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Tübingen, Tübingen, Germany, 3 Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America, 4 Mucosal Inflammation

Program, Department of Anesthesiology and Perioperative Medicine, University of Colorado Health Science Center, Denver, Colorado, United States of America

Abstract

Background: Hypoxia-inducible factor 1 (HIF)-1a is a transcription factor that functions as master regulator of mammalian
oxygen homeostasis. In addition, recent studies identified a role for HIF-1a as transcriptional regulator during inflammation
or infection. Based on studies showing that respiratory syncytial virus (RSV) is among the most potent biological stimuli to
induce an inflammatory milieu, we hypothesized a role of HIF-1a as transcriptional regulator during infections with RSV.

Methodology, Principal Findings: We gained first insight from immunohistocemical studies of RSV-infected human
pulmonary epithelia that were stained for HIF-1a. These studies revealed that RSV-positive cells also stained for HIF-1a,
suggesting concomitant HIF-activation during RSV infection. Similarly, Western blot analysis confirmed an approximately 8-
fold increase in HIF-1a protein 24 h after RSV infection. In contrast, HIF-1a activation was abolished utilizing UV-treated RSV.
Moreover, HIF-a-regulated genes (VEGF, CD73, FN-1, COX-2) were induced with RSV infection of wild-type cells. In contrast,
HIF-1a dependent gene induction was abolished in pulmonary epithelia following siRNA mediated repression of HIF-1a.
Measurements of the partial pressure of oxygen in the supernatants of RSV infected epithelia or controls revealed no
differences in oxygen content, suggesting that HIF-1a activation is not caused by RSV associated hypoxia. Finally, studies of
RSV pneumonitis in mice confirmed HIF-a-activation in a murine in vivo model.

Conclusions/Significance: Taking together, these studies suggest hypoxia-independent activation of HIF-1a during
infection with RSV in vitro and in vivo.
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Introduction

A number of elegant studies, exemplified by those defining

induction of the erythropoietin (EPO) gene [1,2], have utilized

multidisciplinary approaches to elucidate basic hypoxia-adaptive

responses. Today, convincing evidence confirms a central role of

hypoxia-inducible factor (HIF)-1 in mammalian oxygen homeo-

stasis [3–6]. Such studies demonstrated that HIF-1 is composed of

two subunits: constitutively expressed HIF-1b and oxygen-

regulated HIF-1a. Under normoxic conditions, HIF-1a is

subjected to hydroxylation on proline residues [7]. The modifi-

cation is required for the binding of the von Hippel-Lindau (VHL)

tumor suppressor protein, the recognition component of an E3

ubiquitin-protein ligase that targets HIF-1a for proteasomal

degradation. Under hypoxic conditions, hydroxylation is inhibited

and the VHL protein does not bind to HIF-1, eventually leading to

stabilization of the alpha-subunit, heterodymerization, nuclear

translocation and transcription of HIF-dependent genes.

For example, binding of HIF-1 to consensus domains in the

erythropoietin promoter results in the transcriptional induction of

HIF-1-bearing gene promoters [8]. A series of experiments by

Wang and Semenza [9–11] and Maxwell et al. [12] demonstrated

that reporter genes containing the erythropoetin enhancer were

induced by hypoxia in a variety of cell types that did not normally

produce erythropoitin. Subsequently, it was determined that HIF-

1 is widely expressed and that consensus HIF-1 binding sequences

exist in a number of genes other than that of erythropoitin, and

were termed hypoxia responsive elements (HRE [8]). In particular,

HIF-1 has been found to regulate multiple genes that include HRE

in their promoter region, including vascular endothelial growth

factor (VEGF), insulin-like growth factors (IGFs), their binding

proteins [insuline-like growth factor binding proteins (IGFBPs)]

and iron supply regulating genes [e.g. transferrin [13]]. Thus, the

discovery of HIF-1 represented a major advance in the

understanding of gene regulation by hypoxia. Such studies have

led to an understanding that induction of HIF-1 responsive genes

drives altered cellular metabolism, increased vascular mass and

diameter and increased oxygen carrying capacity of the blood; all

events which are conducive to an adaptive response to diminished

oxygen supply [1,14–16].
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However, studies that are more recent have identified an

additional role of HIF-1a as transcriptional regulator of inflam-

mation and infection. For example, HIF-1a is essential for myeloid

cell-mediated inflammation, bactericidal capacity of phagocytes

[17] and mice with conditional knockouts of HIF-1a show

profound impairment of myeloid cell aggregation, motility,

invasiveness, and bacterial killing [18]. Moreover, studies of

HIF-1a during infection with enterobacteriaceae revealed hypox-

ia-independent activation by bacterial siderophores [19]. Similar-

ly, HIF-1a has been identified as key regulator of the inflammatory

transcription factor NF-kB [20]. Other studies confirmed several

parallels between the transcriptional regulation of hypoxia and

inflammation/infection [21-27]. For example, a recent study

suggests that NF-kB is a critical transcriptional activator of HIF-1a
and that basal NF-kB activity is required for HIF-1 protein

accumulation under hypoxia [28]. Similarly, studies of human

pathogens have revealed that exposition of host cells to bacteria

(e.g. Bartonella henselae) results in HIF-1a activation and VEGF

secretion in vivo and in vitro [29]. Similar findings were reported

when macrophages were infected with group B streptococci

[17,18]. Therefore, it is obvious that HIF-1 plays a central role in

infections with human bacterial pathogens. This could have

important medical implications in terms of the treatment of sepsis,

as it has been shown that serum VEGF levels (known to be

regulated via HIF-1) are dramatically increased in patients

suffering from septicemia [30] or meningitis [31].

