Inspec-
tion of Figure 2 reveals that the largest responses occur for spatial
frequencies of 0.5–1 cycles per degree and temporal frequencies
of 8 –32 cycles per second. However, inspection of the family of
histograms does not reveal whether the response field is separable
(Fig. 1B), oriented (Fig. 1E), or in between.

We created response fields from the mean response to each
combination of spatial and temporal frequency for each neuron

like those shown for three representative
neurons in Figure 3A1–C1. In these
graphs, the amplitude of each steady-state
response of the neurons to the combina-
tions of spatial and temporal frequency is
indicated by the diameter of the symbol.
For the neuron in Figure 3A1, the re-
sponse field is similar to the model filter
shown in the top row of Figure 1: the spa-
tial and temporal frequency profiles ap-
pear to be approximately independent.
The same data have been plotted differ-
ently in Figure 3A2, now showing re-
sponse as a function of stimulus speed
separately for each spatial frequency. As
expected for a neuron with a nonoriented
response field, the preferred speed of the
neuron changed as a function of spatial
frequency: the preferred speed varied
from 40 to 1.5°/sec, as the spatial fre-
quency of the moving stimulus was
changed from 0.125 to 4 cycles per degree.
The data in Figure 3B, from the same neu-
ron shown in Figure 2, show a somewhat
tilted spatiotemporal response field (Fig.
3B1), and the plots of firing rate as a func-
tion of speed (Fig. 3B2) reveal that the
preferred speed of the neuron decreased
from 36 to 8°/sec as the spatial frequency
of the moving stimulus increased from

0.125 to 1 cycles per degree. Finally, the neuron in Figure 3C
shows an oriented spatiotemporal response field (Fig. 3C1) and
no relationship between preferred speed and spatial frequency
(Fig. 3C2). The speed tuning curves in Figure 3C2 show different
amplitudes at different spatial frequencies, but peak at the same
speed for each spatial frequency.

To quantify the dependence of speed tuning on spatial fre-
quency, we used a variant of a two-dimensional Gaussian on
logarithmic axes to fit spatiotemporal response fields like that
illustrated in Figure 3, A1 to C1:

R�sf, tf � � A�e
��log2�sf ��log2�sf0��2

�sf2 �e
��log2�tf ��log2�tfp�sf ���2

�tf2

(2)

where tfp depends on spatial frequency and is defined as:

tfp�sf � � 2�Q�1���log2�sf ��log2�sf0���log2�tf0� (3)

Fits and statistical significance were derived from the responses to
the full set of individual presentations of each stimulus, whereas
the variance accounted for by the fits was based on how well they
predicted the mean responses for each stimulus. Equations 2 and
3 have the advantage that they use a single equation to fit all the
data, quantifying the slope of the relationship between preferred
speed and spatial frequency using a single parameter, the expo-
nent Q. When Q is 0, there is no relationship between spatial
frequency and the preference of a neuron for speed, indicating
that the neuron has speed tuning that is independent of spatial
frequency (Fig. 1F, inset). When Q is �1, there is a strong depen-
dence of the preferred speed on the spatial frequency: as the spa-
tial frequency is increased by a log unit, the preferred speed of the
neuron is decreased by a log unit (Fig. 1C, inset). A Q value of �1
indicates that the spatial and temporal frequency tunings of the

Figure 3. Effect of spatial frequency on the preferred speed of three MT neurons chosen to indicate the diversity of effects.
A1–C1, Response fields in the coordinate system of temporal and spatial frequency. Each symbol indicates the response to one
combination of spatial and temporal frequency, and the diameter of the symbol gives the size of the response. A2–C2, Symbols plot
the response of each neuron as a function of speed; the different colors indicate gratings of different spatial frequencies. Curves
show the result of fitting the data with Equations 2 and 3. As before, the colors are coordinated for the symbols and curves in the
bottom row of graphs and the arrows above the top row of graphs. Error bars indicate SEM of the firing rate.

Priebe et al. • The Representation of Speed in MT J. Neurosci., July 2, 2003 • 23(13):5650 –5661 • 5653



neuron are independent. The Q value assumes that the interac-
tion between spatial frequency and preferred speed is linear in
logarithmic space, following a power law in linear frequency
space. For the example neurons shown in Figure 3A–C, Q was
�0.95, �0.55, and �0.05, indicating a strong, medium, and weak
dependence of preferred speed on spatial frequency.

The distribution of the parameter Q calculated for our popu-
lation of 104 MT neurons is unimodal and peaks near the mean Q
value of �0.52 (Fig. 4). To compare with other studies, we clas-
sified the neurons according to whether the 95% confidence in-
tervals of Q overlapped 0 or �1: if they overlapped �1, then we
classified the neuron as “spatiotemporally independent” (26 of
104) (Fig. 4, black bars); if the confidence intervals overlapped 0,
we classified the neuron as speed tuned (25 of 104) (Fig. 4, white
bars); if Q was between �1 and 0 but the confidence intervals
overlapped neither, we called the neuron unclassed (49 of 104)
(Fig. 4, gray bars), although it had features of both speed tuning
and spatiotemporal independence. A few neurons (4 of 104) had
Q values �0 and confidence intervals that did not overlap 0,
indicating that their speed tuning shifted with spatial frequency,
but in the opposite direction predicted by a spatiotemporal-
frequency-independent model. For the remainder of the paper,
we have considered these neurons as part of the speed-tuned
group. The model defined by Equations 2 and 3 provided excel-
lent fits to the spatial and temporal frequency tuning of MT neu-
rons, accounting for the majority of the variance in their mean
responses (94.8 � 3.6%; mean � SD).

