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Abstract
The study of patients to infer normal brain function has a long tradition in neurology and psychology.
More recently, the motor system has been subject to quantitative and computational characterization.
The purpose of this review is to argue that the lesion approach and theoretical motor control can
mutually inform each other. Specifically, one may identify distinct motor control processes from
computational models and map them onto specific deficits in patients. Here we review some of the
impairments in motor control, motor learning and higher-order motor control in patients with lesions
of the corticospinal tract, the cerebellum, parietal cortex, the basal ganglia, and the medial temporal
lobe. We attempt to explain some of these impairments in terms of computational ideas such as state
estimation, optimization, prediction, cost, and reward. We suggest that a function of the cerebellum
is system identification: to built internal models that predict sensory outcome of motor commands
and correct motor commands through internal feedback. A function of the parietal cortex is state
estimation: to integrate the predicted proprioceptive and visual outcomes with sensory feedback to
form a belief about how the commands affected the states of the body and the environment. A function
of basal ganglia is related to optimal control: learning costs and rewards associated with sensory
states and estimating the “cost-to-go” during execution of a motor task. Finally, functions of the
primary and the premotor cortices are related to implementing the optimal control policy by
transforming beliefs about proprioceptive and visual states, respectively, into motor commands.

Keywords
optimal control; computational models; reaching; cerebellum; basal ganglia; motor cortex; parietal
cortex

Introduction
Over the last 25 years, a large body of experimental and theoretical work has been directed
towards understanding the computational basis of motor control, particularly visually guided
reaching. Roboticists and engineers largely initiated this work, galvanized by the obvious
discrepancy between the clumsy movements of robots and the ease with which healthy people
move their limbs. Their aim was to derive from first principles some of the strikingly
stereotypical features of movements observed in people and other primates. That is, they aimed
to understand why we move the way that we do. For example, the theories began to explain
why in reaching to pick up a cup, or in moving the eyes to look at an object, there was such
consistency in the detailed trajectory of the hand and the eyes. In many ways, the approach
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was reminiscent of physics and its earliest attempts to explain regularity in motion of celestial
objects. Except here, the regularity was in our movements and the search was for normative
laws (Kording, 2007) that governed our behavior.

The computational models relied on empirical data generated by observation and experiment.
Experiments differed from observation of natural behavior in that they perturbed the behavior
under study. Perturbations led to errors. The nature of these errors and the way that they were
corrected (adaptation) provided insight into the computational organization of the motor
system. However, the language that was chosen to represent these results consisted of equations
that were independent of the properties of the hardware needed to implement them (i.e.,
neurons). More often than not there was not even a mention of the brain region where these
computations might be occurring. In David Marr’s (1982) terminology, the scientists were
working on a computational problem: inquiring about the driving purpose and logic of actions.

This approach stood in contrast to models that one occasionally encounters in neuroscience,
where the experiments and mathematics concern specific neuronal machinery. An example of
this approach would be the extensive work on the cerebellar circuitry underlying eye-blink
conditioning (Ohyama, Nores et al., 2003), the vestibulo-ocular reflex (Raymond, Lisberger
et al., 1996), or reaching (Kawato and Gomi, 1992). Marr called these levels of analysis the
algorithmic problem, inquiring about how a computation is represented in an input-output form
and implemented via an algorithm, and the implementation problem, the physical realization
of the algorithm.

There is a perspective in neurology that shares characteristics of the computational approach
in motor control. In neurology, one begins with the assumption that complete behaviors have
a functional architecture, and its organization is revealed when the architecture is damaged by
disease or accident. That is to say, the brain’s more basic modules or subsystems can be inferred
through the effects of focal lesions. In essence, lesions can make humans as clumsy as robots.
However, careful observation reveals that the clumsiness has structure and can come in
different forms, each carrying a signature that one can use to infer the locus of damage.
Unfortunately, inferring normal function from the effects of lesions is difficult for many reasons
but one is that neurologists tend to equate lesions of the motor system with deficits in execution
rather than seeing the behavior as a possible form of compensation for the change in the state
of the nervous system.

One way to evaluate the success of the computational models is to ask whether they help infer
normal function of a damaged brain region from the behavioral effects of lesions. We will
attempt to link computational theories of the motor system with findings in patients with
neurological disease. This review will be organized into the following sections: (1) a
computational framework for motor control, (2) the problem of inferring function from lesions,
(3) computational steps involved in making a movement, and (4) effects of focal and distributed
lesions on these specific computational steps.

The current state of computational motor control (and how we got here)
In 1954, Fitts published a short paper in which he reported that there were regularities in how
people planned their movements (FITTS, 1954). He asked volunteers to move a pen from one
‘goal region’ to another as fast and accurately as they could. He found that the movement
durations grew logarithmically as a function of the distance between the goals (Fig. 1A). This
relationship was modulated by two factors. One factor was the size of the goal region. As the
goal region became smaller, movements slowed down. Therefore, the speed at which people
planned their movements depended on the accuracy requirements of the task. A second factor
was the mass of the pen. People slowed their movements when they had to move a heavier
pen. This suggested that it was harder to maintain accuracy when one moved a heavier object
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[it is remarkable that the heaviest object in that paper was less than a pound, yet produced
robust changes in behavior]. Together, the data suggested that movement planning was affected
by accuracy constraints of the task as well as the forces that were required to perform the task.

In 1981, Morraso closely examined the trajectory of reaching movements and noted further
regularities: the hand moved in roughly a straight line with a bell-shaped speed profile, while
the various joints moved in more complicated patterns (Morasso, 1981). This was surprising
because muscles controlled the joints, and it was unclear why control should be complex at the
joint level in order to produce regularity in the hand path. Particularly strong regularities were
observed in saccadic eye movements. Bahill et al. (1975) and Collewijn et al. (1988) reported
that people moved their eyes to targets of various eccentricities with trajectories that had highly
reproducible timing and speed profiles. Was there a unified explanation for these regularities?

To answer this question, let us consider the simple reaching task that Fitts performed in some
detail. Suppose you are a subject and are handed a pen. Because the target box is surrounded
by two penalty regions, it seems rational to aim for the center of the target box. What if the
penalty region was only on one side? Now you should aim for a point farther away from the
penalty region and not at the center of the target box. This is because movements have
variability, and you will maximize your performance (in terms of sum of hits and misses) if
you take into account this variability. Trommershauser et al. (2005) demonstrated this in an
experiment illustrated in Fig. 2A. Costs for the penalty region, as well as the variance of the
tool affected where subjects aimed their movements. Importantly, if the tool increased its
variability (through artificial means), people aimed farther away from the penalty region.
Perhaps this variability also explains the speed of movements in Fitt’s experiment and its
sensitivity to pen weight: rapid movements are more variable than slow movements, so one
should slow down if there is a need to be accurate. Moving heavier objects tends to increase
movement variability, again requiring a reduced speed to maintain accuracy. Therefore,
movement planning takes into account movement variability because variability affects
accuracy, which in turn affects our ability to acquire reward.

Harris and Wolpert (1998) began formalizing these ideas by linking variability and movement
planning. They noted that larger motor commands required larger neural activity, which in turn
produced larger variability due to a noise process that grew with the mean of the signal.
Therefore, motor commands carried an accuracy cost because the larger the command, the
larger the standard deviation of the noise that rides on top of the force produced by the muscles
(Jones, Hamilton et al., 2002). Noise makes movements inaccurate. The link between size of
motor commands and accuracy of movements was crucial because in principle it could account
for the data that Fitts and Morasso had observed in reaching and some of the stereotypical
behaviors that one observes in saccades (Harris and Wolpert, 2006).

In a sense, the theory re-stated the purpose of these tasks using language of mathematics: be
as fast as possible, while trying to be as accurate as the requirements imposed by the task.
However, by doing so, it forced the theorists to think how one would actually achieve this
optimality. Certainly, the solution to the problem could not be ‘hard wired’: First, costs and
rewards of tasks are not constant. Take the simple saccade task where an animal is given more
reward for certain visual targets and less for others. Hikosaka and colleagues (Takikawa,
Kawagoe et al., 2002) examined eye trajectories when a monkey was asked to make saccades
to various target locations (Fig. 2B). They noted that peak speeds tended to be higher and less
variable when saccades were to rewarded target locations. Therefore, as expected rewards of
the task change, movement planning responds to these changes. Second, the brain alters
movement planning as the dynamics of the body or a tool change (Figs. 1 and 2A). Even if one
considers only the motor plant itself, the dynamics of the plant change over multiple timescales:
in the long timescales of development and aging, limbs grow and muscles strengthen, and then
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muscles age and some motor neurons die. In the short timescale, muscles and neurons fatigue
with repeated use and recover with the passage of time. Therefore, the nervous system can not
rely on a motor plant that is time-invariant. Rather, it seems more reasonable that the nervous
system should monitor these changes and form an internal model of the plant and/or the tool
(Shadmehr and Mussa-Ivaldi, 1994). Indeed, maintaining performance in something as simple
as a saccade or a reach probably requires constant adjustment of this internal model (Smith,
Ghazizadeh et al., 2006;Kording, Tenenbaum et al., 2007).

