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The complete nucleotide sequence of the hemagglutinin gene of influenza virus A/USSR/90/77 was
determined. Comparison of hemagglutinin amino acid sequences from H1 field strains revealed five
potential antigenic sites. Four of these sites correspond to those observed for H3 hemagglutinins, whereas
the fifth apparently derives from differences in the glycosylation patterns between subtypes.

Influenza A viruses direct the synthesis of two surface
glycoproteins, hemagglutinin (HA), the major antigen, and
neuraminidase. Variation in these antigens has regularly
caused major epidemics and has hampered efforts to create
useful vaccines. In attempts to understand this variation, a
number of amino acid and nucleic acid sequences of HAs
from field strain viruses and in vitro-generated variants have
been determined (11). Previous analysis has focused on the
HA of the H3 subtype for which the three-dimensional
structure has been solved (13). To examine the variation in
another human subtype, H1, we determined the nucleotide
sequence of the HA gene of influenza virus A/USSR/90/77.
Comparison of this sequence with the only other existing
complete H1 HA sequences (2, 7) derived from HIN1
viruses isolated in 1933 and 1934 allowed us to identify
clusters of amino acid substitutions which suggest the loca-
tion of the important antigenic sites in the H1 HAs.

The amino acid sequence reported here bears less than
40% homology with the corresponding sequences of H3
strains (Table 1). Consequently, it seemed plausible that the
separate evolution of these strains might have created at
least some changes in the three-dimensional folding of the
protein which could aid in avoiding immune surveillance by
covering up some antigenic sites and exposing others. On the
contrary, our data indicate either that antigenic sites are in
the same locations in the H1 and H3 subtypes or, if not, that
the differences can more readily be explained by masking of
an antigenic site owing to changes in glycosylation rather
than changes in polypeptide folding.

We have previously reported the construction of a bank of
cDNA clones derived from the reverse transcription of the
viral RNA segments of the recombinant virus A/USSR/90/77
NBA2 (4). Identification of plasmids bearing HA gene se-
quences was made by colony hybridization (6) and Northern
blotting (1). A number of plasmids containing the complete
coding sequence of the A/USSR/90/77 HA gene and various
amounts of the untranslated regions were isolated. The
nucleotide séquence of the inserted DNA from one of these
plasmids, pD49, was determined by the method of Maxam
and Gilbert (8).

The coding sequence of the A/USSR/90/77 HA gene
contains 1,698 base pairs encoding 566 amino acids, corre-
sponding to 326 amino acids in the mature HA1 protein, 222
amino acids in the mature HA2, and 17 amino acids in the
signal peptide. This sequence is shown in Fig. 1, along with
representative sequences of HA genes (2, 5, 7, 9) from other
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human subtypes. The alignment of sequences in Fig. 1 is
complicated by the lack of homology between the HA genes
of different subtypes.

The low levels of amino acid homology noted in Table 1
suggest that there could be substantial differences in the
three-dimensional structures of HAs of different subtypes.
Antigenic selection would have favored any viable mutations
which could have changed the folding of these molecules so
as to cover up or change the location of antigenic sites. Such
changes could help explain the complete lack of antigenic
cross-reactivity between subtypes.

To test this hypothesis we have compared the amino acid
sequences of the early H1 strains with that of A/USSR/90/77
HA to locate clusters of amino acid substitutions which
might indicate the location of antigenic sites. The substitu-
tions observed tend to cluster into five distinct regions as
detailed in Table 2. Four of these regions correspond exactly
in location with the antigenic sites predicted from sequenc-
ing the HA genes of field strains and laboratory variants of
the H3 subtype (11, 12). There is a fifth significant cluster,
labeled E in Table 2, which does not correspond to any
antigenic site previously identified in the H3 HAs. This
could indicate that a novel antigenic site has been exposed
by a difference in the three-dimensional foldings of the H1
and H3 molecules. We have noticed, however, that all H3
proteins analyzed thus far share a glycosylation site at
residue 81 which is uniformly absent in the H1 strains. It has
been shown that the position 81 site is glycosylated in H3
strains (10). It had been postulated earlier that this carbohy-
drate side chain would hinder antibody attachment to this
exposed region of the protein (12). Therefore, we think that
the many changes we see at site E are more importantly due
to this difference in glycosylation rather than to changes in
protein folding.