In addition, previous studies have found activation of HIF-1a
during viral infections [32]. For example, previous studies have

suggested a functional role of the hepatitis C virus in HIF

stabilization [33]. Other studies found HIF-1a stabilization during

hepatitis B infections [34] or during infections with the Eppstein-

Barr virus [35]. Respiratory syncytial virus (RSV) is the major

cause of serious lower respiratory disease in infancy and early

childhood [36]. Bronchiolitis, the more severe clinical manifesta-

tion of RSV infection, is characterized by necrosis and sloughing

of the respiratory epithelium and plugging of the small bronchioles

with fibrin and mucus. As such, RSV is characterized by a

particularly prominent inflammation of the pulmonary mucosa-

both in natural and experimental infections [36]. In fact, RSV is

among the most potent biological stimuli that induce the

expression of inflammatory genes, including those encoding

chemokines, and studies on mechanism(s) that control virus-

mediated airway inflammation are currently areas of intense

investigation [37–41]. In fact, a previous studies suggested that

RSV-elicited release of nitric oxide could be associated with HIF-

1a stabilization during RSV infection [42]. Therefore, we

combined in vitro and in vivo approaches to study HIF-1a
activation and gene-transcription during RSV infection.

Methods

Culture of epithelial cells
A549 cells (American Type Culture Collection, Wesel, Ger-

many) were cultured as described previously [38]. In short, A549

were grown in F-12 HAM medium (Invitrogen, Karlsruhe,

Germany) supplemented with 10% fetal bovine serum (Invitrogen,

Karlsruhe, Germany) and 1% Antibiotic-Antimycotic-Solution

(Sigma-Aldrich, Steinheim, Germany). L-Glutamin was adjusted

to a total quantity of 2 mM. The cells were maintained under

standard-conditions of 37uC in 20% O2 and 5% CO2.

Infection with RSV
Human RSV was purified by polyethylene glycol precipitation,

followed by centrifugation on 35 to 65% discontinuous sucrose

gradients as described previously [43,44]. The virus was stored in

aliquots at 280uC until use. Virus titers were determined by a

methylcellulose plaque assay [45]. For experiments with inacti-

vated RSV, the virus was exposed to an UV light source for

20 minutes as described previously [43]. A549 cells were infected

when they reached 70–80% confluence, using different multiplic-

ities of infection (MOI). The virus was added immediately after

removal of the culture medium in a small amount of serum-free

medium for 1 h. Additional media was added and the infection

was continued for indicated time periods [38].

Protein Extraction
Supernatants were discarded and 200 ml Lysis-Buffer (1 mM

Tris-HCl, 250 mM NaCl, 1 mM EDTA, Triton X 100 1%, NP40

16Igepal Electrophoresis Reagent, Aprotinin 1 mg/ml, Leupeptin

1 mg/ml, Pepstatin 1 mg/ml, PMSF 1 mM and OV 1 mM) was

added. After scraping and collecting into tubes, the cell-lysate was

incubated at 4uC for 20 minutes on a rotator. Cell debris was

removed by centrifugation at 13000 g for 15 minutes and

discharged. Protein concentrations were determined using the

BCATM Protein Assay Kit (Pierce, Bonn, Germany) according to

the manufacturer’s instructions.

Nuclear Protein Extraction
Nuclear Proteins were isolated from A549 cells using a

modification of methods previously described [46]. In short, cells

were lysed in 500 ml cold buffer A (10 mM Hepes-KOH, pH 7.9,

1.5 mM MgCl2, 10 mM KCl, 0.5 mM Dithiothreitol (DTT),

0.2 mM phenylmethylsulfonyl fluoride (PMSF)), scraped and

collected into tubes and incubated for 15 min on ice. After adding

7,5 ml solution containing 10% NP40, vortexing for 3 seconds

and incubation for three minutes on ice, the tubes were

centrifuged for 2 minutes at 6000 g at 4uC. The cytoplasmic

proteins in the supernatant were collected and flash-frozen. Next,

the pellet was resuspended in 100 ml of cold buffer B (20 mM

Hepes-KOH, pH 7.9, 25% glycerol, 420 mM NaCl, 1.5 mM

MgCl2, 0.2 mM EDTA, 0.5 mM DTT, 0.2 mM PMSF). After

centrifugation (12000 g at 4uC for 30 minutes), the supernatant

was discarded and the pellet was resuspended in 50 ml of buffer C

(25% glycerol, 20 mM Hepes-KOH, pH 7.9, 420 mM NaCl,

1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM DTT, 0.2 mM PMSF,

2 mM benzamidine, 5 mg/ml leupeptin) and incubated for

45 minutes at 4uC. Cellular debris was removed by 5 minutes of

centrifugation (6000 g at 4uC) and the supernatant was flash-

frozen at 280uC. Protein concentrations were determined using

the BCATM protein assay kit (Pierce, Bonn, Germany) as

instructed by the manufacturer.