What is the nature of this adjustment? Todorov and Jordan (2002) recognized that a key
component of the optimization problem was presence of feedback. One type of feedback is
from sensory receptors that monitor the state of the body and the world. Another type of
feedback is from internal models that monitor the motor output and predict their sensory
consequences, effectively providing a form of internal feedback. Internal predictions can be
made long before sensory feedback, making some very rapid movements like saccades depend
entirely on internal feedback. However, for longer movements the two kinds of information
would need to be combined to form a belief about the state of the body. Todorov and Jordan
(2002) suggested that a more appropriate mathematical approach was to first describe the
constraints of the task in terms of a function that included explicit terms for gains and losses,
and then maximize that function in the framework of feedback control. This new formulation
was a breakthrough because it formally linked motor costs, expected rewards, noise, sensory
feedback, and internal models into a single, coherent mathematical framework.

We have summarized this framework in Fig. 3A. The theory explains that in order to make a
movement, our brain needs to solve three kinds of problems: we need to be able to accurately
predict the sensory consequences of our motor commands (this is called system
identification), we need to combine these predictions with actual sensory feedback to form a
belief about the state of our body and the world (called state estimation), and then given this
belief about the state of our body and the world, we have to adjust the gains of the sensorimotor
feedback loops so that our movements maximize some measure of performance (called optimal
control).

At the heart of the approach is the idea that we make movements to achieve a rewarding state.
This crucial description of why we are making a movement, i.e., the rewards we expect to get
and the costs we expect to pay, determines how quickly we move, what trajectory we choose
to execute, and how we will respond to sensory feedback.

Here, we will use this framework to examine a number of disorders in movement control. We
will suggest a specific computational neuroanatomy of the motor system (Fig. 3B). In this
framework, the basal ganglia help form the expected costs of the motor commands and the
expected rewards of the predicted sensory states. The cerebellum plays the role of predicting
the sensory consequences of motor commands, i.e., the expected changes in proprioceptive
and visual feedback. The parietal cortex combines the expected sensory feedback with the
actual sensory feedback, computing a belief about the current proprioceptive and visual states.
Given the motor costs and expected rewards of the sensory states, the premotor and the primary
motor cortex assign ‘feedback gains’ to the visual and proprioceptive states, respectively,
resulting in sensorimotor maps that transform the internal belief about states into motor
commands.

The computational problem in reaching
Let us use the well-studied reach adaptation paradigm to formulate the motor control problem
in the framework outlined in Fig. 3. In this framework, our problem can be posed as a series
of questions: what are the costs and rewards of the task, i.e., why should a person volunteer to
do this task? What is the ‘best’ way, i.e., the best set of motor commands, to maximize the
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rewards and minimize the costs? Finally, what kinds of computations are required to achieve
this goal?

Let us begin with the costs and rewards of a reaching task. For simplicity, allow us to focus
on the version that we typically perform in a laboratory. Suppose we are instructed to hold the
handle of a tool and move the tool so that a cursor displayed on a monitor arrives at a target.
If we accomplish this in a specific time period, we are provided a monetary reward, juice, an
‘explosion’ on the video monitor, or simply an encouraging comment from the experimenter.
We can sense the position of the cursor y v and the target r via vision, and position of our arm
y p via proprioception. Through experience in the task we learn that the objective is to minimize

the quantity  at time t = N after the reach starts (e.g., this is the time that the
movement is rewarded if the cursor is in the target). Superscript T is the transpose operator.
To denote the fact that this cost is zero except for time N, we write it as:

where the matrix Q is a measure of our cost at each time step (which may be zero except at
time N). That is, matrix Q specifies how important it may be for us to put the cursor in the
target. If we value the reward, then we set this variable to be large. There is also a cost associated
with motor commands u, which here we assume to grow as a quadratic function. This cost may
reflect a desire to be as frugal as possible with our energy expenditure, or it may reflect the
fact that the larger the motor commands, the larger the noise in the forces that are produced by
the muscles, resulting in variability. This variability increases the difficulty in controlling the
movement. As a result, we want to produce the smallest amount of motor commands possible.
Now the total cost becomes:

(1)

where matrix L is a measure of the costs associated with the motor commands. The relative
weight of Q and L is an internal measure of expected value of achieving the goal vs. expected
motor costs.

To be successful in this task (consistently arrive at the target in time), we need to find the motor
commands that on the one hand, are as small as possible, and on the other hand, are large
enough to get the cursor to the target in time. To do so, we need some way to relate motor
commands to their outcomes. This is called an internal model. For example, through
observation, we learn that moving the tool moves the cursor on the screen. In particular, motor

commands u(t) are expected to produce proprioceptive and visual feedback .
These are the expected sensory consequences of our action. Simplifying the problem, here we
write this ‘internal model’ of the dynamics as a linear function of motor commands:

(2)

where  represents the predicted state (of our body and the world) at time t given the sensory
feedback up until that time, H is a transformation of those states to expected sensory feedback

 (i.e., proprioception and vision), and  is predicted state at time t+1 given the state
and motor command at time t.

Eq. (2) describes an internal model of the dynamical system that we are trying to control. The
actual dynamics of that system may be more complicated. For example, the motor commands
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may carry signal-dependent noise. To solve the optimization problem, it is convenient to
represent the stochastic variable representing signal dependent noise in the motor commands

 as a linear combination of Gaussian noise stochastic variables ϕi ` N (0,1) with zero mean
and variance one (Todorov, 2005):

And so we see that the standard deviation of the noise in the motor commands grows linearly
with the motor commands with a slope of c, and therefore the variance grows with the ‘square’
of the motor commands:

In general, there may be similar signal-dependent noises on our sensory system, as well as
Gaussian type noises on the motor and sensory systems. In sum, a reasonable representation
of the stochastic system that we are trying to control might be written as:

(3)

As motor commands are generated, we receives a continuous stream of sensory feedback y.
We combine the predicted sensory feedback with the observed quantities to form a belief about
states:

(4)

In this equation, the term  is the belief state at time t+1, given that one has acquired
sensory information at that time. K is a mixing gain (or a Kalman gain) that determines how
much we should change our belief based on the difference between what we predicted and
what we observed. Therefore, Eq (2) describes how we make predictions about sensory
feedback, and Eq. (4) describes how we combine the actual sensory observations with
predictions to update beliefs about states.

Our task is to perform the movement in a way that maximizes our chances for reward. If Eq.
(2) is an accurate model of how motor commands produce changes in the states, then we can
use it as a set of constraints with which to minimize Eq. (1). [Eq. 2 is called a ‘constraint’
because our solution must lie on the manifold specified by this equation, i.e., our belief about
the relationship between the two variables in our cost, y and u.] Because there is noise in our
system, the cost J in Eq. 1 is a stochastic variable. At each time point during a movement, the
best that we can do is minimize the expected value of this cost, given the state that we believe

to be in, and the motor commands that we have produced: . The term E
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{J(t)} reflects the expected value of the ‘cost to go’, i.e., the total cost remaining in the current
trial. Technically, the cost is minimized by starting at the time when the movement is supposed
to end N and then walking back in time toward the current time t. The result is a feedback
control law that specifies the motor commands that we should produce at this moment in time
as a function of our belief about proprioceptive and visual states:

(5)

The new variable G is a matrix that changes with time during a movement. It tells us how at
time t we can transform beliefs in sensory states (in terms of proprioception and vision) into
motor commands so that we maximize performance in the remaining task time. The G matrices
are basically feedback gains that we compute from our knowledge about the costs/rewards of
the task (cost to go) and our knowledge about the dynamics of the task (the internal model).
The time-sequence of the feedback gains G are called a control policy. For completeness, we
provide the recursive equations that compute these gains:

The W matrices are intermediate variables that are used for defining the feedback gain G. The
proof that this algorithm minimizes the cost is provided by Todorov (2005). A tutorial and
step-by-step derivation is available as lecture notes on one of the author’s web page (RS). The
point to note is that all of the noises, as well as the parameters of the forward model and the
Kalman gain, affect the feedback gain. Therefore, the solution is strongly dependent on the
specific plant that one is trying to control.

Some examples
Let us consider some examples to illustrate this framework. A first example is a simple task
described by Uno et al. (1989) and shown in Fig. 4A. The objective is to reach from point T1
to T2. In one condition, the subject is holding a light-weight tool that moves freely in air. In a
second condition, the tool is attached to a spring that pulls the hand to the right. Without the
spring, people reach in a straight line. This is the path that minimizes the cost. However, once
the spring is attached, the straight path incurs substantially more motor costs than a curved
path. The curved path is the one that subjects choose (Uno, Kawato et al., 1989).

In our second example, the task is to move one’s hand from one point to another in a given
amount of time (450ms), but now instead of a spring, there is a velocity dependent field that
pushes the hand perpendicular to its direction of motion (Shadmehr and Mussa-Ivaldi, 1994).
Before the field is imposed, the motion that minimizes the cost (and maximizes probability of
reward) is simply a straight line with a bell-shaped velocity profile. However, when the field
is imposed, the solution is no longer a straight line (Izawa, Rane et al., 2006). For example, if
the field pushes the hand to the left, the policy that produces the least cost in terms of Eq. (1)
is one that moves the hand slightly to the right of a straight line, resulting in a curved movement
that appears to over-compensate for the forces (Fig. 4B). As subjects train, their hand paths
converge to this curved trajectory. To see the rationale for this behavior, Fig. 4C plots the forces
produced by the optimal controller and compares it to forces that must be produced if a mass
is moving along a ‘minimum-jerk’ trajectory. By moving the hand along a curved path, the
optimal controller produces less total force: It over-compensates early into the movement when
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the field is weak, but under-compensates at peak speed when the field is strongest. Therefore,
the curved path actually produces less total force than a straight trajectory. People produce
similarly curved trajectories when they move in such fields (Thoroughman and Shadmehr,
2000).