Like all proteins, HAs accumulate a ‘‘background’’ level

TABLE 1. Percent homology shared between the HA gene of
A/USSR/90/77 and the HA genes of other influenza viruses®

Virus Amino acid Nucleic acid
A/USSR/90/77 (H1) 100 100
A/PR/8/34 (H1) 91 92.2
A/WSN/33 (H1) 88.2 91.1
A/Jap/305/57 (H2) 66.4 63.7
A/Aichi/2/68 (H3) 37.1 47.7

< Percent homology has been calculated as the total number of
identical positions in sequences aligned at conserved cysteine
residues divided by the total number of comparable positions.
Insertions or deletions are calculated as positions of nonhomology.
These comparisons include the signal peptide.
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FIG. 1. The nucleotide sequence of the A/USSR/90/77 H1 gene. The nucleotides are arranged in triplets corresponding to the correct
translational reading frame. Solid line boxes surrounding single triplets indicate amino acid differences relative to the other H1 sequences.
Solid line boxes enclosing a triplet in all five sequences indicate an amino acid homology at that position in all five sequences. Dashed line
boxes at positions 17 and 28 indicate the probable initial amino acid of the mature protein. The dark arrows surrounding position 354 indicate
the HA1/HA?2 boundary. Dotted boxes enclose the proposed antigenic sites as described in the text. These sites were identified by a moving
average analysis as regions that displayed clustering of amino acid substitutions at levels significantly higher than background. The highest
“*background signals’’ which we ignored in this analysis were changes at only single amino acid residues. positions 89 and 179. These
correspond to positions in the interior of the H3 protein.

of amino acid substitutions which may be neutral, since they antigenic sites in Fig. 1 and Table 1 encompass only 6.7% of
appear to be randomly placed and tend to be conservative in the protein but contain 26% of the amino acid differences, a

nature. Nevertheless, the clustering and the nonconserva- level about fivefold greater than in the remainder of the
tive nature of the amino acid substitutions which we ob- molecule. As mentioned earlier, four of the five regions used
served was significantly greater than this background level in the above calculation correspond to the location of sites
and appeared to accurately indicate the locations of antigen- predicted from sequencing the HA genes of field strains of

ic sites. For instance, in a comparison of the A/PR/8/34 and the H3 subtype as well as laboratory variants selected by
A/USSR/90/77 HAs, the regions designated as probable growth in the presence of antibodies directed against HA
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TABLE 2. Tabulations of positions of amino acid substitutions
that fall within proposed antigenic sites”

Amino acid substitutions for the following strains:

Site and
position A/WSN/33 A/PR/8/34 A/USSR/90/77
Site A
125 Asn Asn Lys
127 Thr Asn Asn
128 Phe Thr Val
129 Asn Thr Thr
130 —b Lys Arg
134 Val Ala Ala
135 Ser Ala Ser
139 Arg Ala Lys
Site B
153 Lys Glu Glu
155 Gly Glu Asn
156 Asp Lys Glu
184 Ser Asn Asn
185 Ser Ser Ile
186 Asp Lys Glu
187 Glu Asp Asp
189 Gin Gln Lys
190 Ser Asn Thr
191 Leu Ile Ile
193 Ser Gin Arg
Site C
43 Lys Arg Arg
273 His His Asp
276 Asn Asn Asp
Site D
160 Lys Lys Asn
162 Thr Lys Ser
163 Asn Asn Ser
Site E
68 Asp Asp Glu
69 Ser Pro Ser
71 Leu Leu Phe
72 Pro Pro Ser
73 Ala Val Lys
74 Arg Arg Lys

“ Note that because of insertions and deletions our numbering
system is different from that of Wiley et al. (12). Otherwise, our sites
A through D correspond to theirs, except that we have included in
site A several substitutions which might extend new side chains into
the originally designated site A or affect it indirectly by altering the
protruding loop. These areas have been included in site A in more
recent reviews of the H3 HA (e.g., Fig. 1 of reference 11).

b, Position 130 of A/WSN/33 is a deletion in our sequence
alignment.

(11, 12). Our identification of antigenic sites also corre-
sponds with those located by analysis of antibody-selected
laboratory variants of A/PR/8/34 (H1) (3) and confirms that
these sites identified in vitro are also important for circula-
tion in vivo.

Host immune responses mounted against influenza virus
HA should have strongly selected for any viable alterations
in folding which would have covered up some antigenic sites
or caused antigenic sites to move to new locations. Although
the evolutionary divergence of the H1 and H3 proteins is so
great that they share only about 40% of the overall amino
acid sequence, our data offer no evidence for any significant
alterations in folding. Instead, the only significant change in
the localization of antigenic sites appears to be due to the

J. VIROL.

absence of a shielding carbohydrate side chain in the H1
proteins. This suggests a surprising degree of long-term
conservation of the detailed three-dimensional folding of the
HA protein.
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