As additional independent tests of speed tuning we used two
alternative analysis methods. First, we refitted the relationships
between firing rate and speed (Fig. 3A2–C2) separately for each
spatial frequency and then performed regression analysis for the
log of the preferred speed as a function of the log of the spatial
frequency. This analysis confirmed the validity of the assumption
of a linear relationship between the logarithms of the spatial fre-
quency and the preferred speed. It yielded values of Q that were

nearly the same in individual neurons (r 	 0.91) but were slightly
closer to �1 (less speed-tuned) than for the fits based on Equa-
tions 2 and 3. Because fitting the data for each spatial frequency
separately used more parameters, we did obtain the expected
slight improvement in how well the equations fitted the data.

Second, we used a variant of a method devised by (Levitt et al.,
1994) for classifying neurons according to where they fall along
the axis of spatiotemporal separability. In this method, we fitted
the spatial and the temporal frequency tuning of the neuron in-
dependently with Gaussian functions on logarithmic axes (Fig.
5A). We then used the independent fits of spatial and temporal
frequency to make two predictions of the response of the neuron:
(1) a spatiotemporal-frequency-independent prediction com-
puted by taking the outer product of the two tuning curves (Fig.
5B); and (2) a speed-tuned prediction computed by shifting the
temporal frequency as a function of spatial frequency so that
preferred speed was independent of the speed tuning of the neu-
rona (Fig. 5C). We then assessed whether the actual tuning of the
neuron was closer to the speed prediction or the independent
prediction by computing the partial correlation of the actual re-
sponse with each of the simulated responses using the following
equations:

R indep �
�ri � rs�ris�

��1 � rs
2��1 � ris

2�
(4)

Rspeed �
�rs � ri�ris�

��1 � ri
2��1 � ris

2�
(5)

where Rindep and Rspeed are the partial correlations of the response
field with the independent and speed-tuned predictions, ri is the
correlation of the data with the independent prediction, rs is the
correlation of the data with the speed-tuned prediction, and ris is
the correlation of the two predictions. We then plotted Rspeed as a
function of Rindep (Fig. 5D) and divided the population of neu-
rons according to whether they were speed-tuned, spatiotempo-
rally independent, or unclassed. The results in Figure 5D are
similar to those shown by the distribution of values of Q in Figure
4B: the population included 28 speed-tuned neurons, 25 spatio-
temporally independent neurons, and 51 unclassed neurons, Fi-
nally, there was a strong correlation between the classifications
based on using the correlation analysis and the Q analysis (r 	
0.91).

Our conclusions about the speed tuning of MT neurons dis-
agree with those in a recent paper of Perrone and Thiele (2001), in
which they did similar experiments but claimed that the majority
of MT neurons are tuned for speed. We do not have access to their
data, but it seems to us that the difference between their conclu-
sion and ours lies solely in the criteria used to assign neurons to
the speed-tuned class. We called neurons speed-tuned only if
they had a value of Q that was not statistically different from 0.
They used a more liberal criterion to classify neurons as speed-
tuned, including any neurons that showed any tilt in their spatio-
temporal response field. This would have caused most of our
unclassed neurons to be classified as speed-tuned, despite the
effect of spatial frequency on speed preference for these neurons.

aIn Levitt et al. (1994), the speed tuning of V2 neurons was evaluated by comparing the correlations of the actual
spatial and temporal frequency profile to predictions based on independent versus speed-tuned spatial temporal
frequency tuning, as done here. However, to create the speed-tuned prediction they altered the preferred spatial
frequency as a function of temporal frequency. In this paper, we made the speed-tuned prediction by the converse
procedure of changing the preferred temporal frequency as a function of spatial frequency. This subtle change is
important, because changing the peak spatial frequency as a function of temporal frequency does not produce
spatial-frequency-independent speed tuning, whereas the converse procedure does.

Figure 4. Summary of the effect of spatial frequency on preferred speed across the popula-
tion of MT neurons. The histogram plots the distribution of the value of Q (Eq. 2) for all 104
neurons in our sample. A Q value of �1 indicates spatial and temporal frequency indepen-
dence. A Q value of 0 indicates no relationship between spatial frequency and preference for
speed. The dark bars indicate neurons whose 95% confidence intervals for Q overlapped with
�1. The white bars indicate neurons whose 95% confidence intervals for Q overlapped with 0.
Gray bars indicate the neurons whose confidence intervals lie between �1 and 0, whereas the
light gray bars indicate neurons whose Q values and confidence intervals were �0. The values
above the corresponding portions of the histogram indicate the number of cells falling into each
classification.
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A nonlinearity that improves speed tuning of MT neurons for
pairs of sine-wave gratings
Cognizant that objects comprise multiple spatial frequencies, we
next asked whether speed tuning became form-invariant for
stimuli that contained multiple spatial frequencies. We tested MT
neurons with dual-grating stimuli consisting of two superim-
posed gratings of the same orientation. We paired gratings of the
same speed from either the higher or lower pairs of four spatial
frequencies (Fig. 6A, connected by black or gray lines). Predict-
ing the responses to the two gratings in each pair by applying the
linear model (adding the responses to each grating presented
alone) implied that we should find distinctly different preferred
speeds for the different ranges of spatial frequency, as shown by
the open symbols and dashed curves in Figure 6B. However,
recording the responses to dual gratings yielded speed-tuning
curves with similar peaks for the different ranges of spatial fre-
quency, as shown by the filled symbols and solid curves in Figure
6B (top).