These examples demonstrate that kinematic costs like maximizing smoothness (Flash and
Hogan, 1985) are limited in their ability to explain the diversity of motor control because these
costs are invariant to the task’s dynamics: in the above examples the prediction would be to
keep moving along a straight line. However, we do not need optimal feedback control (OFC)
to explain the above two examples. Any cost structure that penalizes motor commands would
probably be sufficient and can be used in an open-loop scheme in which a sequence of motor
commands are pre-programmed and produce a curved ‘desired trajectory’ (Thoroughman,
Wang et al., 2007), as in minimum torque-change (Uno, Kawato, and Suzuki, 1989) and
minimum end-point variance schemes (Harris and Wolpert, 1998). So what do we gain with
the OFC framework?

All movements that we make include some sensory states that are crucial to the success of the
task, some sensory states that are less important, and some sensory states that are practically
irrelevant. OFC suggests that movements are planned as a sequence of feedback gains, and
these gains take into account how the states or combination of states contribute to the cost. In
effect, the gains define how at any point in time, each state or combination of states matters.
Consider a condition in which both arms are involved in performing a task. In this experiment
(Diedrichsen, 2007), the objective is to move a cursor to a target position (Fig. 5, right column).
However, the position of the cursor is a weighted sum of the left and the right hand: 1/2(xL +
xR). If target position is denoted by r, then the cost to go can be written as:

(6)

where the vector u now includes the motor commands to the left and the right arms. The idea
is that motion of the cursor can be influenced by motor commands of either arm, and so the
arms should cooperate to control the cursor in order to minimize the cost. Intuitively, the
cooperation means that the motor commands that move the right arm should depend not only
on the state of the right arm, but also on the state of the left arm. Mathematically, this means
that when we minimize Eq. (6) with respect to u, we find that the resulting Gv in Eq. (5) has
off-diagonal terms that produce motor commands in the left arm that depend on the visual state
of both the left and the right arms. As a result, when the left arm is perturbed during the reach,
the feedback gain will produce a response both in the left and the right arms.

The experimental results in Fig. 5 (right column) show that in the one-cursor condition,
perturbation of the left hand produces a compensatory response in both the left and the right
arms. Indeed, simple variability due to noise in one arm affects the motor commands in the
other arm. In contrast, when the task involves moving two cursors to two distinct targets, the
states of the cursors are now independently controlled by the motor commands that move each
arm. The motor command to the right arm can no longer influence the left cursor, and therefore
the feedback gains become decoupled. The data (Fig. 5, left column) shows that a perturbation
to the left hand now produces a much smaller response from the contralateral arm. Therefore,
OFC predicts that in the one cursor condition, the state of one arm is relevant to the motor
commands that move the other arm. In the two cursor conditions, that same state is irrelevant.

This idea that the nervous system controls states that are relevant to the task is called an
‘uncontrolled manifold hypothesis’ (Scholz and Schoner, 1999). The idea has been used to
account for complex movements that offer clear redundancies, like bimanual pointing
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(Domkin, Laczko et al., 2005) and Frisbee throwing (Yang and Scholz, 2005). OFC basically
states in mathematics what some of these ideas have been implying.

To summarize, the theory states that:

1. At any given time there are many actions possible. For any possible action, we need
to know the costs that are associated with it as well as the rewarding nature of the
sensory states that it might achieve (Eq. 1).

2. Once we choose to acquire a rewarding state, we need to know how our motor
commands produce changes in things that we can observe (Eq. 2). The problem of
predicting the consequences of our actions is called system identification.

3. In order to be optimal, we need to produce those motor commands that minimize the
costs and maximize the reward (Todorov and Jordan, 2002;Todorov, 2005). This is
the constrained minimization problem in optimal control (minimize Eq. 1 under the
constraints of Eq. 2). The result of the minimization is a feedback control policy that
specifies the feedback gain that we should apply to sensory states (Eq. 5).

4. As we generate motor commands, we make predictions about the sensory
consequences (Eq. 2). When actual sensory feedback arrives, we integrate our
observations with our predictions and form a belief about how our motor commands
have affected the state of our body and the world around us (Eq. 4) (Wolpert,
Ghahramani et al., 1995;Vaziri, Diedrichsen et al., 2006). This is called state
estimation.

Lesions and separable brain processes
There is an extensive literature on the complexities of inferring normal function from patient
impairments (see Shallice, 1988 for review). This topic can only be touched on briefly here,
but it is important to note the principal problems in order to avoid the most blatant kinds of
error when applying results from patient studies to test theories of normal motor control.

One pitfall is localization: inferring the normal function of a region from the effect that damage
has had on behavior. Such inference is problematic because abnormal behavior after a focal
lesion, especially when studied at a delay after the insult, is the sum of the direct effect of the
lesion plus its effect on regions connected to the damaged region. In addition, the implicit
assumption that the patient is using the same brain subsystem as before, just less efficiently or
effectively, may be wrong. From an optimization standpoint it could be that after injury a
qualitatively distinct subsystem is used to achieve the task goal (compensation). If one part of
the brain performs system identification and another performs feedback optimization, then
damage to the part that performed system identification might still allow the optimization
process to proceed, resulting in optimization in response to the damage. For example, in
cerebellar patients, reaching slowly may be an optimized response for an inability to predict
sensory consequences of movements, which is critical for control during fast movements.

A second concern is disagreement over whether single case reports or averaged group effects
yield the most informative results in patient studies. Some psychologists have argued that the
only valid form of neuropsychological data comes from single-case studies (Caramazza,
1986). The argument is that averaging artifacts may lead to a group result not shown by any
individual subject. Although this is a potential concern, certain kinds of group results may be
more resistant to this problem and, more importantly, group data are indispensable when
parametric relationships need to be explored and learning effects preclude testing more than
one value of a variable of interest in any given individual.
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A third issue is the question of what form of evidence is the best proof of separate brain
subsystems. The simplest kind of evidence for damage to a particular subsystem is to show
impairment in a specific task, for example a reaching task. However, as alluded to earlier, the
abnormal behavior may not reflect suboptimal functioning of the system used by healthy
subjects, but might indicate instead re-optimization in response to a functional loss. A second
kind of evidence is showing dissociation - the patient performs normally or close to normal on
Task A but below normal on Task B. The problem here is that the same brain subsystem might
be involved in both tasks, but task B is more difficult and so damage makes patients more likely
to perform poorly on task B than task A. Conclusions are on firmest ground when a strong
double dissociation can be demonstrated. In a double dissociation, one patient performs
normally on task A and abnormally on task B, whereas for the second patient the opposite is
true.

To better understand the idea of a double dissociation we can consider an example from outside
of motor control; the words-and-rules theory from linguistics (Pinker and Ullman, 2002). This
theory posits that in English, irregular past-tense forms are stored in the lexicon, a division of
declarative memory system, whereas the regular past-tense forms are computed with a
grammatical processing rule (addition of ‘-ed’). Finding a double dissociation in patients would
lend support to this theory and indeed that is what has been found. A patient with anomic fluent
aphasia was able to form the regular past-tense but not the irregular, whereas a patient with
agrammatic non-fluent aphasia showed the reverse pattern, although the formation of the
regular past-tense was not quite at control levels. This example serves two purposes. First, it
shows the value of single case studies for validating a theory. Second, the demonstration of
double dissociation in-and-of-itself supports the theory; the exact location of the lesions in the
two patients is not required for this purpose. It should be added that double dissociations are
also subject to certain caveats but for the purposes of this review they are considered the
strongest evidence for isolable motor subsystems.

Thus, it is a conceptual mistake to consider lesion studies synonymous with studies of
localization. Patient studies do not have to be about localization; instead they can serve to
identify separable qualitative processes through the demonstration of associations and
dissociations. Demonstration of double dissociations in patients, and to a lesser extent
associations and single dissociations, will not only allow one to infer the existence of functional
specialization, but also determine its architecture, i.e., the anatomical basis for the
specialization. This provides a springboard for study of the anatomical subsystems at the
algorithmic and biological substrate levels.

The cerebellum: predicting sensory consequences of motor commands
Control policies generate motor commands based on beliefs about the state of the body and
the environment (Eq. 5). This state estimate depends on two quantities: a prediction, and an
observation. The prediction comes from an internal model that uses a copy of the motor
commands to estimate the state change that is expected to occur. The observation comes from
the sensory system that provides a measure of those state changes (Fig. 3). That is, our beliefs
are not based on our observations alone. Rather, our beliefs are a combination of what we
predicted and what we observed (Kording and Wolpert, 2004;Vaziri, Diedrichsen, and
Shadmehr, 2006).