Western blotting
Proteins were diluted in radio-immuno precipitation assay

(RIPA) buffer to equivalent protein concentrations. After adding

46 Laemmli sample buffer they were immediately heated for

10 minutes at 70uC, separated on a 12% polyacrylamide gel and

transferred to a nitrocellulose membrane (Polyvinylidene Difluor-

ide, Bio-Rad Laboratories, Inc., München, Germany). Rainbow

(Amersham, Buckinghamshire, UK) and MagicMark (Invitrogen,

Karlsruhe, Germany) were used for size analysis and blotting

control. The membranes were blocked overnight at 4uC in TBS

containing 0,05% Tween and supplemented with 3% BSA and

3% skimmed milk. The membranes were then incubated in 1:500

COX2 goat polyclonal IgG (Santa Cruz, Heidelberg, Germany) or

1:500 anti RSV mouse IgG (Acris, Hiddenhausen, Germany) or

1:500 FN goat polyclonal IgG (Santa Cruz, Heidelberg, Germany)

or 1:1000 beta-Actin antibody (Cell Signaling, Danvers, MA) in

HIF during RSV Infection
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blocking buffer. After three washes, membranes were incubated

with horse-radish-peroxidase-labelled secondary antibodies (goat

anti-rabbit or donkey anti-goat or goat anti-mouse 1:1000; Santa

Cruz, Heidelberg, Germany) for 45 minutes at room temperature.

The wash was repeated and proteins were detected by enhanced

chemiluminescence, using the Chemiluminescent Substrate Kit

(Pierce, Bonn, Germany). Western immunoblotting for HIF1-

alpha was performed using 1:500 Anti-HIF-1a rabbit polyclonal

IgG (upstate, Lake Placid, NY) following the manufacturers

protocol without the use of Tween.

Enzyme-linked immunosorbent assay (ELISA) for
determination of chemokines

Total protein samples of infected or non-infected A549 cells were

tested for VEGF by use of a commercial ELISA kit (R&D Systems,

Minneapolis, MN, USA) as instructed by the manufacturer. In short,

samples were added to a 96 well microtiter plate, which was coated

with murine monoclonal antibody to VEGF. The unbound protein

was removed by washing and an enzyme linked polyclonal antibody

specific to VEGF was added. After additional washing, substrate

solution was added and incubated for 20 min. The color-reaction

was stopped with stop solution and the amount of VEGF was

determined by optical density of the samples by comparing the

standards at 450 nm using an ELISA reader.

Immunohistochemistry
A549-cells were cultured on glass slides (NalgeNuc Internation-

al, Naperville, IL) and infected with RSV at a MOI of 3. After

24 hours, they were fixed and permeabilized for immunofluores-

cent staining using Cytofix/Cytoperm (PharMingen, BD-Biosci-

ence, Heidelberg, Germany). After two washes with Perm/Wash-

solution (PharMingen, BD-Bioscience, Heidelberg, Germany) the

slides were blocked for 30 minutes with 5% skimmed milk in

Perm/Wash-solution. Purified mouse anti-HIF1a Mab (BD

Transduction Laboratories, BD-Bioscience, Heidelberg, Ger-

many) and anti-RSV mouse IgG (Acris, Hiddenhausen, Germany)

were diluted 1:100 in Perm/Wash-solution and the slides were

incubated for 30 minutes. Normal mouse and normal rabbit

control IgG in a dilution of 1:200 were used. After two washes with

Perm/Wash-solution, the slides were incubated for 30 minutes

with the secondary antibodies (Alexa Fluor 488 goat anti-rabbit

IgG and Alexa Fluor 594 goat anti-mouse IgG, Invitrogen,

Karlsruhe, Germany) in Perm/Wash. The slides were embedded

with a reagent containing DAPI (Invitrogen, Karlsruhe, Germany)

for staining of the nuclei. Fluorescence was visualized with a

confocal laser scanning microscope (Leica, Bensheim, Germany).

Reverse Transcription Polymerase Chain Reaction
Analysis

Realtime RT-PCR (iCycler; Bio-Rad Laboratories Inc., Her-

cules, California, USA), was used to verify COX2, FN-1, VEGF

and CD73 transcript levels of RSV-infected A549 cells. After

infection with RSV with an infection dose of MOI3 for 24 h, total

RNA was isolated using the RNA II Kit (Macherey & Nagel,

Düren, Germany) and real-time RT-PCR was performed as

described previously [47–52]. The PCR reaction contained 10 pM

each of the sense primer 59-AAA CCT CAG CTC AGG ACT

GC-39 and the antisense primer 59-GGC ACT AGC CTC TTT

GCA TC-39 for COX2, sense primer 59-AAG GAA GGG GAA

GAA CAG GA-39 and the antisense primer 59-GGC AGA GCT

GAT GGA ATC TC-39 for CD73, sense primer 59-TTG CCT

TGC TGC TCT ACC TC-39 and the antisense primer 59-AGC

TGC GCT GAT AGA CAT CC-39 for VEGF, sense primer 59-

AGG CTC AGC AAA TGG TTC AG-39 and the antisense

primer 59-TCG GCT TCC TCC ATA ACA A-39 for FN1. The

primer set for COX2, FN1 and VEGF was amplified using

increasing numbers of cycles of 95uC for 15 sec, 58uC for 30 sec,

72uC for 10 sec, and a final extension of 72uC for 1 minute. The

primer set for CD73 was amplified using increasing numbers of

cycles of 95uC for 15 sec, 60uC for 30 sec, 72uC for 10sec, and a

final extension of 72uC for 1 minute. Human beta-actin (sense

primer, 59-GGT GGC TTT TAG GAT GGC AAG-39; and

antisense primer, 59-ACT GGA ACG GTG AAG GTG ACA G-

39) was used as control.