To evaluate this effect in the population of MT neurons, we
fitted the predictions and data with Gaussian functions and used
the midpoint and � 2 from the fits to estimate the preferred speed
and the tuning width for each function. We then computed the
absolute difference in preferred speed between the higher and
lower pairs of spatial frequencies for both the linear predictions
and the data, and plotted the data from each neuron as a point in
Figure 6D. All but two of the points fell below the line of slope 1,
indicating that the difference in preferred speed for dual-grating
stimuli over the two ranges of spatial frequencies was consistently
smaller in the data than predicted by the linear model (means of
0.73 and 1.35 octaves, respectively). Figure 6E shows that the
tuning width for the dual-grating stimuli was narrower in the
data than predicted, for almost every neuron. Population aver-
ages were: linear prediction, 1.69 � 0.60; data, 1.28 � 0.53
(mean � SD). This experiment indicates the presence of nonlin-
ear mechanisms based on multiple spatial frequencies and sug-
gests that the nonlinearities could create form-invariant speed
tuning for real object motion.

To characterize the nonlinear mechanism, we calculated
“gain,” defined as the actual response to each dual-grating stim-

ulus divided by the prediction from summing the responses to
the two gratings singly. Figure 6B, bottom, plots the gain sepa-
rately for the high and low ranges of spatial frequencies: gain was
highest near the preferred speed for this neuron (upward black
arrow). To summarize the nonlinearity across our sample of MT
neurons, we normalized the speed axis in the gain plots for each
neuron so that preferred speed had a value of 1. We then averaged
the curves that plotted gain as a function of normalized speed for
all 30 neurons tested with dual-grating stimuli. The average gain
(Fig. 6C) was largest near the preferred speed of the neurons and
declined as speed moved away from preferred. Furthermore, the
average gain curves were similar for the higher and lower ranges
of spatial frequencies (Fig. 6C, gray vs black curves).

To further investigate the source of the nonlinear interaction
that yielded more form-invariant speed-tuning curves, we pre-
sented stimuli composed of two overlapping gratings whose spa-
tial and temporal frequencies were adjusted independently ac-
cording to the design illustrated in Figure 7, A and B. For each MT
neuron presented with the dual-grating stimulus, we first deter-
mined its preferred spatial and temporal frequencies. We then
chose pairs of spatial and temporal frequencies surrounding its
preference, yielding four sine-wave gratings. The way these grat-
ings were selected and combined is indicated by the position of
the four histograms for single gratings in Figure 7A. Each histo-
gram is placed as if it were in a plot of spatial versus temporal
frequency, so that the two histograms outlined in gray had the
same speed and, when combined into a dual-grating stimulus
produced the “same-speed” response that is also outlined in gray.
For this neuron, the actual response to the same-speed dual grat-
ing was twice as large as that predicted by adding the mean re-
sponses to the two gratings presented singly (horizontal dashed
line). The two histograms outlined in black represent responses
to two gratings that had the same spatial and frequency compo-
nents as the same-speed gratings, but now in different combina-
tions so that the two gratings moved at different speeds. For this
neuron, the response to the two different-speed gratings (out-
lined in black) was approximately the same amplitude as that
predicted by adding the mean responses to the two gratings pre-
sented singly (horizontal dashed line). The example neuron illus-

Figure 5. A correlation-based analysis to classify the speed tuning of MT neurons (after Levitt et al., 1994). A, Contour plot of the response field of the example neuron shown in Figure 2 and Figure
3B1,B2. The spatial and temporal frequency that evoked the peak response is indicated by the dark X. The curve above the contour plot shows the spatial frequency tuning of the neuron at the
temporal frequency that elicited the peak response, indicated by the horizontal dashed line. The curve to the right of the contour plot shows the temporal frequency tuning at the spatial frequency
that elicited the peak response, shown by the vertical dashed line. B, C, Contour plots predicted by using the spatial and temporal tuning in A were used to create either a spatiotemporal-frequency-
independent model of the neuron ( B) or a speed-tuned model of the neuron ( C). D, Summary of the correlation of the response field of each neuron with the predictions of models based on
spatiotemporal independence (x-axis) and speed tuning ( y-axis). Each symbol summarizes the classification for a different MT neuron in our sample. Solid lines indicate the dividing lines used to
characterize neurons as speed-tuned, unclassed, or independent.
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trated in Figure 7B is more typical of the
responses we found. The response to the
same-speed dual grating is slightly smaller
than predicted by linear summation,
whereas the response to the different-
speed dual-grating stimulus is half as large
as predicted by the linear summation of
the mean responses to the two gratings
presented singly.

We again quantified the response to
the dual gratings by computing the gain,
defined as the actual response divided by
that predicted by summing the responses
to the two component gratings singly. For
the population, the gain for the same-
speed dual grating was almost always
greater than the gain for the different-
speed dual-grating stimulus. When the
gain along the same-speed axis was plot-
ted as a function of that along the
different-speed axis (Fig. 7C), 75% of the
recorded neurons (36 of 48) showed
higher gains along the same-speed axis,
indicating the presence of a nonlinearity
that favored the same-speed gratings. The
rest of the neurons were grouped around
the line of slope 1, indicating that the non-
linearity did not favor same-speed grat-
ings, although the gains were almost al-
ways 
1.0, indicating the presence of a
nonlinearity. The gains averaged 0.79 and
0.56 along the same-speed and different-
speed axes. For same-speed dual gratings
there was a slight difference in the change
in the gain of response that depended on
the degree that speed tuning was affected
by spatial frequency. Using the broad clas-
sifications described above, neurons de-
scribed as spatiotemporal-frequency-
independent (Fig. 7C, black circles),
unclassed (gray circles), or speed-tuned
(open circles) had average gains of 0.86,
0.82, and 0.65, respectively. For different-
speed dual gratings, gain averaged 0.53,
0.58, and 0.53 for the three classes of MT
neurons.