Some movements are so fast that there is no time for the sensory system to play a role. A
prominent example is control of saccades (rapid eye movements that move the eyes to a new
location typically with in 50-80 ms). Such movements are too brief for visual feedback to
influence saccade trajectory. In fact, the brain actively suppresses visual processing during
saccades to reduce the perception of motion (Thiele, Henning et al., 2002). Furthermore,
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proprioceptive signals from the eyes do not play any significant role in controlling saccade
trajectories (Keller and Robinson, 1971;Guthrie, Porter et al., 1983). Thus, the brain must guide
saccade trajectories in the absence of sensory feedback. How is this accomplished? A plausible
solution is for the brain to use an internal estimate of the state of the eye, derived from a copy
of ongoing motor commands (Robinson, 1975). This internal feedback probably accounts for
the fact that variability at saccade initiation is partially corrected as the saccade progresses
(Quaia, Pare et al., 2000).

What are the neural substrates of this internal feedback? The cerebellum is known to be critical
for many aspects of saccade control and adaptation (Hopp and Fuchs, 2004;Girard and Berthoz,
2005). The projections from the superior colliculus to the cerebellum may provide the efference
copy. Indeed, Takeichi et al (2005) showed that adaptive changes in saccade amplitude are
reflected in the nucleus reticularis tegmenti pontis, a major source of input to the cerebellum.
Together, the superior colliculus-cerebellar-brainstem side loop seems important for steering
saccade trajectories mid-flight (Optican and Quaia, 2002;Optican, 2005). This side loop is a
likely candidate for acting as a forward model of the plant to produce mid-flight corrective
feedback.

A simple experiment can test whether the cerebellum plays a role in predicting consequences
of self-generated motor commands. Nowak et al. (2007) asked subjects to hold a force
transducer that measures grip force (subject’s right hand in Fig. 6). Attached to the transducer
is a basket. The experimenter drops a ball into the basket. When the ball drops, it exerts a
downward force on the hand. The subject responds by squeezing the transducer so that it will
not slip out of his/her hand. Because there are delays in sensing the impact of the ball, the grip
response comes about 100ms after the ball’s impact. Nowak et al. (2007) described patient HK
who did not have a cerebellum due to a very rare developmental condition. When the
experimenter dropped the ball in the basket, both the healthy individuals and HK showed the
delayed response (data not shown). Therefore, the sensory feedback pathways appeared intact.
In a subsequent trial, the subject (rather than the experimenter) dropped the ball. In a healthy
individual, the brain can predict that the release of the ball will soon result in an impact that
will increase the downward load. In anticipation of this event, the healthy individual squeezes
the basket’s handle harder around the time that the ball is released (grip force and grip force
rates, Fig. 6). HK, however, could not make this anticipatory adjustment. Rather, she responded
to the perturbation the same way that she responded when the ball was dropped by the
experimenter. Therefore, the cerebellum appears to be required for the ability to predict the
sensory consequences of motor commands (Wolpert, Miall et al., 1998).

The cerebellum and construction of internal models
It is not easy to make accurate predictions about the sensory consequences of motor commands:
our muscles respond differently depending on their fatigue state, and our limbs move differently
depending on whether we are holding a light or heavy object. To maintain accuracy of the
predictions, our brain needs to learn from the sensory feedback and adapt its internal model.
This adaptation can be simple like changing parameter values of a known structure (changing
A, B, or H in Eq. 2), or complex like identifying the structure de novo (replacing the linear
form of Eq. 2 with some nonlinear function). The cerebellum appears to be one of the crucial
sites of this process.

Cerebellar damage often prevents individuals from learning how to use novel tools. For
example, when subjects are asked to move the handle of a robotic tool to manipulate cursor
positions, they may not be able to learn to compensate for forces generated by the robot (Fig.
7B) (Maschke, Gomez et al., 2004;Smith and Shadmehr, 2005), or to compensate for the novel
visual feedback through a mirror (Fig. 7F) (Sanes, Dimitrov et al., 1990). If the cerebellum is
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the crucial site for learning internal models, then it probably makes its contribution to control
of reaching via its outputs to the thalamus, which in turn projects to the cerebral cortex. In
humans, it is possible to reversibly disrupt this pathway. Essential tremor patients are
occasionally treated with deep brain stimulators that artificially disrupt the ventrolateral
thalamus, improving their tremor. However, these patients learn the reach task better when the
stimulator is turned off (Chen, Hua et al., 2006). Therefore, it seems quite likely that the
cerebellum is a key structure that allows us to learn tool use.

Another well studied paradigm is adaptation to laterally displacing prisms that distort the path
of light to the eyes. When cerebellar patients don prism glasses, they are severely impaired in
adapting their reaching and throwing movements (Martin, Keating et al., 1996). Specifically,
patients with infarcts in the distribution of the posterior inferior cerebellar artery, in the
ipsilateral inferior peduncle, in the contralateral basal pons or in the ipsilateral middle cerebellar
peduncle had impaired or absent prism adaptation. Interestingly, patients with infarcts in the
distribution of the posterior inferior cerebellar artery usually had impaired or absent adaptation
but little or no ataxia. In contrast, patients with damage in the distribution of the superior
cerebellar artery or in cerebellar thalamus usually had ataxia but preserved adaptation. Thus,
these studies show a dissociation within the cerebellum for anatomical loci that cause abnormal
prism adaptation and a double dissociation between prism adaptation and ataxia for one
anatomical location, which suggests that these may be distinct abnormalities - one relates to
trajectory errors in the extrinsic space whereas the other is caused by errors in anticipation of
proprioceptive events (Vilis and Hore, 1980). From the perspective of Marr, the identification
of the cerebellum as a locus for prism adaptation is already a good demonstration of coarse-
grained modularity. However, in the case of prism adaptation it seems that more can be said
about the “what, where and how” within the cerebellum.

In contrast, patients with damage to the basal ganglia showed little or no deficits in adaptation.
Fig. 7C shows performance of Huntington’s disease patients on the robot task (Smith and
Shadmehr, 2005), and Fig. 7G and Fig. 7H show performances of Parkinson’s and Huntington’s
disease on the mirror task (Agostino, Sanes et al., 1996;Gabrieli, Stebbins et al., 1997).

The question that remains is the precise role of the cerebellum in adaptation. Experiments show
that the cerebellar damage causes abnormalities in adaptation to both kinematic (Tseng,
Diedrichsen et al., 2007) and force (Smith and Shadmehr, 2005) perturbations. One unifying
concept is that the cerebellum may be the site of forward models, which predict the sensory
consequences of motor commands. The output of the forward model could be used to generate
a prediction error that drives adaptation and also be used to update a previous estimate of limb
state. Support for this idea comes from a recent experiment in which TMS was used to disrupt
the lateral cerebellum in human subjects while they slowly moved their arm in preparation for
a making a rapid reaching movements (Miall, Christensen et al., 2007). Reaching errors in
initial direction and final finger position suggested that the reaching movements had been made
from an estimated hand position approximately 140ms out of date, consistent with a role for
the cerebellum in iteratively updating limb state.

The relationship between learning better sensory predictions and learning
better motor commands

It is important to note that optimal control can only be ‘optimal’ if the internal models are
accurate. That is, we cannot hope to maximize reward unless our predictions about the behavior
of our body generally agree with the sensory feedback (otherwise, the predictions would bias
observations). Therefore, a strong implication of the OFC theory is that building internal
models (a process called system identification) must go hand-in-hand with the process of
optimization. This is an interesting prediction that to our knowledge has not been tested.
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However, it already points out a major problem with the framework presented here: because
our body is constantly changing, and internal models are constantly adapting, do the timescales
of adaptation match the timescales of optimization? Or is the timescales of optimization much
slower? We do not know the answers to these questions. We will return to this question when
we examine more thoroughly the limitations of OFC near the end of this review.

Amnesia and learning tool use
In 1997, one of us was involved in a two day experiment on the severely amnesic patient HM
to see how well he could learn a new motor skill and retain the new memory (Shadmehr, Brandt
et al., 1998). The task was the standard reach adaptation task (Fig. 7A) where subjects hold the
handle of a robotic tool and learn to use it to guide a cursor to a sequence of targets (Shadmehr
and Mussa-Ivaldi, 1994). When we seated HM in front of the robot, he, like all naïve volunteers,
sat quietly and avoided touching the machine. We asked him to put his hand on the robot’s
handle and move it around a bit. Naturally, he kept his gaze on his hand as he moved the robot’s
handle. He was instructed to not look at his hand, but rather at the video monitor, where a cursor
was present. After a minute or so of moving the cursor around, a center target was presented
and he was asked to move the cursor to that location. Subsequently, another target was shown
and he was encouraged to move the cursor there. He was instructed to get the cursor to the
target in a given amount of time. If he did so, the target ‘exploded’. For HM, the target explosion
triggered a childhood memory of going bird hunting. As he was performing the task and was
able to get a target explosion, he would spend the next few minutes describing the memory in
detail: the type of gun that he used, the porch in the rear of his childhood home, the terrain of
the woods in his backyard, and the kinds of birds that he hunted. (He repeated these details
many times during the two day experiment.)

After a few minutes of reaching to targets, the robot began to impose forces on HM’s hand,
perturbing the path of the cursor. With more practice, he altered his motor commands to
predicatively compensate for the forces: we inferred this from the fact that when the forces
were suddenly removed (in catch trials), his movements had large errors, in a pattern that was
mirror symmetric to errors that he had early in the training trials. We then thanked him for his
time and he left to have lunch.