Stable repression of HIF-1a by siRNA
Repression of HIF-1a by siRNA was achieved based on a

modification of methods previously described [26,53–56]. In short, a

hairpin primer with the sequence 59-ACCTCGCTGACCAGT-

TATGATTGT-GATCAAGAGTCACAATCATAACTGGTCA-

GCTT-39 and 59-CAAAAAGCTGACCAG-TTATGATTGTGA-

CTCTTGATCACAATCATAACTGGTCAGCG-39 correspond-

ing to position 2666-2685 of the HIF1a gene was selected. A549-cells

were transfected using electroporation, followed by selection with

G418 (1 mg/ml). The control cell line was transfected with a non-

specific control psiRNA-hH1 neoscr plasmid.

Blood Gas Analysis
Blood gas analysis was performed to assess oxygen partial

pressure in supernatants of uninfected or infected A549 cells. The

cells were cultured and infected at a MOI of 1 or 5. One hour after

infection the cell-culture flasks were filled up with serum free

media and were sealed gas-tight. Analysis of the supernatants was

performed immediately after removal via the I-STAT Analyzer

(Abbott, Wiesbaden, Germany) at different time points as

described previously [19,52].

Infection of mice with RSV and extraction of lung nuclear
proteins

Female, 6- to 8-week-old BALB/c mice were purchased from

Harlan (Houston, Texas, USA) and were housed in pathogen-free

conditions in the animal research facility of the University Texas

Medical Branch (UTMB), Galveston, Texas, in accordance with

the National Institutes of Health and UTMB institutional

guidelines for animal care. The Institutional Animal Care and

Use Committee approved this protocol. Cages, bedding, food, and

water were sterilized before use. Under light anesthesia, female, 6-

8 weeks old BALB/c mice were infected intranasally with RSV at

16107 plaque-forming units (PFUs), diluted in sterile PBS for a

total inoculation volume of 50 ml. As mock treatment, control mice

were inoculated in the same way with an equivalent volume of

sucrose diluted in PBS. At the indicated time points after infection

(12, 24 and 48 h) mice were anesthetized with an intraperitoneal

injection of ketamine and xylazine before the thoracic cavity was

opened [39]. Lungs were then removed, quick frozen in liquid

nitrogen and stored at 280uC until nuclear protein was isolated.

Nuclear proteins were isolated from the lung tissue using a

modified method described by Bohrer and colleagues [46]. Lung

tissue was homogenized in 5 ml ice-cold Buffer A (10 mM 2-

hydroxyethyl-piperazine N9-2-ethanesulfonic acid [Hepes]–KOH,

pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM dithiothreitol

[DTT], 0.2 mM phemylmethyl sulfonyl fluoride [PMSF], 0.6%

nonident P40 [NP-40]) and centrifuged at 3506g, 4uC for

30 seconds. The supernatant was kept on ice for 5 minutes and

centrifuged for 5 minutes at 6,0006g at 4uC, and the pellet was

resuspended in 200 ml Buffer B (10 mM Hepes–KOH, pH 7.9,
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1.5 mM MgCl2, 10 mM KCl, 1.2 M sucrose, 0.5 mM DTT,

0.2 mM PMSF). After centrifugation (13,0006g, 4uC, 30 min-

utes), the pellet was resuspended in 100 ml Buffer C (20 mM

Hepes–KOH, pH 7.9, 1.5 mM MgCl2, 420 mM NaCl, 0.2 mM

ethylenediamine-tetraacetic acid, 0.5 mM DTT, 0.2 mM PMSF,

2 mM benzamidine, 5 mg/ml leupeptin, 25% glycerol), incubated

on ice for 20 minutes, and centrifuged (6,0006g, 4uC, 2 minutes).

The supernatant was quick frozen in aliquots at 280uC. HIF-1a
stabilization was determined by Western blot analysis as described

previously [56].

Statistical Analysis
Data collection and statistical analysis was performed using

Microsoft Excel (Microsoft Office Professional Edition 2003) and

Graph Pad Prism (GraphPad Software Inc., Prism 4 for Windows

Version 4.03). All presented values were calculated as the mean

from at least three separate experiments. The results in the control

and the viral infection group were analyzed and compared by

utilizing the Unpaired Student t Test and the Mann-Whitney

Nonparametric Test. For all statistical analyses a P value,0.05

was considered significant.

Results

Immunolocalization of HIF-1a during RSV infection in
vitro

Recent evidence revealed that numerous parallels exist

between inflammation and hypoxia, including changes in barrier

function or inflammatory cell recruitment [5,6,55,57–60]. In

addition, recent studies have revealed that during infections with

human pathogens, HIF-1a is activated [19,29]. Previous studies

demonstrated that RSV infections are characterized by a

particularly prominent inflammation of the pulmonary mucosa-

both in natural and experimental infections-and RSV is among

the most potent biological stimuli that induce the expression of

pro-inflammatory genes [36]. Therefore, we hypothesized that

HIF-1a is stabilized during infections with RSV and may

contribute to RSV-associated changes in gene expression. For

our studies, we used A549 cells, a cell line derived from an

alveolar cell carcinoma of the lung. As first step, we performed

immunohistochemical staining with antibodies for RSV (green)

or HIF-1a (red) using confocal laser scanning microscopy

(Figure 1A). As counterstaining for the nuclei we used dapi

staining (blue). As shown in Figure 1A, RSV infected cells also

stained positive for HIF-1a, with localization of HIF-1a both in

the cytosole and the nuclei. This is consistent with other studies

demonstrating that HIF-1a is present in the cytosole and in the

nucleus [61]. In contrast, uninfected A549 cells only had a very

week signal for HIF-1a (Figure 1B). Isotype controls and staining

of infected A549 cells with secondary antibody alone were

negative (data not shown). Taken together, these data reveal that

during RSV infection, HIF-1a accumulates in the cytosole and

the nucleus of infected pulmonary epithelia, suggesting HIF-1a
activation during RSV infection in vitro.