The movement of the two overlapping
gratings contained both a first-order component of motion, de-
fined by luminance changes in time, and a second-order compo-
nent, defined by contrast changes in time (Cavanagh and Mather,
1989). When the gratings moved at the same speed, both the first-
and second-order motion components were in the same direc-
tion; when the two gratings moved at different speeds, the
second-order motion component opposed the first-order com-
ponent. Therefore, we conducted a control experiment to deter-
mine whether the reduced gain for the different-speed stimulus
could be explained by the presence of the opposing second-order
motion. We tested 16 MT neurons using dual-grating stimuli in
which the two gratings were positioned side by side rather than
overlapping. The side-by-side gratings were positioned within
the receptive field of MT neurons and together spanned the area
taken up by the stimulus in the experiments that used spatially
superimposed dual gratings. We then performed the same exper-

iment and analysis detailed above and in Figure 7. When the
gratings were spatially separate, eliminating second-order mo-
tion from the different-speed pair, MT neurons still showed a
nonlinear response, in which the gain of the response to the
same-speed gratings was, on average, 1.23 times greater than the
response to the different-speed gratings. For comparison, the
gain was 1.41 times greater when the gratings were superimposed.

Additional evidence for a nonlinearity that improves speed
tuning of MT neurons
If the presence of multiple spatial frequencies in the stimulus acts
through the kind of nonlinearity described in the previous sec-
tion to improve speed tuning, then speed tuning should vary in a
number of consistent ways depending on the exact form of the
stimulus. The presence of multiple spatial frequencies should
render speed tuning both less dependent on form and more nar-

Figure 6. Demonstration of a nonlinear mechanism that creates better speed tuning for dual gratings than for single gratings.
A, Response field of an example MT neuron to single gratings of varying spatial and temporal frequency, as in Figure 3. The black
and gray arrows indicate the spatial frequencies used for the two groups of dual grating stimuli. Responses connected by black or
gray lines indicate dual-grating stimuli in which each grating provided motion at the same speed. B, Top, The open symbols and
dashed curves plot the speed tuning predicted by the linear sum of the responses to individual gratings, for the spatial frequency
pairs of stimuli in A comprising the lower (black) or higher (gray) frequencies. The filled symbols and continuous curves plot the
actual speed tuning for dual gratings. Arrows plotted along the curves indicate the preferred speeds for predicted responses and the
actual responses. B, Bottom, black and gray symbols plot the normalized gain of the response to dual gratings for the lower and
higher ranges of spatial frequency pairs. The black arrow shows the mean of the preferred speeds for the actual responses over the
two ranges of spatial frequencies. Gain was not computed for a given dual-grating stimulus unless the predicted response, in the
denominator, was at least 10% of the maximum response. C, The population average of normalized response gain is plotted as a
function of speed, in which the data of each neuron has been normalized so that preferred speed was 1. Black and gray curves show
responses for low and high ranges of spatial frequencies. Error bars indicate SEM. D, Comparison of the actual and predicted
difference in preferred speed between the dual-grating stimuli comprised of different pairs of spatial frequencies. Each symbol
shows data for a single MT neuron. E, Comparison of the actual and predicted speed tuning for the dual grating stimuli. Each symbol
indicates the tuning width for a single MT neuron. As detailed in Results, predicted responses were obtained by summing the
responses to each component grating presented singly.
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rowly tuned than predicted by the summation of the responses to
the component gratings singly. Neurons might be closer to speed-
tuned for high-contrast than for low-contrast gratings if the
former cause some saturation earlier in the visual pathways. Neu-
rons should show better speed tuning for square-wave than sine-
wave gratings, because the former comprise multiple spatial fre-
quencies. The speed tuning for moving random-dot textures
should be narrower than predicted from the responses to sine-

wave gratings. In the present section, we
test each of these predictions.

Effect of contrast on spatiotemporal
frequency response fields
Lowering the contrast of the moving grat-
ings moved the responses in MT substan-
tially toward spatiotemporal independence
and away from speed tuning, without alter-
ing the preferred spatial or temporal fre-
quency of individual neurons. The effect of
lowering contrast was measured in 61 MT
neurons by using interleaved trials to
present moving gratings composed of the
high contrast used in the previous section
(32%) (Fig. 8A1,B1) and a lower contrast
(8%) (Fig. 8A2,B2). For the two neurons
summarized in Figure 8, A and B, the spa-
tiotemporal response field was visibly less
oriented when the grating contrast was
lower. Quantitative analysis showed that
both neurons became less speed-tuned: re-
ducing the contrast of the grating changed
the value of Q from �0.46 to �0.86 in one
neuron (Fig. 8A1,B1) and from �0.05 to
�0.54 in the other (Fig. 8A2,B2). The pop-
ulation summary in Figure 8C shows that
lowering the contrast of the stimulus caused
the Q values of many MT neurons to shift
toward spatiotemporal independence (i.e.,
toward �1), leading to a shift in the mean Q
for this subset of our population of MT neu-
rons from �0.45 to �0.79.