When he came back to the experiment room four hours later, he claimed that he had never seen
the robotic device or knew what it was for. We pushed the robotic arm aside and asked him to
sit down. He sat down, but then something interesting happened: rather than avoiding touching
the machine, he voluntarily reached and grabbed the robot’s handle, brought it toward him,
and looked at the video monitor, apparently in anticipation of a target. It was clear that despite
having no conscious recollection of having done the task before, some part of HM’s brain
recognized that the contraption was a tool that had a particular purpose: to manipulate cursors
on a screen. When a target was presented, he showed strong after-effects of the previous training
(Fig. 7B). That is, his brain expected the robot to perturb his movements, and so he generated
motor commands in an attempt to compensate for these forces. Therefore, the motor memory
was much more than just how to manipulate a tool. Rather, the memory also included
information about the rewarding nature of the tool’s purpose: the sight and touch of the robot
was sufficient to encourage a motor act that was expected to be rewarding. If use of the robot
in the first session had been paired with a shock or another noxious stimulus, it seems likely
that he would have been reluctant to use the device again.

Brenda Milner had of course made a similar observation in HM some thirty years earlier in a
task (Fig. 7E) where he drew on a piece of paper while looking in a mirror (Milner, 1968). In
the novel visual feedback setting, HM adapted his motor output and learned to draw accurately.
When he returned the next day, the visual and/or tactile cues associated with the experimental
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setup were sufficient to allow him to recall the motor skill that he had learned before. Sue
Corkin (1968) noted that after HM was trained on a pursuit rotor task (a task where one is asked
to move a joystick so its position matches a moving target), upon return on the next day he not
only retained the motor memory, but he had also retained certain ‘habits’ regarding the purpose
of the task: how to acquire reward, and what kinds of behaviors to avoid. Over the years, a
number of other investigators made similar observations in other amnesic patients (Gabrieli,
Corkin et al., 1993;Tranel, Damasio et al., 1994;Yamashita, 1993;Cavaco, Anderson et al.,
2004), culminating in the theory that our ability to learn motor skills is independent of the
medial temporal lobe (Mishkin et al.1984).

HM’s performance in these tasks demonstrated that the brain could solve three general
problems without conscious awareness and without the damaged medial temporal lobes. First,
during the initial training session, the brain could learn to use a novel tool in order to achieve
an instructed goal. Second, when tested hours later, the sight of the tool was sufficient to
produce voluntary use, suggesting that potential rewards associated with the use of the tool
had been learned and stored. Third, the sight of the tool and holding it was sufficient to allow
recall of both the purpose of the tool (move a cursor) and the motor commands needed to
achieve that purpose (the control policy). This is despite the fact that the same visual
information was not sufficient to recall conscious memory of having trained on the task.

Learning the rewarding nature of sensory states
We expected that a severely amnesic individual who was performing a novel task would have
to be regularly reminded of the task’s instructions: “try to move the cursor to the target fast
enough so it explodes.” However, after HM had exploded a few targets, he no longer needed
verbal reminders. The visual appearance of the target was enough for him to initiate a reaching
movement. Strikingly, when he returned a few hours later and the next day he voluntarily
reached for the robot handle and began preparing for onset of targets by moving the cursor to
the center location. This behavior suggests that during the first session, he implicitly learned
the reward basis of the task (Eq. 1). What brain regions were involved in learning the rewarding
nature of bringing the cursor to the target?

Experiments on action selection in rodents provide important insights into this question. For
example, suppose that a rat is released into a pool of water from some random starting point.
A platform is positioned in a specific location just below the water line and cannot be seen.
The platform is always at the same location in the pool. Rats dislike being wet, and will try to
find a way to elevate themselves. The normal rat can learn to locate the platform position by
paying attention to the visual cues that surround the pool. This requires learning a spatial map
of where the platform is located with respect to the surrounding visual cues. With repeated
swims, the animal learns a spatial map. This spatial map is analogous to a reward function that
associates places in the pool with the likelihood of the platform (and therefore, the likelihood
of not having to be wet).

Once the map is learned, the animal can find the platform regardless of where it is released
into the water because the map is with respect to the cues on the walls. If the platform is
removed, the normal animal will spend most of his time searching in the region where the
platform should be.

Learning of this sort of a spatial map depends on the hippocampus. If a genetically altered rat
with a malfunctioning hippocampus is given the same training, he will not learn the spatial
map and will spend equal time in each quadrant (Tsien, Huerta et al., 1996). Therefore, selecting
an action based on a spatial map likely relies on the hippocampus.
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Sometimes, certain cues are rewarding no matter where they are located. Consider a pool where
there are two hidden platforms: one that is large enough for the mouse to mount, and one that
is too small. Both have a distinct visual cue associated with them: a little flag attached to each
platform, each of a different color, sticking out of the water. Suppose that the flag attached to
the large platform is red, while the flag attached to the small platform is green. The platforms
may be positioned in any part of the pool, and will change from trial to trial. Therefore, in this
experiment the animal needs to learn that the red flag indicates the location of the suitable
platform and is a rewarding object. In another version of the experiment, the large platform
will always be located in a particular spatial location, but the flag atop of it will be a random
color. In this version of the experiment, the animal needs to learn that it is not the color of the
flag that is important, but the spatial location.

We see that there is a natural competition between the learning systems that might be involved
in these two conditions: is the platform in the same “place” as before (where place refers to a
location in the spatial map), or is the platform always where the red flag is located? After a
few trials where the flags move around, in the first experiment the animal should learn that the
spatial map is a not a good indicator of the platform, and therefore the values associated with
places in the spatial map should be near zero and the value associated with the red flag should
rise. In the second experiment, the animal should learn that it is the spatial location that is of
value, and the flag colors are irrelevant.

Packard and McGaugh (1992) performed both experiments by having their animals swim 8
times per day for a number of days. They recorded the number of times the animals mounted
the small platform and labeled this as errors. In the first experiment, where reward was
associated with the red flag, healthy animals gradually learned to swim to the red flag.
Interestingly, animals with damage to the medial temporal lobe learned the task just as well as
the healthy controls. However, animals with damage to the caudate nucleus were much slower
in learning the association. After days of training, they continued to attempt to mount the
platform under the green flag. Therefore, it appears that the ability to associate reward to stimuli
regardless of its spatial location depends on the basal ganglia.

In the second experiment, where reward was associated with a spatial location, healthy animals
gradually learned to swim to that location and ignore the color of the flag. Animals with damage
to the caudate nucleus performed similarly to the healthy controls. However, animals with
damage to the medial temporal lobe were much slower in learning the association. Therefore,
the ability to associate reward to a spatial location depends on the medial temporal lobe.

Returning to our observations in HM, we would speculate that it was his basal ganglia that
learned that if he were to place the cursor in the box on the screen, and do so rapidly, a rewarding
state would be experienced (explosions, which triggered a pleasant childhood memory). During
the later sessions, the visual appearance of the machine, and the act of holding its handle, likely
triggered a recall of this reward structure.

Effects of striatal damage on the assessment of movement cost
Writing instruments are one of the most common tools that we use in our daily lives. One of
the striking features of damage to the human striatum is micrographia, an impairment of writing
where letters become very small and writing speed becomes slow. This condition is most
common in degenerative diseases of the basal ganglia like Parkinson’s disease (Van Gemmert,
Teulings et al., 2001), a condition causing progressive dysfunction of the neostriatum.
However, it can also occur with focal lesions. Fig. 8 provides an example of micrographia in
patient FF, an individual who suffered an ischemic stroke in the left basal ganglia, in the head
of the caudate nucleus and the anterior part of the putamen (Barbarulo, Grossi et al., 2007).
When asked to copy a four- or eight-letter string of characters, writing with the right hand was
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much smaller than with the left hand. Micrographia reflects an abnormal choice of speed and
amplitude and is one manifestation of generalized slowing of movement (bradykinesia). The
basic observation of smallness of writing size and slowness of the writing speed has been
puzzling, as is the phenomenon of movement speed selection in general.

In the optimal control framework, there are no desired trajectories for our movements. Rather,
the path is a result of a control policy (Eq. 5), which itself is a result of minimization of a cost
(Eq. 1). The cost depends on two quantities: spatial accuracy (error cost) and required effort
(energy cost). Accuracy requirements influence speed selection, due to the signal-dependent
noise property of motor commands. The desired accuracy of a movement sets an upper limit
on the maximum speed of a movement. The accuracy term of the cost function offers an
explanation for the wealth of experimental data demonstrating speed-accuracy trade-off in
reaching movements. Normal movements, however, do not appear to be made at the limits
imposed by the speed-accuracy trade-off: we can reach for an object faster than usual without
appreciable loss of accuracy. Although very little experimental data exists on spontaneous
speed selection, the effort term of the cost function offers a potential explanation for this
phenomenon. That is, perhaps micrographia is an indication of an abnormally high motor cost.