HIF-1a protein is stabilized during RSV infection
After having shown by confocal laser scanning microscopy that

HIF-1a is stabilized during RSV infection, we next used Western

blot analysis to confirm these results with a more quantitative

approach. Here, we first confirmed successful infection of A549

cells using different infection doses (MOI1-5). As shown in

Figure 2A, we found a close correlation of virus load with RSV

G-protein after 24 h of infection (Figure 2A). In contrast, RSV

pre-exposed to UV light source as previously described for RSV

inactivation [43] showed no signal for intracellular RSV G-

protein. Uninfected cells were used as negative control. As next

step, we measured HIF-1a during RSV infection by Western blot

analysis. These studies revealed an 8.265.2-fold increase in HIF-

1a protein compared to non-infected A549 cells (Figure 2B and C,

relative to beta-actin, MOI of 3). Interestingly, this HIF-response

was completely attenuated when using UV-treated RSV virus

(0.960.42-fold HIF-1a protein relative to beta-actin, Figure 2 B

and C). In additional control studies, we exposed A549 cells to

ambient hypoxia (2% oxygen over 24 h), which was associated

with a robust increase in HIF-1a protein (6.564.3-fold increase in

HIF-1a). Taken together, these studies reveal robust stabilization

of HIF-1a during infection with life RSV in vitro.

Figure 1. HIF-1a during RSV infected of pulmonary epithelia.
(A) ,1,56105 A549-cells were seeded on glass slides and infected with
RSV (multiplicity of infection, MOI 3). After 24 h they were fixed,
permeabilized and incubated with anti-HIF1a and anti-RSV IgG as
primary antibodies. Alexa Fluor 488 and Alexa Fluor 594 were used for
staining. In addition, slides were counter-stained with Dapi. The cells
were visualized with confocal laser scanning microscopy. Uninfected
cells were used as controls (B).
doi:10.1371/journal.pone.0003352.g001
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HIF-dependent genes are induced following RSV
infection

After having demonstrated HIF-1a protein stabilization during

infection with RSV, we next pursued functional consequences of

HIF-1a in transcriptional gene induction during RSV infection.

For this purpose, we performed expressional studies of known

HIF-1-dependent genes during RSV infection. Thus, we measured

transcript levels of CD73 [62], VEGF [63], Fibronectin1 (FN1)

[64] and COX2 [65] after 24 h of RSV infection of A549

pulmonary epithelial cells using different RSV infection doses

(MOI1-5). As shown in Figure 3, analysis of transcript levels by

real-time RT-PCR revealed induction of all tested HIF-1 target

genes. Extensions of these findings at the protein level by Western

blot confirmed significant induction of COX2 or FN1 protein

levels (Figure 4A and B). Similarly, measurements of VEGF in the

supernatants from RSV infected pulmonary epithelial cells

revealed significantly elevated levels of VEGF (data not shown).

Taken together, these studies demonstrate induction of HIF-1a -

depedendent genes during RSV infection in vitro.

HIF-dependent gene expression during RSV infection in
pulmonary epithelial cells following siRNA repression of
HIF-1a

To demonstrate a functional role of HIF-1a in the observed

induction of HIF-dependent genes induction during RSV

infection, we next pursued HIF-1a-loss-of-function studies. For

this purpose, we generated a pulmonary epithelial cell line (A549

cells) with stable repression of HIF-1a. This was achieved via

hairpin siRNA technique as we have done previously in other cell

lines [26,53–56]. To demonstrate effective repression of HIF-1a in

these cell lines, we utilized a model of ambient hypoxia. For this

purpose, we exposed these cells to hypoxia over 24 or 48 h (2%

oxygen), while growth-synchronized control cells were maintained

at room air (21% oxygen). These studies revealed significant

accumulation of HIF-1a protein in control transfected cells in

conjunction with attenuated HIF-1 a stabilization in HIF-1 a-

siRNA-transfected A549 cells (Figure 5A and B). We utilized this

model to directly test the functional role of HIF-1a in

transcriptional modulation during RSV infection. Here, we

measured transcript levels of control transfected or HIF-1a-

targeted pulmonary epithelia. These studies revealed significant

induction of HIF-1-target genes (VEGF, CD73 or FN1) in control

cells, while these responses were abolished in HIF-1a-targeted

pulmonary epithelia. Taken together, these studies suggest a

functional role of HIF-1 a in transcriptional induction of HIF-1a -

targeted genes during infection with RSV.

Influence of UV-inactivation of RSV on HIF-dependent
gene induction

In view of the above results, we hypothesized that only intact

RSV is capable of HIF-1 a stabilization and induction of HIF-1a
target genes. Therefore, we next investigated the effects of UV-

inactivated virus on the HIF-1 a target genes. For this purpose, we

measured VEGF, CD73, FN1 and COX2 transcript levels in

A549 cells that were infected with intact or with UV-inactivated

RSV (Figure 6 A-D). Consistent with our studies above, we found

significant induction of HIF-1a target genes in RSV infected A549

cells. In contrast, induction of HIF-1a target genes was completely

abolished after similar infection doses with UV-inactivated RSV.