Responses to square-wave gratings
When the stimulus consisted of a square-wave grating instead of
a sine-wave grating, the responses of MT neurons were essentially
speed-tuned. Comparison of the spatiotemporal response fields
for two example neurons illustrates responses that are much
more nicely oriented for square-wave gratings (Fig. 9A2,B2) than
for sine-wave gratings (Fig. 9A1,B1). For the two sample neurons,

Figure 7. Additional analysis of the nonlinear response to dual grating stimuli. A, B, Poststimulus time histograms showing the responses of two example neurons to both single gratings and dual
gratings. In each panel, the four responses grouped in a square were obtained from single gratings with all combinations of two spatial and temporal frequencies. The numbers in each box indicate
the speed of the stimulus. The two histograms at the top and bottom right of each panel show the responses to dual gratings composed of gratings moving at the same speed (gray boxes) or different
speeds (black boxes). The dashed line shows the response level predicted by adding the mean firing to the two component grates presented alone. C, Group data for all 48 neurons whose responses
were measured to dual gratings. Each symbol summarizes data from one neuron and shows the average gain of the response to same-speed dual gratings as a function of that for different-speed
dual gratings. Gain is defined as the actual response divided by the linear prediction of the response. The filling of each circle indicates the classification of the neuron according to the effect of spatial
frequency on preferred speed for single grating: black, independent; gray, unclassed; open, speed-tuned.

Figure 8. Effect of spatial frequency on preferred speed of MT neurons for high- versus low-contrast sine-wave gratings. A1, B1,
Spatiotemporal frequency response fields of two example MT neurons for high-contrast gratings (32%), in the same format as
Figure 3. A2, B2, Spatiotemporal frequency responses fields of the same two neurons for low-contrast gratings (8%). For each
contrast, the diameter of the symbols was normalized relative to the peak response at that contrast. The numbers in the bottom
right of each graph give the value of Q obtained by fitting Equations 2 and 3 to the data in that graph. C, Comparison of the values
of Q for single sine-wave gratings of high versus low contrast. In the graph, each symbol summarizes the responses of an individual
neuron and the dashed line indicates a line of slope 1 and y-intercept of 0. The histograms above and to the right of the scatter plot
show the distributions of Q for single sine-wave gratings of 32% and 8%, respectively. Neurons were included in the histograms
only if they were tested with gratings of both contrasts. The arrows in both histograms indicate the mean values across our sample
of MT neurons.

Priebe et al. • The Representation of Speed in MT J. Neurosci., July 2, 2003 • 23(13):5650 –5661 • 5657



the values of Q obtained by applying
Equations 2 and 3 were �0.88 and �0.58
for sine-wave gratings and 0.02 and �0.20
for square-wave gratings. The same effect
appeared in almost all 20 MT neurons we
tested with sine-wave and square-wave
gratings. As summarized in Figure 9C, the
values of Q for square-wave gratings
grouped around 0 and were less than the
values of Q for sine-wave gratings in all
but two neurons.

The use of the spatiotemporal re-
sponse fields for square-wave gratings is
formally incorrect because square-wave
gratings are composed of multiple sine-
wave gratings including the fundamental
spatial frequency (F) and higher harmon-
ics (3F, 5F, 7F, etc). The spatial and tem-
poral frequency content of a moving
square-wave grating is a series of points
aligned along an isospeed contour in the
Fourier space. Because the stimulus itself
is oriented in plots of temporal versus spa-
tial frequency, the responses to square-
wave gratings also should appear to be
more oriented, when plotted according to
the fundamental frequency, as shown in
Figure 9. Thus, the critical question is not
whether MT neurons appear more speed-
tuned for square-wave gratings, as they
do, but rather whether the shift toward
speed tuning can be accounted for using a
linear summation of the responses to the
fundamental and harmonic components
of the stimulus, after adjusting for the
contrast change attributable to the ampli-
tude reduction. For each neuron tested,
we predicted the value of Q for square-wave gratings responses
using the parameters of Equations 2 and 3 fitted to the responses
to sine-wave gratings at 32% contrast. On average, the linear
prediction did not predict the full extent of the shift toward speed
tuning for square-wave gratings: across the 20 neurons the aver-
age value of Q changed from �0.53 to �0.08 when the stimulus
was changed from sine- to square-wave gratings, whereas the
linear model predicts a more modest change to �0.30 (Fig. 9D).

The relationship between spatial and temporal frequency
tuning speed tuning to random dots
For a subset of our sample of neurons (71 of 104), we were able to
compare the speed tuning for a random-dot stimulus to the spa-
tiotemporal frequency response field. The random-dot stimulus
contains a broad spatial frequency spectrum; our strategy, again,
was to compare the speed tuning of MT neurons for random-dot
stimuli with predictions based on the responses of each neuron to
single sine-wave gratings of different spatial and temporal fre-
quencies. To predict the response to random dots, we averaged
the actual responses to sine-wave gratings along contours of
equal speed, as indicated by the dashed lines in Figure 10A. In the
example of Figure 10B, the preferred speed of the predicted speed
tuning curve (black symbols and curve) is similar to that for the
actual response to the random dots (gray symbols and curve).
However, the width of the speed tuning predicted by the sine-
wave gratings is greater than that for the actual responses to

random-dot motion. These two features were representative of
our sample population. The actual and predicted preferred
speeds for moving random dots were highly correlated (r 	 0.86)
(Fig. 10C). However, in most cells the tuning was narrower for
the dot stimuli than predicted by applying the linear model to the
responses to sine-wave gratings (Fig. 10D). Across the popula-
tion, � 2 averaged 1.49 octaves for the dot stimuli and 1.98 octaves
for the predictions from sine-wave gratings ( p 
 0.01; t test). The
random-dot stimulus did contain higher spatial and temporal
frequencies than were used in gratings to measure the spatial and
temporal frequency tuning of MT neurons. Although most MT
neurons did not respond to spatial frequencies higher than four
cycles per degree, the discrepancy between the predicted and ac-
tual speed tuning width could be an artifact of responses to the
higher spatial frequencies contained in the random-dot stimulus.