One of us recently tested this idea that in Parkinson’s disease (PD), there may be an abnormally
high cost associated with motor commands (Mazzoni, Hristova et al., 2007). We required
healthy control subjects to make accurate reaching movements of specified speeds. As the
required speed increased, subjects took longer (required more trials) to accumulate a set number
of movements at the required speed. This reluctance to move faster could be explained by the
increase in required energy as well as by the degradation of spatial accuracy, and thus did not
disambiguate the contribution of these two costs. We then compared the performance of
patients with PD to that of control subjects in this task. PD patients demonstrated normal spatial
accuracy in each condition, but required more trials than controls to accumulate the required
number of movements in each speed range. The patients’ increased reluctance to execute
movements requiring greater effort, in spite of preserved spatial accuracy, provided
experimental demonstration of the contribution of energy cost to speed selection, independent
of spatial accuracy.

In the experiment described, PD patients exhibited increased sensitivity to a movement’s effort
requirement. Mazzoni et al. (2007) referred to the sensitivity to a movement’s energy
requirement (the effort term in the optimal control framework’s cost function) as a type of
motivation, which they called “motor vigor”. They suggested that this interpretation would
link the neostriatum’s motor control functions to the motivation/reward framework that has
implicated the ventral striatum in relationship to behaviors explicitly guided by reward
(Schultz, 2006). The execution of an accurate movement at a comfortable speed could be the
reward that results by selecting a speed that minimizes both error and effort terms in overall
cost. This minimization is driven by the speed-accuracy trade-off for the error term, and by
motor motivation for the effort term. Bradykinesia results when striatal dysfunction changes
the value of effort minimization, (increased sensitivity to effort cost; L in Eq. 1) relative to that
of accuracy optimization (error cost; Q in Eq. 1). Thus it appears that the basal ganglia either
provides the motor motivation signal, which is then used to compute the “cost-to-go” elsewhere
or is where the “cost-to-go” is computed. This cannot be disambiguated at this time.

Parietal cortex damage and state estimation
In a classic series of lesion experiments performed in monkeys, Mathew Rushworth and
colleagues demonstrated a double dissociation between areas of posterior parietal cortex
required for reaching under visual control and those required for reaching using proprioception
(Rushworth, Nixon et al., 1997). Monkeys were tested on two tasks: reaching in the light to
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visual targets and reaching in the dark to targets defined by arm position. Lesions to LIP and
area 7 in the inferior parietal lobe (IPL) did not affect reaches in which the goal was defined
in proprioceptive coordinates (in the dark), but produced mis-reaching in the light. In contrast,
monkeys with lesions to area 5 in the superior parietal lobule (SPL) could reach accurately in
the light but not in the dark. Therefore, SPL may be involved in proprioceptive estimates of
limb position in space. An example of this in humans come from patient PJ who had an extra-
axial cyst encroaching on her left SPL (Wolpert, Goodbody et al., 1998). Without vision of her
right arm, PJ’s sense of arm position became increasingly uncertain until she reported that the
arm disappeared altogether. Thus, PJ was unable to store a proprioceptively-derived estimate
of limb state but, presumably because of the intact IPL, could use vision to maintain a sense
of the limb’s position in space. Similar to Rushworth’s monkeys with SPL lesion, PJ made
accurate reaches when vision was present.

Sometimes goal states change as the task is being performed. For example, in reaching to pick
up a pen, the pen may start rolling away. Healthy individuals have no problems adjusting their
movements to compensate for this change. However, parietal patients show particular
difficulties with this task. For example, if parietal damage impairs representation of visual
states contralateral to the fixation, then motion of the goal state to this region during a movement
impairs the ability to adjust the reach mid-flight. Grea et al. (2002) observed this phenomenon
in a patient with bilateral posterior parietal cortex damage. The patient had no problems
reaching to targets in central fixation. However, when at reach onset the target shifted to the
right, the subject continued to reach to the original location of the target as if the target had not
moved.

Disruption of the parietal cortex in healthy individuals can produce a similar phenomenon.
Desmurget et al. (1999) provided a single pulse via a transcranial magnetic stimulator as the
reach to the target began. On trials in which the target jumped, most of the participants had
hand movements that disregarded the shift in the target location.

Let us examine these results in the framework of Fig. 3. The relevant state variables in this task
include position of the limb (in proprioceptive and visual coordinates) and the position of the
target (in visual coordinates). As motor commands are generated, the forward model should
update its predicted state of the limb. Generally, we expect targets to remain stationary, and
therefore the output of the forward model should continue to predict the target position.
Together, these predictions represent the prior belief about the state of the body and the world.
The sensory feedback from proprioception and vision is integrated with this prediction to make
a posterior belief. When the target jumps, the novel sensory information needs to be integrated
with the output of the forward model. If it is not, the reach will continue to the prior expectation
of its location. The results noted above suggest that either this integration step is affected by
damage or stimulation of the parietal cortex, or that the sensory information outside the central
fixation region cannot reach the integration step.

Sometimes, there is no sensory feedback associated with our intended movements and the only
thing that we can rely on is predicted states. An example of this is when we imagine performing
a movement. Sirigu and colleagues (Sirigu, Duhamel et al., 1996) examined the ability of
patients with parietal cortex damage to monitor imagined movements of their fingers or arms.
In their first task, they compared the speed of imagined movements with the participants’ actual
movements. The experimenters asked participants to imagine touching the tip of the thumb
with the tips of each of the fingers of the same hand, in time to the sound of a metronome. They
increased the speed of the metronome slowly until the individual reported that the imagined
movement could no longer keep up. The experimenters then measured how fast the participants
could actually make the movement. They found that in healthy people, the maximum speed of
the imagined movements agreed remarkably well with the maximum speed of the actual ones
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(within 2%). Patients with unilateral posterior parietal cortex damage could not accurately
estimate their performance with the hand contralateral to the lesioned hemisphere. They could,
however, estimate their maximum movement speed for the hand ipsilateral to the lesion. In
contrast, a patient with a motor cortex lesion in the right hemisphere could accurately estimate
maximum speed with both hands, despite the fact that the left hand moved much more slowly.

Next, Sirigu et al. (Sirigu, Duhamel, Cohen, Pillon, Dubois, and Agid, 1996) had their
participants imagine movements that varied from easy to hard. For example, they imagined
reaching with a pen in order to place the tip inside a small or a large square. Afterwards, they
performed the actual movements. In healthy participants, the time to completion of the
imagined and actual movements agreed closely. As the task became more difficult, both the
imagined and the actual movements took longer to complete. Patients with motor cortex lesions
had trouble making the actual movement with the contralateral arm, but the duration of
imagined movements matched that of the actual ones. In contrast, in patients with right PPC
lesions, the duration of imagined movements with the left arm was significantly less than the
duration of actual movements. Imagined and actual movements of the less affected right arm,
however, showed a close correspondence.

To interpret these results, we need to conjecture as to what is the computational equivalent of
an imagined movement. Perhaps imagining a movement is equivalent to formulating the cost
of the task, minimizing it using a forward model, and arriving at motor commands, but not
actually committing the commands to the descending spinal pathways. If producing a
movement, imagined or actual, is a feedback control process that depends on the belief about
current state, and this belief depends on both prediction and measurement, to imagine a
movement we need to change the weight associated with measured sensory feedback to zero,
making our control process rely entirely on our predictions. An inability to do so results in mis-
estimation of the state of the limb during imagined movements.

Thus, evidence from physiological studies in non-human primates and patient studies suggests
that the parietal cortex is involved in state estimation. In the optimal control framework these
state estimates are multiplied by a gain to generate motor commands. This gain is in essence
a sensory-motor transformation, which is achieved by an interaction between the parietal cortex
and the frontal motor areas.

Motor cortex and feedback control
Hemiparesis after a stroke, the result of a lesion of the primary motor cortex and/or the
corticospinal tract, is the most common motor disorder seen by neurologists. In the majority
of cases, ischemic lesions not only interrupt the monosynaptic connections to the ventral horn
of the spinal cord, but also the projections to spinal cord interneurons, and often, because of
their proximity to the internal capsule, projections to brainstem nuclei, which then project down
to the spinal cord (Porter and Lemon, 1995). The motor deficits most frequently emphasized
after stroke include weakness, increased movement variability, the decomposition of smooth
multijoint movements into stereotypical joint combinations (synergies), and spasticity. These
abnormalities are thought to result from interruption of monosynaptic cortico-motoneuronal
connections to alpha-motor neurons, with a decrease in the amount and rate of their recruitment,
reversion to control by spared descending brain stem pathways, and changes in segmental reflex
circuits. What do the ideas of optimal feedback control and state estimation bring to the
understanding of hemiparesis?

It is necessary to concede that the theoretical framework outlined earlier does not speak to
deficits in implementation. In other words, the process of ascertaining rewards based on state
estimation and the search for optimal control laws all presuppose that the computed commands
have access to muscles via the corticospinal tract. Thus, the consequences of interruption of
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the corticospinal tract can be considered downstream from the computations we have
described. However, there are two reasons why the framework has the potential to provide
insights into hemiparesis. First, experimental results suggest that interruption of descending
pathways leads to impairments in sensorimotor integration that are not reducible to downstream
implementation deficits like weakness or impaired inter-joint coordination (see below).
Second, it has long been appreciated that patients partially compensate for their deficits, i.e.,
they find alternative strategies to achieve the task goal. Thus, compensation could be
considered a new optimal control law in the setting of an altered system with increased noise
or uncertainty.