Taken together, these studies suggest that only functional RSV

virus, capable of intracellular replication–is necessary to cause

HIF-1a-dependent gene induction.

Figure 2. HIF-1a protein measurements during RSV infection in
vitro. (A, B) Cultured pulmonary epithelia (A549) were grown to 80%
confluency, infected with intact (multiplicity of infection, MOI 1, 3 or 5)
or UV-inactivated RSV (MOI 3). In other studies A549 cells were exposed
over 24 h to ambient hypoxia (2% oxygen). Cells were lysed and nuclear
proteins were isolated, and Western immunoblotting for RSV G-protein
(A) or HIF1a was performed. Uninfected cells were used as control (Co).
The same blots were probed for b-actin expression as a control for
protein loading. A representative blot of 3 is shown, in addition to
densitometric analysis of HIF-1a protein levels relative to b-actin
(C;*P,.01, different from control, n = 3).
doi:10.1371/journal.pone.0003352.g002
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HIF1a stabilization after RSV infection occurs
independent of hypoxia

Previous studies of infection and inflammation have revealed

significant changes in metabolic supply and demand. For example,

studies of murine colitis revealed convincing evidence that the

mucosal surface is prone to inflammation-associated hypoxia

[58,66]. Our above studies showed that intracellular uptake and

binding of RSV appears to be necessary for HIF-1a dependent

gene induction. Therefore, we hypothesized that changes in

metabolic supply and demand ratios during RSV infection may

accompany RSF-infection and RSV-associated tissue hypoxia

could lead to HIF-1a activation. To address this hypothesis in an

experimental setting, we measured oxygen partial pressures (pO2)

values in the supernatants from RSV infected pulmonary epithelia

or controls that were maintained in an oxygen impermeable

culture system. As shown in Figure 7A, no differences in PO2

values were observed between experimental groups. In fact,

neither supernatant from control nor RSV-infected pulmonary

epithelia showed significant degrees of hypoxia. Consistent with

these findings, and as shown in Figure 7B, Western blot analysis

confirmed that HIF-1a was not stabilized in control cells

maintained under the above cell culture conditions at 24 h.

Similarly, HIF-1a stabilization was not observed at earlier time

points (date not shown). In contrast, we observed significant HIF-

1a stabilization in RSV-infected pulmonary epithelia. Taken

together, these studies suggest oxygen independent stabilization of

HIF-1a during RSV infection.

HIF-1 a is stabilized during murine RSV infection in vivo
As proof of principle for these concepts in vivo, we compared the

influence of RSV infection on pulmonary HIF-1a stabilization using

a previously described model [38–41]. This mouse model shows

close similarity to the pathogenesis of RSV-induced lower airway

disease in humans. In fact, recently established that the experimental

infection of BALB/c mice with highly purified preparations of RSV

A, at a dose of 107 PFU, induces a severe inflammatory response in

lung tissue as early as 24 h after intranasal inoculation [39]. Lung

inflammation was characterized by an excess of monocytes/

macrophages, lymphocytes, and to a lesser extent, neutrophils

surrounding bronchioles and vessels, with evidence of the involve-

ment of alveolar spaces [39]. In the present studies, female BALB/c

mice were inoculated intranasally with purified RSV. In control

experiments, BALB/c mice matched in age, gender and weight were

inoculated in the same way with an equivalent volume of vehicle. At

the indicated time points after infection, mice were anesthetized,

lungs were shockfrozen and HIF-1a was determined by Western blot

analysis. As shown in Figure 8A and B, HIF-1 a was stabilized with

RSV infection at all measurement time points. Taken together, these

data confirm our in vitro findings and suggest that during murine

RSV pneumonia HIF-1a is stabilized.

Discussion

Many studies during the last decade have demonstrated a

central role of HIF-1 in mammalian oxygen homeostasis [3].

However, more recently many studies have also demonstrated a

role of HIF-1a in the transcriptional coordination during

inflammation and infection [6,32,54,67]. In fact, previous studies

have revealed that HIF-1a can be stabilized during infections with

human pathogens via oxygen-dependent [67] or oxygen indepen-

dent [54] pathways. In the present studies we pursued HIF-1a
stabilization and gene-transcription during infection with RSV–

one of the most potent biological stimuli to induce an

inflammatory milieu [38–41]. In initial studies of cultured

pulmonary epithelia infected with RSV revealed stabilization of

HIF-1a protein. Moreover, transcription of known HIF-1a target

genes was induced following RSV infection, while siRNA-

dependent repression of HIF-1a abolished these responses.

However, infection with RSV was not associated with increased

oxygen consumption or cellular hypoxia, suggesting that HIF-1a
stabilization and HIF-dependent gene induction during RSV

Figure 3. Transcript levels of HIF-1-dependent genes following
RSV infection. Total RNA was isolated from RSV-infected (multiplicity
of infection, MOI 1, 3 and 5) or non-infected A549 cells (control) and (A)
CD73, (B) VEGG, (C) FN1, (D) COX2 mRNA levels were determined by
real-time RT-PCR. Data were calculated relative to internal housekeep-
ing gene (b-actin) and are expressed as fold increase over uninfected
control-cells 6SEM at each infection dose (*P,0.05, different from
uninfected control-cells).
doi:10.1371/journal.pone.0003352.g003
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infection occurs in an oxygen-independent fashion. Finally, studies

of murine RSV pneumonia revealed significant HIF-1a stabiliza-

tion throughout the course of the disease and suggest that RSV-

associated HIF-1a activation also occurs in vivo.