For each neuron in our sample population we also used the fits
of Equations 2 and 3 to estimate the spatial and temporal fre-
quency combination that would elicit the best response. For
high-contrast gratings (32%), the peak spatial frequency varied
from 0.125 to 4 cycles per degree (mean, 0.55 cycles per degree;
SD, 1.1 octaves). The preferred temporal frequency of MT neu-
rons ranged from 0.75 to 25 Hz (mean, 3.94; SD, 1.02 octaves).
Reducing the contrast of the moving gratings from 32 to 8%
caused the preferred spatial and temporal frequencies to decrease
by an average of 0.05 log unit. Comparison of the preferred pa-
rameters for the two contrasts in each individual yielded correla-

Figure 9. Comparison of the effect of spatial frequency on preferred speed for sine-wave versus square-wave gratings. A1, B1,
Spatiotemporal frequency response fields of two example MT neurons for high-contrast sine-wave gratings (32%), in the same
format as Figure 3. A2, B2, Spatiotemporal frequency responses fields of the same two neurons for square-wave gratings. For each
class of stimulus, the diameter of the symbols was normalized relative to the peak response for that stimulus. The numbers in the
bottom right of each graph give the value of Q obtained by fitting Equations 2 and 3 to the data in that graph. C, Comparison of the
values of Q for sine-wave versus square-wave gratings. D, Comparison of the values of Q fitted to the responses to square-wave
gratings with those predicted by a linear sum of the responses to sine-wave gratings representing the frequency components in the
square wave: the fundamental frequency ( F) plus 3F, 5F, 7F, 9F, and 11 F. In C and D, each symbol summarizes the responses of an
individual MT neuron and the dashed line has a slope of 1 and an intercept of 0.
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tion coefficients of 0.82 and 0.92 for spatial and temporal fre-
quency. There was no statistically significant effect of neuron
categorization (spatiotemporally independent, unclassed, or
speed tuned) on the preferred spatial or temporal frequency. Al-
though it did not change the tuning for spatial or temporal fre-
quency, reducing the contrast of the gratings from 32 to 8% did
reduce the peak firing of MT neurons by an average of 42%.

Figure 10, E and F, compares the preferred spatial and tempo-
ral frequencies of MT neurons with their preferred speed to dot
motion. The correlation between preferred spatial frequency and
preferred speed was very high (rsf 	 �0.81), whereas the relation-

ship was less strong between preferred
temporal frequency and preferred speed
(rtf 	 0.53). Correcting for the small cor-
relation between preferred spatial and
temporal frequency (r 	 �0.25) changed
the estimated correlations between pre-
ferred spatiotemporal frequency tuning
and preferred speed only slightly (rsf 	
�0.82; rtf 	 0.54). Thus, it appears that
spatial frequency tuning dominates tem-
poral frequency tuning in determining the
speed tuning of MT neurons. The domi-
nance of spatial frequency tuning in deter-
mining preference for speed is consistent
with the psychophysical finding that there
are more channels for spatial frequency
than for temporal frequency (Watson and
Robson, 1981).

The response of MT neurons to
moving plaids
Previous reports (Movshon et al., 1986)
have used stimuli called plaids to subdi-
vide the neurons according to their re-
sponse to complex motions. Plaids are
composed of two overlapping gratings at
different orientations, each undergoing
motion orthogonal to its orientation. To
determine whether the responses to plaids
was correlated with the degree of speed
tuning, we tested 61 MT neurons with in-
terleaved single sine-wave gratings and
plaids whose grating components were
separated by 135° of rotation. Sine-wave
gratings and plaid components had the
same spatial and temporal frequency,
which was chosen to be close to the pre-
ferred values for each of these parameters.
When tested with single gratings that
moved in 16 different directions, each
neuron showed traditional direction tun-
ing curves with a single peak (Fig. 11A,
open squares). When tested with plaids
that moved in the same 16 directions (Fig.
11A, open circles), “component neurons”
(top) showed direction tuning curves with
two lobes: one lobe each for the directions
of motion when the two component grat-
ings were moving in the preferred direc-
tion of the neuron under study. Because
the plaids were composed of gratings sep-
arated by 135° of rotation, the two lobes

had peaks separated by 135°. “Pattern neurons” (Fig. 11A, bot-
tom) respond to the direction of motion of the overall pattern;
therefore, they have a direction tuning curve with only a single
peak that is the same for plaids (filled circles) and single gratings
(open squares). Most neurons showed direction tuning for plaids
that was intermediate between the two extremes shown in Figure
11A.

We used the correlation analysis developed by Movshon et al.
(1986) to classify MT neurons as pattern, component, or un-
classed. This analysis is similar to that used in Figure 5 to quantify
the degree of speed tuning of MT neurons. It uses the response to

Figure 10. Comparison of MT neuron responses to sine-wave gratings versus random-dot textures. A, A diagram of the method
used to predict speed tuning for textures from response to gratings. For each speed of texture motion, the response of the neuron
was averaged for sine-wave gratings that fell along the isospeed contours indicated by the dashed lines. B, Black versus gray
symbols and curves show predicted and actual responses and turning curves from an example MT neuron as a function of texture
speed. In C–F, each symbol shows measurements made from an individual neuron. C, D, Comparison of predicted and actual
preferred speed ( C) and tuning width ( D) for the population of neurons. The dashed line shows the expected relationship if the
predicted and actual tuning matched. The values plotted in these graphs were taken from the Gaussian curves fitted to the data for
each neuron. E, F, Comparison of the preferred speed to random-dot textures with the preferred spatial frequency ( E) or temporal
frequency ( F) for sine-wave gratings. Preferred spatial and temporal frequencies were obtained from the parameters that gave the
best fits of Equations 2 and 3 to the data.