Is hemiparesis merely a deficit in communicating commands to the contralateral motor
apparatus? Recently, one of us was involved in a study of patients with right arm paresis
secondary to a subcortical stroke (Raghavan, Krakauer et al., 2006). These patients had
impaired anticipatory scaling of grip and load forces during precision lifting of objects. In other
words, they were not able to form an internal model of the properties of the object. The critical
finding, however, was that if they lifted the object just once with their unaffected left hand they
were then able to properly scale the grip and load forces when they lifted with their right hand.
This means that their initial failure to scale was not attributable to a downstream
implementation deficit, but rather to an inability to map the state of the object into an
appropriate control signal. This might occur because after damage to output from M1, the motor
command may emanate from premotor cortex, which, relatively speaking, has less access to
proprioceptive state information (Rizzolatti and Luppino, 2001). It could be conjectured that
the left hemisphere has access to output from the right hemisphere’s controller through callosal
connections.

Similarly, it has been shown that after subcortical stroke patients make trajectory errors
consistent with failure to compensate for interaction torques, which suggests an unreliable
model of arm dynamics (Beer, Dewald et al., 2000). Failure to compensate for interaction
torques has previously been described in deafferented patients who lack proprioception
(Sainburg, Ghilardi et al., 1995) and patients with cerebellar lesions (Bastian, Zackowski et
al., 2000). All told these results suggest that the abnormalities in precision grip and reaching
movements in patients with lesions of the corticospinal tract are partly due to a suboptimal
control signal that results from suboptimal proprioceptive state estimation. However, it is also
possible that the main problem in hemiparesis may be an inability to implement a correctly
determined control law. At the current time determining which particular computational steps
are affected in hemiparesis, if any, remains a significant challenge for us.

Distinct feedback gains for visual and proprioceptive states of the task
Selecting a goal state may be the first step in performing a task. However, the goal of a task
can be represented at different levels of abstraction: Is the goal of reaching for a glass to sate
one’s thirst, to get the hand to the glass, to rotate the shoulder and elbow joints in order to get
the hand to the glass, or to activate the muscles to rotate the joints? When the question is posed
this way it becomes apparent that a task can be described hierarchically, which in turn implies
the existence of high and low level feedback controllers. Prior to the optimal feedback control
framework, the hierarchy was thought of in terms of planned trajectory representations in the
brain in either intrinsic or extrinsic space (Cartesian, joint, and torque spaces). In the current
framework, the hierarchy may be a set of feedback controllers that act on distinct state estimates
provided by the various sensors in our body.

Sensory signals largely project to separate areas of the motor system by distinct routes. Visual
signals reach the motor system via posterior parietal cortex to premotor areas. Proprioceptive
states reach primary motor cortex from projections from S1 and thalamus. Accordingly, tuning

Shadmehr and Krakauer Page 19

Exp Brain Res. Author manuscript; available in PMC 2008 September 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



functions of cells in the primary motor cortex are strongly dependent on the proprioceptive
state of the arm (Sergio and Kalaska, 2003), whereas in the premotor cortex, tuning is more
dependent on the visual state of the task (Kakei, Hoffman et al., 2001). Thus, it can be
conjectured that there are separate feedback controllers in premotor and motor cortices, each
relying on state estimates coming from separate parts of parietal cortex in visual and
proprioceptive modalities respectively.

Healthy people adapt their reaching movements to kinematic perturbations and force
perturbations without interference (Krakauer, Ghilardi et al., 1999). Notably, subjects learn
novel inertial dynamics just as well in the absence of visual feedback. It is possible that
adaptation to a kinematic perturbation is driven primarily by visual errors (Krakauer, Pine et
al., 2000) and adaptation to changes in inertial dynamics is driven primarily by proprioceptive
errors (Hwang and Shadmehr, 2005). Thus within the framework of optimal feedback control,
it could be envisaged that because in tasks like reaching there are distinct sensory states
(proprioception and vision), there are also distinct feedback control gains associated with those
states. Where are these controllers? As outlined above, the control signal almost certainly
originates from motor areas of the frontal lobe. Perhaps the feedback gains associated with
proprioception dominate the primary motor cortex and feedback gains associated with vision
dominate the premotor cortex.

In a recent study, it was shown that a patient with deafferentation due to large fiber sensory
neuropathy, which resulted in loss of proprioception, was able to adapt his reaching to
kinematic perturbation as well as age-matched controls (Bernier, Chua et al., 2006).
Conversely, patients with optic ataxia, a disorder that is predominantly associated with lesions
of the superior parietal lobule and intraparietal sulcus and is characterized by directional errors
in visually guided reaching, typically show no deficits in movements guided by proprioception,
in force production, or visual perception (Perenin and Vighetto, 1988). Their deficit is most
apparent for non-foveal targets, which suggests that reaching errors relate to incorrect
computation of target location in fixation coordinates. This possibility was explored in a recent
study of patients with optic ataxia, who were required to make reaches to various targets
(Dijkerman, McIntosh et al., 2006). For example, a patient with a right parietal damage fixated
a center target and reached a target to either left or right of fixation. The patient had substantially
more errors to the left target than right. However, when the subject fixated to the left, targets
to the right of fixation were in precisely the same allocentric spatial location as before, yet
reaches were markedly improved. One way to interpret this is that damage to the right parietal
cortex impaired representation of visual space to the left of fixation. Goal states in this visual
space could be as precisely specified. Thus, the results in the deafferented patient suggest that
imprecision in the representation of a proprioceptively coded state estimate had no impact on
adaptation to visually induced directional errors, but for the patient with optic ataxia,
imprecision in visually coded state estimate caused directional errors in visual space. Although
a deafferented patient can adapt to visuomotor rotation, they show marked reach errors,
indicative of impaired control of joint interaction torques and inertial anisotropy. Vision can
only partially compensate for these errors, but importantly directional biases can be corrected.
In summary, the effects of degraded visual and proprioceptive state estimates affect different
types of adaptation and different components of reaching trajectories.

However, this simplistic framework is not consistent with what is seen after stroke: patients
with a lesion in primary motor cortex or the internal capsule have hemiparesis with or without
visual feedback! As an aside, there is a surprising paucity of human studies in the literature on
the consequence of lesions isolated to lateral premotor regions (although see (Kunesch,
Binkofski et al., 1995)). One reason is that hemiparesis after a premotor lesion, in the anecdotal
experience of one the authors (JWK), tends to resolve rapidly. A possible explanation for this
comes from by a recent study in which it was demonstrated that electrical stimulation of ventral
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premotor cortex did not lead to detectable corticospinal output itself but robustly facilitated
corticospinal output from M1 (Shimazu, Maier et al., 2004). Thus after a stroke it might be
that abrupt loss of this facilitation causes a short-lived hemiparesis. That is, control signals
generated from visual and proprioceptive estimates may channel through M1 (figure 3A and
B).

Limitations in applying the theory to biological motor control
This review of motor control has been written within the framework of optimal feedback control
(OFC). At the heart of the theory is the conjecture that animals make voluntary movements in
order to acquire the most reward while expending the least effort. However, the theory cannot
make a behavioral prediction unless we can specify three kinds of information: 1) what are the
costs and rewards, 2) what are the constraints, i.e., dynamics of the task, and 3) what are the
mechanisms of state estimation. In this review we have chosen a specific set of equations to
represent each kind of information. However, it is not difficult to find examples of behavior
that are inconsistent with our formulation.

The cost that we wrote in Eq. (1) is perhaps the simplest possible cost function for goal directed
movements. How seriously can we take this specific representation? As demonstrated by
attempts to reverse-engineer the cost (Kording, Fukunaga et al., 2004), the quadratic cost
function should not be taken too seriously.

Let us re-consider the task where one uses both arms to control a single cursor. In the right
column of Fig. 5B, we see that a force field that perturbed the left arm was corrected almost
entirely by that arm, with a significant but much smaller contribution from the unperturbed
arm. The troubling fact is that if our objective was to minimize a cost like that of Eq. (1), then
we should be much more willing to utilize the services of the unperturbed arm, as its actions
are not impeded by a resisting force field and therefore carry much smaller motor costs. The
theory correctly predicted that there should be a change in perturbation response when the task
changed from two-cursor to one-cursor condition, but the amount of change observed appeared
to be grossly sub-optimum. Is this a problem with our cost function, a problem with our
constraint equations, or a problem with our state estimation process? We do not know the
answer.

Consider a set of experiments that highlighted the importance of costs associated with postural
stability, a quantity that we did not include in Eq. (1). Scheidt and Ghez (Scheidt and Ghez,
2007) explored a task where continuous random noise perturbed the hand at rest. This constraint
encouraged increasing the co-contraction levels of muscles. However, the noise was present
only during the postural phase of the task and disappeared when subjects made a reaching
movement. They found that if a kinematic perturbation required adaptation of the movement,
the learning did not generalize to the postural phase at the end of the movement. They suggested
that the control processes that moved the limb appeared distinct from control processes that
set muscle activity levels during posture. If so, do these processes have separate costs? A recent
study suggests that the answer is yes, the weighting of postural cost is flexible and can be
determined by task context (Liu and Todorov, 2007).

