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A common approach to the analysis of fMRI data involves the extraction of signal from specified regions of interest (or ROI’s).
Three approaches to ROI analysis are described, and the strengths and assumptions of each method are outlined.

INTRODUCTION
The first step in fMRI statistics is almost invariably to create

a thresholded statistical map, showing which regions are

‘activated’ above some particular threshold. For simple

comparisons, it is often sufficient to stop there and simply

report the results of the thresholded map. However, there

are often reasons to look further into particular regions of

interest (ROIs). In this brief review, I will outline several

approaches to ROI analysis and discuss the advantages and

drawbacks of each.

Why ROIs?
There are three main reasons that one might want to

perform an ROI analysis, which have very different

justifications and make very different assumptions. The

first reason to perform an ROI analysis is simply to explore

one’s data. In complex designs, such as factorial designs with

multiple levels, it can often be difficult to discern the pattern

of activity across conditions from an overall map. It is often

useful to see the signal in areas of interest plotted for each

condition or plotted against other variables of interest. The

second reason is to control for Type I error by limiting the

number of statistical tests to a few ROIs. The third reason is

to limit testing to a region that is functionally defined on the

basis of some other information, such as a separate ‘localizer’

scan or condition. I discuss each of these approaches in turn.

ROIs for exploration
The most theoretically agnostic use of ROI analysis is to

simply explore the underlying signal behind a whole-brain

voxel-wise analysis. In this case, one is not making any

claims regarding the un-biasedness of the analysis; rather, the

goal is to depict the pattern of signal across conditions.

As noted earlier, this is particularly useful in complex designs

such as factorial designs, where there are multiple condi-

tions. The most common approach for exploratory ROI

analysis is to create small ROIs (usually spheres) at the peaks

of activation clusters; in the case of large clusters, it can be

useful to create ROIs for additional local maxima in order to

explore multiple regions within the cluster. To ensure that

the sphere only contains voxels that were truly activated,

these spheres are often masked with the thresholded

activation map. It is critical to keep in mind that one

cannot make any conclusions about the statistical signifi-

cance of tests on the resulting data if the selection of the ROI

was based on the same contrast; because the region was

chosen for its significance in the whole-brain analysis, it will

necessarily show a significant result in any ROI analysis.

Nonetheless, this approach can be very useful for exploring

patterns of activity across conditions.

Although ROI analysis is most often considered for

analysis of activations, it can sometimes be equally useful

for determining the reasons for lack of activation. As an

example, a recent correlational analysis between fMRI and

behavioral data in our laboratory failed to uncover any

activation in several regions of prior interest, much to our

surprise. We performed an ROI analysis on several regions

(using small spheres placed in anatomical ROIs) and quickly

saw the reason for this lack of activation: Whereas the group

as a whole showed a striking correlation, one subject was an

extreme outlier who suppressed the correlation. Analysis

using robust statistics (Wager et al., 2005) can be particularly

useful in cases like this because they can reduce the effects

of outliers.

ROIs for statistical control
Another approach is to pre-specify a set of anatomical ROIs,

and then to perform statistics across these regions. This

is generally done to reduce the severity of correction for
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multiple tests; instead of correcting for the large number

of voxels in the brain, once can correct only for a small

number of ROIs. I would hasten to note that there has

not been a systematic study of the power of this approach

in comparison to standard methods for whole-brain error

control, such as Gaussian random field theory

(Worsley et al., 1992), randomization tests (Nichols and

Holmes, 2002), or false discovery rate corrections

(Genovese et al., 2002).

One difficult question that arises with regard to this

approach is how to measure signal within the ROI. It is

generally the case that regions specified in this approach will

be relatively large (e.g. the entire superior temporal gyrus),

and that even if the region is significantly active, this

activation may only occur in a small proportion of voxels in

the ROI. This suggests that simply averaging across the entire

region could swamp the signal from this small number of

voxels with noise from the remaining non-activated voxels.

One approach that has often been used is to threshold the

statistical map and count the number of activated voxels in

each region. However, this approach can be very sensitive to

the specific threshold. Further, voxel counts have been

shown to be an unreliable measure of activation compared to

direct measures of signal change (Cohen and DuBois, 1999).

These difficulties in defining in the signal suggest that

this approach may not be optimal. This approach also relies

upon the assumption that the specified regions are

functionally homogenous; if, for example, there exist areas

of both activation and deactivation within the region, these

may cancel each other out.

There is another approach by which ROIs can be used

for statistical control, which involves the restriction of

voxel-wise analyses to a set of ROIs and then controlling for

multiple comparisons only in those voxels, for example,

using Gaussian random field theory for small volumes

(Worsley et al., 1996) as implemented in SPM, or using

randomization tests restricted to the ROIs. This approach

does not suffer from the same problems of signal specifica-

tion as the foregoing methods, but it also does not provide

the same level of insight into patterns of activation as

measures involving quantification across conditions.

ROIs for functional specification
Another use for ROIs is to examine activity within a set of

voxels that are functionally coherent, in order to examine

their sensitivity to some other manipulation. This approach

is most prevalent in fMRI studies of visual processing, where

localizers are used to identify functionally specific regions

such as retinotopically organized regions in early visual

cortex (Engel et al., 1994) or motion-sensitive voxels in

area MT (Tootell et al., 1995). In these cases, the ROIs are

generally determined using a ‘localizer’ scan that is separate

from the scan of primary interest. However, there is no

requirement that the localizer be performed as part of a

separate scan. Friston et al. (2006) have argued that it is

better to embed the localizer in factorial design that also

includes the comparison of interest; this allows one not

only to use the localizer to examine effects on some other

comparison of interest (since they are orthogonal in the

factorial design), but also to examine interactions between

the localizer manipulation and other conditions. There is an

ongoing debate regarding the usefulness of such functional

localizer approaches (Friston et al., 2006; Saxe et al., 2006);

although they may be useful in some cases, it is important to

avoid reifying regions based on their functional activation

alone, given the potential importance of distributed

representations (Haxby et al., 2001) and the difficulty in

ascribing a single function to a region based on fMRI data

(Poldrack, 2006).