Figure 11. Comparison of the responses of MT neurons to moving plaids with the degree of form-invariant speed tuning. A,
Direction tuning of two example MT neurons for moving plaids and single sine-wave gratings. A, Top, Component-selective
neuron; bottom, pattern-selective neuron. Black squares show the response to single sine-wave gratings, whereas the gray circles
indicate the response to the plaid stimulus. Error bars indicate the SEM response for each direction of plaid movement. The plaid
components were separated by 135°. B, The distribution of pattern versus component selective neurons, based on the correlation
assay defined by Movshon et al. (1986). Solid lines indicate the basis for classification. The numbers indicate how the sample was
distributed in each classification area. C, The joint distribution of classification for pattern selectivity (x-axis) and form-invariant
speed tuning ( y-axis). The diameter of each symbol, as well as the accompanying numbers, indicate the number of cells belonging
to each joint classification. For speed tuning, the classification was taken from the analysis of the values of Q (Figs. 3, 4).
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single gratings to predict the expected response of a pattern and a
component neuron and then performs partial correlation analy-
sis to ask whether the actual response is better correlated with the
prediction for the pattern or component models. The direction
tuning for single sine-wave gratings was used as the prediction of
the pattern model. The sum of this same direction tuning rotated
67.5° clockwise and counterclockwise was used as the prediction
of the component model. Correlations were computed using the
pairs of actual and expected responses for all directions of stim-
ulus motion. The equations for partial correlation were:

Rp �
�rp � rc�rcp�

��1 � rc
2��1 � rcp

2 �
(6)

Rc �
�rc � rp�rcp�

��1 � rp
2��1 � rcp

2 �
(7)

where Rc and Rp are the partial correlations of the direction tun-
ing curves for plaids with the component and pattern predic-
tions, rc is the correlation between the response to plaids and the
model prediction for a component neuron, rp is the correlation to
the modeled pattern neuron response, and rcp is the correlation of
the two predictions. Rp was then plotted as a function of Rc (Fig.
11B) for each of the 61 neurons we studied with plaids, and the
neurons were classified as component, unclassed, or pattern ac-
cording to the criteria indicated by the solid curves. Consistent
with previous reports, �25% of our sample were classified as
pattern neurons, �25% as component neurons, and �50% were
unclassed (Movshon et al., 1986).

Figure 11C evaluates our sample of MT neurons to see
whether there is any correlation between the classification of in-
dividual neurons along the separate axes of speed-tuned/spatio-
temporally separable ( y-axis) and pattern/component responses
to plaids (x-axis). For each entry in the table, the diameter of the
symbol indicates the number of neurons that fell in that class. The
largest group was unclassed along both dimensions, but there was
neither a visible nor a statistically significant correlation among
neurons that were classed along one or both axes (Spearman rank
correlation; r 	 0.067; p � 0.5).

Discussion
Are MT neurons tuned for the speed of sine-wave gratings?
Current theories about the creation of motion-sensitive neurons
revolve around two extremes that make different predictions
about how motion is represented in the brain. At one extreme,
motion-sensitive neurons are tuned independently for spatial
and temporal frequency. Speed selectivity then becomes a conse-
quence of the fact that they show their largest response for a
specific pair of spatial and temporal frequencies, defining pre-
ferred speed as preferred temporal frequency divided by pre-
ferred spatial frequency. In this model, speed tuning would de-
pend significantly on the spatial frequency of the stimulus. At the
other extreme, neurons are tuned for speed and therefore show
some covariance in their spatial and temporal frequency tuning,
eliminating or minimizing the dependence of speed tuning on
spatial frequency.

As we illustrated in Figure 1, one way to diagnose whether the
response of a neuron shows spatiotemporal independence or
speed tuning is to measure the responses to single sine-wave grat-
ings and ask whether the response field is tilted in Fourier space.
In a study similar to ours, Perrone and Thiele (2001), also dem-
onstrated that most MT neurons show some degree of spatiotem-
poral tilt. They concluded that MT neurons are tuned for speed.

However, although tilt in the spatiotemporal response profile is a
necessary condition for speed tuning, it is not sufficient. By per-
forming the direct analysis of plotting response as a function of
speed for each spatial frequency and by determining whether the
amount of spatiotemporal tilt was consistent with speed tuning,
we have now demonstrated that only 25% of MT neurons are
tuned for the speed of sine-wave gratings in a way that is form-
invariant. Indeed, the most striking aspect of the response to
single gratings is the unimodal distribution of the value of Q, with
most neurons falling between the two theoretical extremes. Al-
though we have classified the neurons as independent, unclassed,
and speed-tuned to ease analysis, the effect of spatial frequency
on speed tuning is best described as a continuum.