Finally, consider an experiment by Jax and Rosenbaum (2007) in which they asked subjects
to make arm movements to an array of 12 targets positioned in a 16cm radius circle on a vertical
screen. Targets were presented randomly and in some trials an obstacle was presented halfway
between the start and the target (Fig. 9). The same target was never shown twice in a row.
Interestingly, whenever a no-obstacle trial followed an obstacle trial, subjects made curved
rather than straight trajectories. However, the movements straightened out when a no-obstacle
trial followed another no-obstacle trial. Why make a suboptimal curved trajectory when you
see that there is no obstacle?
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These results highlight a number of important problems with our framework. First, without
knowing precisely the costs and rewards of a movement, it will not be possible to make
quantitatively reliable predictions of behavior. Without a priori predictions, how can the theory
be falsified? That is to say, if we have experimental results and are allowed to tweak the costs
or their weightings until we get a good fit then what have we learned? We would suggest that
the best way to proceed is to either specify the cost function before experiments are conducted
and make predictions, or fit the costs to data to find the best parameter fit, i.e., derive Q and L
from equation (1) rather than pre-specify them.

Second, what are the timescales of optimization? Is optimization computed in the reaction time
of each trial de novo? The timescale appears to be longer than a single trial because in the
experiment shown in Fig. 9, making a curved movement in the previous trial trumped what
should be optimal for the subsequent no-obstacle trial. Certainly, new costs can be conjured
up-for example, in this case we can assume that finding feedback control gains that minimize
a cost requires neural processing that itself has a cost and so it might be more efficient to allow
the solution in one trial to linger on to influence the solution in the next trial. Or perhaps there
is a cost in switching control policies?

Third, what is the timescale of system identification? Our body changes over multiple
timescales. Muscles fatigue and recover quickly, objects are lifted and replaced rapidly, yet
aging can produce gradual loss of motor neurons and transformation of muscle fibers. In other
words, the parameters of the constraint equation, and perhaps its structure, are changing over
multiple timescales. Unfortunately, we cannot make optimized movements unless we have an
accurate set of constraint equations, i.e., an accurate internal model. When we see a sub-
optimum movement, can we dissociate the effects of an inaccurate internal model from effects
of an inaccurate cost function?

Finally, what is the alternate hypothesis to this theory? At this time, the alternative is another
cost or constraint, not a fundamentally distinct theory. However, formalization of a theory is
the key step that accelerates its evolution toward acceptance or rejection. Experimental data
that do not fit with the theory are cause for celebration because only these data encourage
progress.

Conclusions
The relationship between theories and the neural machinery that implements them is still in
the courtship stage, but despite the separation, it has begun to bear modest fruit: theories have
informed the neural basis of motor control in patients while lesion studies have informed the
algorithms and representations that implement the computational theories. The result is the
functional anatomy of voluntary movements outlined in Fig. 3B. In this framework, a role for
the cerebellum is system identification, i.e., predicting the changes in state that arise as a result
of motor commands. A role for the parietal cortex is state estimation, where predictions about
sensory feedback are integrated with visual and proprioceptive observations to form beliefs
about states of our selves and objects/people around us. The basal ganglia may play a role in
computing a ‘cost-to-go’ function, estimating value of states and costs of motor commands.
Finally, once a goal state is selected, motor cortical areas minimize this cost function and
transform state estimates into motor output by formulating a feedback control policy.
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Fig. 1.
Accuracy constraints affect control of reaching. Volunteers were instructed to tap the two goal
regions with a pen as many times as possible during a 15 sec period. Movement time increased
as the accuracy requirements increased (width of target region decreased), and as weight of
the hand-held pen increased. (figure constructed from data in Fitts 1954).
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Fig. 2.
Reward affects control of movements. A. The task is to make a rapid pointing movement so
to maximize reward. Endpoints in the blue region are rewarded while those in the red region
are penalized. Because movements are variable, subjects should plan their movements so that
with increased error costs mean of the endpoint distributions shifts away from the penalty
region (pink region). If the tool that they are holding increases their endpoint noise, the shift
should increase. The left two columns are predicted performances with small and large noise.
The right column is data from a typical subject (from Trommershauser et al. 2005). B. The task
for the monkey is to saccade to a visual target that can appear in one of four locations (LU: left
upper, RD: right down, etc.). However, only one target location in a given set is rewarded.
Each set is identified by a column. The top row shows indicates the rewarded target location
in each set (filled circle). The bottom four rows show saccade speed to each target location
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under each reward condition. When the target is rewarded, saccades to that location have a
higher speed, smaller duration, and less variability (from Takikawa et al. 2002).
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Fig. 3.
A schematic model for generating goal directed movements. Please see the text for explanation
of variables and box labels.
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Fig. 4.
Task dynamics affect reach trajectories. A. The task is to reach from point T1 to T2. In one
condition, the reach takes place in free space (straight line). In another condition, a spring is
attached to the hand. In this case, the subject chooses to move the hand along an arc (redrawn
from Uno et al. 1989). B. A velocity dependent force field pushes the hand perpendicular to
its direction of motion. For example, for an upward movement the forces push the hand to the
left. The motion that minimizes cost of Eq. (1) is not a straight line, but one that has a curvature
to the right. The data shows hand paths for a typical subject at start of training on day 1, and
then end of training each day. Except for the 1st and 3rd trials, all other trajectories are average
of 50 trials. C. A rationale for why a curved movement is of lower cost. The curves show
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simulation results on forces that the controller produces, and speed of movement, in the optimal
control scenario of Eq. (1) and in a scenario where the objective is to minimize jerk. (Data in
parts B and C from Izawa et al. 2006)
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Fig. 5.
Task constraints affect feedback response to perturbations. In this bi-manual task, there are
either two cursors visible on a screen or a single cursor. In the two cursor condition, each hand
controls one cursor. In the one cursor condition, the average position of each hand is reflected
in cursor position. In the top row of this figure, the blue and red arrows show that a perturbation
is applied to the left hand. The middle row shows the hand paths in each condition (black trace
is the condition without a perturbation). The bottom row shows the hand velocities. In the two
cursor condition, perturbation to the left hand is compensated by the left hand only. In the one
cursor condition, the same perturbation is compensated by motion of both hands. (from
Diedrichsen 2007)
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Fig. 6.
Predicting and compensating for consequences of motor commands depends on the cerebellum.
Subject holds a ball with their left hand and releases it into a basket held by the right hand.
Healthy individuals increase their grip force in anticipation of the ball’s impact. Patient HK,
who suffered from cerebellar agenesis, has a grip force that rises in response to the impact but
not before it. The bottom trace refers to the acceleration of the right hand (holding the basket).
The impact of the ball is marked by the first vertical line. (from Nowak et al. 2007)
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Fig. 7.
Examples of motor skill learning in health and disease. A. Learning to control a tool that has
novel force characteristics. Subjects reached to visual targets while the robot perturbed the
hand with either no forces (null field), or fields A or B. In 1/6th of the trials, the field was
removed, resulting in catch trials. Learning was measured by the size of errors in catch trials.
Data shown is for amnesic subject HM, other amnesic subjects (AMN), and normal control
subjects (NCS). HM learned the task more slowly, but had excellent retention. Data from
Shadmehr et al. (1998). B & C. Performance of cerebellar and Huntington’s disease patients
on the same task. While cerebellar patients are profoundly impaired in learning, HD patients
are normal. Data from Smith and Shadmehr (2005). D. Effect of stimulation of the cerebellar
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thalamus of patients with essential tremor on the same task. Stimulation of the cerebellar
thalamus reduces tremor (data not shown), but impairs learning. Data from Chen et al.
(2006). E. Learning to control a tool with novel kinematic characteristics: the mirror drawing
paradigm. Data is form amnesic subject HM, redrawn from Milner et al. (1998). Each trial
requires the subject to trace the star while keeping within the two lines. An error occurs when
the pencil goes outside the two lines. F. Performance of two groups of cerebellar patients on
the same task. Data from Sanes et al. (1990). G. Performance of patients with Parkinson’s
disease on the same task. Filled symbols represent the patient group. Data from Agostino et
al. (1996). H. Performance of patients with Huntington’s disease on the same task. NC is normal
controls. Data from Gabrieli et al. (1997).
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Fig. 8.
Writing ability of patient FF, who suffered a lesion in the right caudate nucleus. Four- and
eight-letter string copying (models on the upper lines) by the right (middle lines) and the left
hand (lower lines). Micrographia was evident only with the right hand. (Barbarulo, Grossi,
Merola, Conson, and Trojano, 2007).

Shadmehr and Krakauer Page 37

Exp Brain Res. Author manuscript; available in PMC 2008 September 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 9.
Reaching around an obstacle affects the subsequent trial when there is no obstacle. On any
given trial, the target of the movement and the obstacle, if any, are present before the reach
starts. Left column shows data from two control groups in which either all (A) or none of the
movements (N) had an obstacle. The data displayed in the middle and right columns are for a
group where the probability of an obstacle on any given trial was 50%. The marking ++
indicates that two consecutive movements had an obstacle, and the data shown is for the second
of these two trials. The marking +- indicates that the last trial had an obstacle but the current
trial does not. No two consecutive trials were to the same direction. The movement directions
have been rotated for ease of comparison. (From Jax and Rosenbaum 2007)
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