Defining ROIs
ROIs can be defined either in terms of structural or

functional features. Structural ROIs are generally defined

based on macroanatomy, such as gyral anatomy. In many

cases, the best practice is to define such ROIs for each subject

based on their own anatomy, since there can be substantial

variability between individuals in macroscopic anatomy.

Recent developments in automated anatomical labeling offer

the promise of highly reliable labeling of cortical and

subcortical structures in individual anatomical images with

a minimum of manual intervention (Fischl et al., 2004),

though it will remain important to confirm these results

against the actual anatomy. One common practice that

requires extreme caution is the use of ROIs based on single-

subject anatomical atlases, such as the AAL atlas (Tzourio-

Mazoyer et al., 2002) or the Talairach atlas (Talairach and

Tournoux, 1988); because of the inability of spatial normal-

ization to perfectly match brains across individuals, there

will be substantial lack of overlap between any group of

subjects and these atlases (Nieto-Castanon et al., 2003). If it

is necessary to use atlas-based ROIs (i.e. ROIs not derived

from one’s own subjects) then the best practice is to use

ROIs based on probabilistic atlases of macrosopic anatomy

(Hammers et al., 2003; Shattuck et al., 2006) or probabilistic

atlases of Brodmann’s areas which are available as part of

the SPM Anatomy Toolbox (Eickhoff et al., 2006).

Functional ROIs are generally based on analysis of data

from the same individual. One common approach is to use

a separate ‘localizer’ scan to identify voxels in a particular

anatomical region that show a particular response

(e.g. voxels in the fusiform gyrus that are more responsive

to faces than other objects); these voxels are then explored to

examine their response to some other manipulation.

Alternatively, functional ROIs can be created using orthog-

onal contrasts in a factorial design (Friston et al., 2006).

Exploratory ROIs are often created by placing small spheres

at local maxima in the statistical map; this provides a set of

ROIs that span the clusters of interest. Because the goal of

exploratory ROIs is not statistical control, it is also

acceptable to place ROIs in anatomical areas of interest
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(using one’s best judgment about the placement), particu-

larly for examining null results; however, it is again critical

to note that although this kind of analysis can be useful

for exploration it must not be used for inference since it is

heavily biased.

One additional way that ROIs can be created is based on

previous studies. Although one can take the stereotactic

coordinates from an activation in single study and place an

ROI at that location, it is better practice to derive ROIs

from meta-analyses of the domain or task of interest. There

are now well-established methods for meta-analysis of

functional imaging studies (e.g. Turkeltaub et al., 2002;

Wager and Smith, 2003), and these methods can be used to

generate ROIs that will be less sensitive to noise than those

based on single-study activations.

Tools for ROI analysis
There are a number of tools available for ROI analysis.

Several common software packages (e.g. SPM, AFNI,

BrainVoyager) include tools for ROI analysis. In addition,

the MarsBar tool for SPM (http://marsbar.sourceforge.net/)

and the FSL ROI Toolbox (http://spm-toolbox.sourcefor

ge.net) provide tools for performing ROI analyses on data

from these packages as well.

There are two ways in which data are commonly extracted

for ROI analysis. In parameter estimate extraction, one

extracts the estimated parameter value (e.g. ‘beta’ images in

SPM, ‘pe’ images in FSL) for each condition in the statistical

model, with zero determined by the implicit baseline

(i.e. whatever is not included in the model). This can be

particularly useful for understanding contrasts that include a

number of conditions (assuming that each condition is

modeled separately), though it does not in principle provide

any new information other than collapsing across voxels

within the region, which may decrease noise.

In hemodynamic response extraction, the raw data are

interrogated and the entire hemodynamic response to each

condition across the ROI is estimated, generally using a finite

impulse response model that estimates the response at each

timepoint following the stimulus (Dale, 1999). This

approach provides a different view of the data by showing

the entire estimated response in time (making no assump-

tions about its shape), rather than the fit of an assumed

hemodynamic response. It should be noted that this

approach can tend to overfit the data given the large

number of parameters (one for each timepoint in the

hemodynamic response), and thus one can sometimes see

estimated hemodynamic responses that are not physiologi-

cally plausible, especially with smaller sample sizes.

Approaches using constrained basis sets (Woolrich et al.,

2004) may be useful for obtaining better estimates of

the underlying hemodynamic response, but these

methods have not been integrated with existing ROI anlaysis

software.

SUMMARY
There are a number of reasons to perform ROI analyses, each

of which involves a particular set of assumptions. In my

opinion, the use of exploratory ROI analysis should be

standard practice in all functional imaging laboratories.

It can provide substantial insight into the nature of

activation signals in complex models as well as provide

valuable assistance in diagnosing model failures, but it is

critical that the investigator not use these exploratory

analyses for inference as their results are biased by

ROI choice. The use of ROIs for control of Type I error

suffers from difficulties in the specification of the signal

within large regions, and appears to be waning in the face of

advancements in whole-brain error control methods and

increased sample sizes for fMRI studies. However, the use of

ROIs for small volume correction with voxel-wise statistics is

well established. The use of functional localizers is well-

established in domains where the underlying function can be

unequivocally localized (as in visual retinotopy), but there

remains debate about the usefulness of functional localizer

approaches more generally. In any case, researchers should

take care to avoid reifying ROIs, as functional neuroimaging

has not yet established the level of selectivity necessary to

label regions based on activation (cf. Poldrack, 2006).
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