How do MT neurons become tuned for the speed of
real-world objects?
Sine-wave gratings provide a tool for the analysis of neural re-
sponses, but have the drawback that they do not occur frequently
in natural visual scenes (Field, 1987; Dong and Atick, 1995).
Thus, there is no reason to think that the visual system would be
specialized for reporting accurately the speed of motion of sine-
wave gratings. Indeed, several features of the responses of MT
neurons suggest the existence of neural mechanisms that would
solve this problem for real-world objects. First, dual-grating
stimuli provided direct evidence for a nonlinear mechanism that
would move MT neurons toward form-invariant speed tuning
for real-world objects. Second, MT neurons show responses that
are much closer to speed-tuned for square-wave gratings than for
high-contrast sine-wave gratings. Square-wave gratings contain
sharp edges often found in natural scenes. They can be described
as the sum of multiple sine-wave gratings of different spatial fre-
quencies, and would gain access to the speed-tuning nonlinearity.
Third, MT neurons show responses that are closer to speed-tuned
for high-contrast sine-wave gratings than for low-contrast grat-
ings. High-contrast sine-wave gratings might create saturated re-
sponses at earlier stages of neural processing. As the neural re-
sponse becomes distorted, it comprises multiple spatial
frequencies and would trigger the effects of the speed-tuning
nonlinearity.

We think that the speed-tuning nonlinearity is more than
linear summation followed by the half-wave rectification created
by a threshold, because the responses to a given set of stimuli are
both more reliably and more narrowly speed-tuned than pre-
dicted by a linear summation based on the response of the neuron
to single sine-wave gratings. Dual-grating stimuli not only altered
the amplitude of the response relative to that predicted by linear
summation, but it also caused the speed tuning to shift toward the
single value that was revealed by testing with random-dot tex-
tures. These phenomena would result from the kind of excitatory
interactions proposed in models by Simoncelli and Heeger
(1998), in which MT neurons respond in a speed-tuned manner
as a result of excitatory interactions between inputs from neurons
that prefer the same speed but vary in their spatial and temporal
frequency tuning (Heeger et al., 1996; Simoncelli and Heeger,
1998).

MT neurons seem to derive form-invariant speed tuning in a
way that takes advantage of the fact that moving objects in natural
scenes comprise multiple spatial frequencies. The nonlinearity
revealed by our dual-grating experiments would make the re-
sponse field appear to be oblique (Fig. 1E) when multiple spatial
frequencies are present, even if it was cardinal for single sine-
wave gratings (Fig. 1B). It does this by allowing strong responses
when stimuli fall along the preferred speed line in spatiotemporal
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frequency plots, while suppressing responses along speed lines
above or below the preferred speed. It enables the desired result
(a form-invariant assessment of speed) without creating recep-
tive fields that are tuned for the speed of artificial stimuli such as
sine-wave gratings.

Implications for models of speed tuning in MT
Our data do not support strongly any particular model of
motion-selective neurons. Rather, they raise a number of impor-
tant, related issues about future attempts to model motion-
selective neurons, especially those in area MT. First, new models
of MT neurons should have the goal of creating a population of
MT responses that reflect the diversity of speed tuning rather
than the two extremes. In contrast, previous models of motion-
sensitive neurons have focused on creating responses at the two
extremes. An important issue that will need to be addressed is
whether direction-selective neurons in the primary visual cortex
show the same diversity, or if they lie closer to spatiotemporal
independence as suggested by Tolhurst and Movshon (1975).
Our data, combined with the similarity of the population ob-
tained for the same experiments in V2 (Levitt et al., 1994), suggest
that the diversity we found in MT may be a general property of
motion-sensitive neurons, rather than something specific about
MT. Second, new models should include the nonlinear gain in-
teraction described by our data so that the speed tuning for ob-
jects can be more form-invariant and narrower than would be
predicted from the responses to single sine-wave gratings. Third,
a better model for MT neurons should stress the correlation we
found between preferred speed selectivity and the spatial fre-
quency tuning of the neuron (Fig. 10E). Finally, our failure to
find a relationship between where neurons fall on the axis of
speed tuning versus spatiotemporal frequency independence and
where they fall on the axis of pattern versus component responses
to plaids implies that these two features of MT neuron responses
can be modeled independently.

Relationship between the coding of speed in MT and
motion psychophysics
We turn now to the problem of decoding the population re-
sponse in area MT to reconstruct speed for use in generating
perceptions and actions. Although neurons in area MT may not
encode the speed of motion independently of spatial frequency,
they may still contribute to our sensation of motion. In fact,
psychophysical data indicate that the spatial frequency of a grat-
ing does affect the perception of speed: low spatial frequencies
bias human observers to perceive faster speeds (Campbell and
Maffei, 1981; Reisbeck and Gegenfurtner, 1999; Smith and Edgar,
1990). We have confirmed that spatial frequency biases the hu-
man perception of speed and have shown that spatial frequency
also affects the initiation of smooth pursuit eye movements in
monkeys: both of these effects are of a direction and magnitude
predicted by the responses of the full population of neurons we
have recorded in MT (our unpublished observations). Thus, it
seems that neurons with speed tuning affected by spatial fre-
quency are providing outputs from MT. These neurons that do
not encode speed independently of spatial form cannot not be
dismissed as interneurons that only perform computations
within MT, but they also contribute to our perception of motion.

Finally, one might ask why it is important to have a speed-
tuning nonlinearity when it is possible to obtain a reasonable
estimate of speed by simply adding the responses to the compo-
nent gratings of the visual stimulus without using the nonlinear-
ity. We imagine two reasons. First, form-dependent speed tuning
could cause serious misjudgments of object speed, especially if a
small object is moving toward the observer, becoming larger and
changing spatial frequency content as it looms. Second, as indi-
cated by our data, one important function of the speed-tuning
nonlinearity is to narrow the speed tuning of MT neurons. Nar-
rower tuning of individual neurons means that a smaller popu-
lation of neurons is activated by any given stimulus. Thus, the
nonlinearity contributes to the creation of a sparse code, thereby
increasing the efficiency of neural coding in a way that seems
likely to benefit the organism (Olshausen and Field, 1996).
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