Previous studies of HIF-1a during inflammation and infection

have found oxygen-independent activation of HIF-1a during

infections with human pathogens. For example, a recent study on

molecular mechanisms of how bacteria activate HIF-1a found a

role of bacterial siderophores in HIF-1a activation during infection

with Enterobacteriaceae [54]. Here, the authors studied HIF-1a
activation and HIF-1a -dependent gene induction in Peyer’s

patches that were analyzed after orogastric infection with Yersinia

enterocolitica and orogastric Y enterocolitica infection in mice with

a conditional deletion of HIF-1a [66] in the intestine. These studies

demonstrated that infection of mice with Y enterocolitica led to

functional activation of HIF-1a in Peyer’s patches. Moreover, mice

with conditional deletion of HIF-1a in the intestinal epithelium

showed a significantly higher susceptibility to orogastric Y

Figure 4. Protein levels of HIF-1-dependent genes following RSV infection. Total protein was isolated from RSV-infected (multiplicity of
infection, MOI 1, 3 and 5) or non-infected A549 cells. Protein levels were determined by Western blot. The same blots were probed for b-actin
expression as a control for protein loading. In addition, densitometric analysis of protein levels relative to b-actin were performed. Data are expressed
as fold increase over uninfected control-cells 6SEM at each infection dose. (A) COX2; (B) FN1 (*P,0.01, different from control, n = 3).
doi:10.1371/journal.pone.0003352.g004
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enterocolitica infections, suggesting HIF-1a activation as a host

defense mechanism in this model. Additional studies with Y

enterocolitica, S enterica subsp enterica, or E aerogenes, and,

moreover, application of their siderophores (yersiniabactin,

salmochelin, aerobactin) caused a robust, dose-dependent HIF-

1a response in human epithelia and endothelia, independent of

cellular hypoxia. Taken together, such studies demonstrate a role

for bacterial siderophores in hypoxia-independent activation of

HIF-1a during infection with human pathogenic bacteria

[54].Similarly, previous studies on viral infections with RSV have

demonstrated induction of HIF-1a in primary human bronchial

epithelial cells via a nitric-oxide-dependent pathway [42]. Other

studies have identified a crosstalk between viral genes and the HIF-

1a pathway during infections with the human herpesvirus 8 (HHV-

8) [32,68]. Kaposi’s sarcoma-associated herpesvirus (KSHV or

HHV-8) is the etiological agent of Kaposi’s sarcoma, a highly

vascularized, endothelial-derived tumor. A direct role for KSHV-

mediated induction of angiogenesis has been proposed based upon

the nature of the neoplasia and various KSHV gene overexpression

and infection model systems. These studies revealed that KSHV

infection of endothelial cells induces mRNA of HIF-1a and HIF-

2a. While HIF is classically activated posttranscriptionally, these

Figure 5. Transcript levels of HIF-dependent genes following
HIF-1a siRNA repression during RSV infection. (A) HIF-1a protein
levels in A549 cells following hairpin siRNA repression of HIF-1a (HIF-/-;
A549 cells transfected with control siRNA:SCR). Cells were grown to 80%
confluency and exposed to normoxia or hypoxia (2% oxygen) over
indicated time period. Nuclear proteins were isolated and Western Blot
analysis was performed for HIF-1a. The same blots were probed for b-
actin expression as a control for protein loading. A representative blot
of 3 is shown, in addition to densitometric analysis of HIF-1a protein
levels relative to b-actin (B;*P,0.01, different from control, n = 3).(C, D,
E) Total RNA was isolated from RSV-infected (multiplicity of infection,
MOI 3) or non-infected A549 following HIF-1a repression (A549 HIF-/-)
or transfection with control siRNA (A549 scr). (C) VEGF, (D) CD73, (E) FN1
transcript levels were determined by RT-PCR. Data were calculated
relative to internal housekeeping gene (b-actin) and are expressed as
fold increase over uninfected control-cells 6SEM (*P,0.05).
doi:10.1371/journal.pone.0003352.g005

Figure 6. Transcript levels of HIF-dependent genes following
infection with inactivated RSV. Total RNA was isolated from
uninfected, RSV-infected or UV-inactivated RSV infected A549 cells. (A)
VEGF, (B) CD73, (C) FN1, (D) COX2 transcript levels were determined by
real-time RT-PCR. Data were calculated relative to internal housekeep-
ing gene (b-actin) and are expressed as fold increase over uninfected
control-cells 6SEM at each infection dose (*P,0.05, different from
uninfected control-cells).
doi:10.1371/journal.pone.0003352.g006
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studies demonstrate that both alpha-subunits are up-regulated at

the transcript level by KSHV infection. Here, the transcriptional

activation of HIF leads to a functional increase in HIF activity

under normoxic conditions, as shown utilizing luciferase reporter

assays and HIF-dependent gene expression.

From the present studies it remains unclear whether HIF-1a
activation during RSV infection represents a host-defense

mechanism or is an essential part of the disease pathogenesis

enabling virus uptake or replication. While some studies have

identified a host-protective role of HIF-1a during inflammation

[25–27,53,54,69] or infections [54], other studies have found a

contribution of HIF-1a activation in growth and survival of

human pathogens. For example, Toxoplasma gondii is an obligate

intracellular protozoan pathogen. Recent studies revealed that

genes mediating cellular responses to hypoxia were upregulated in

Toxoplasma -infected cells but not in cells infected with another

intracellular pathogen, Trypanosoma cruzi [70,71]. The inducible

expression of these genes is controlled by the HIF-1a. Additional

studies revealed that Toxoplasma infection rapidly increased the

abundance of the HIF1a and activated HIF-1a reporter gene

expression and survival was severely reduced in cells targeted for

HIF-1a [72]. These studies also suggested that while HIF-1a was

not required for parasite invasion, HIF-1a was required for

parasite cell division and organelle maintenance, indicating that

Toxoplasma activates HIF-1a and requires HIF-1a for growth

and survival at physiologically relevant oxygen levels [70–72].

Taken together, the present studies reveal oxygen-independent

stabilization of HIF-1a during RSV infection in vitro and in vivo.

Future challenges will include the determination whether such

responses elicited during RSV infections are host-protective or host-

detrimental. In addition, it will be critical to gather a more thorough

understanding of the mechanisms of HIF-1a induction during RSV

infection (e.g. the role of RSV elicited TLR signaling in HIF

stabilization) or the contribution of RSV-associated nitric oxide

release [42]. Ongoing studies are currently testing HIF-activation or

HIF-inhibition in different settings of medical therapy and novel

therapeutics will soon become available in patient care to inhibit or

Figure 7. (a) Measurements of oxygen partial pressures (pO2) in the
supernatants of RSV infected pulmonary epithelia. (A) A549 cells were
cultured and infected at a multiplicity of infection (MOI) of 1 or 5 in gas-
tight sealed flasks. Oxygen partial pressure was measured in the
supernatants at indicated time points following infection. (B) A samples
was assessed for HIF-1a protein levels by Western blot 24 h after RSV
infection or control conditions. Blots were probed for b-actin expression
as a control for protein loading
doi:10.1371/journal.pone.0003352.g007

Figure 8. HIF-1a protein during murine RSV pneumonia in vivo.
Female, 6- to 8-week-old BALB/c mice were inoculated intranasally with
purified RSV at 16107 plaque-forming units (PFUs), diluted in sterile 0.9
% sodium chloride for a total inoculation volume of 50 ml. As mock
treatment, control mice were inoculated in the same way with an
equivalent volume of sucrose diluted in 0.9 % sodium chloride. Lungs
were removed at indicated time-points, and HIF-1a protein levels were
determined by Western blot analysis (A) or quantified by densitometry,
relative to beta-actin (B; *p,0.01).
doi:10.1371/journal.pone.0003352.g008
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to activate the HIF-1a pathway. Such compounds may comprise a

novel approach during RSV infections.

Acknowledgments

We would like to acknowledge Marion Faigle and Stephanie Zug for

excellent technical assistance.

Author Contributions

Conceived and designed the experiments: HAH HKE. Performed the

experiments: HAH CD PR YMH JK RPG. Analyzed the data: CD.

Contributed reagents/materials/analysis tools: HAH RPG. Wrote the

paper: CD VAJK HKE.

References

1. Semenza GL (1994) Regulation of erythropoietin production. New insights into

molecular mechanisms of oxygen homeostasis. Hematol Oncol Clin North Am

8: 863–884.

2. Bunn HF, Gu LJ, Huang E, Park JW, Zhu H (1998) Erythropoietin: a model

system for studying oxygen-dependent gene regulation. J Exp Biol 201:

1197–1201.

3. Semenza GL (2007) Life with oxygen. Science 318: 62–64.

4. Ratcliffe PJ (2007) HIF-1 and HIF-2: working alone or together in hypoxia?

J Clin Invest 117: 862–865.

5. Sitkovsky MV, Lukashev D, Apasov S, Kojima H, Koshiba M, et al. (2004)

Physiological control of immune response and inflammatory tissue damage by

hypoxia-inducible factors and adenosine A2A receptors. Annual Review of

Immunology 22: 657–682.

6. Sitkovsky M, Lukashev D (2005) Regulation of immune cells by local-tissue

oxygen tension: HIF1 alpha and adenosine receptors. Nat Rev Immunol 5:

712–721.

7. Semenza GL (2008) O2 sensing: only skin deep? Cell 133: 206–208.

8. Semenza GL (1998) Hypoxia-inducible factor 1: master regulator of O2

homeostasis. Curr Opin Genet Dev 8: 588–594.

9. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is

a basic-helix-loop-helix-PAS heterodimer regulated by cellular oxygen tension.

Proc Natl Acad Sci 92: 5510–5514.

10. Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-

inducible factor 1. J Biol Chem 270: 1230–1237.

11. Wang GL, Semenza GL (1993) General involvement of hypoxia-inducible factor

1 in transcriptional response to hypoxia. Proc Nat Acad Sci (USA) 90:

4304–4308.

12. Maxwell PH, Pugh CW, Ratcliffe PJ (1993) Inducible operation of the

erythropoietin 39 enhancer in multiple cell lines: evidence for a widespread

oxygen-sensing mechanism. Proc Natl Acad Sci 90: 2423–2427.

13. Semenza GL (2001) HIF-1, O(2), and the 3 PHDs: how animal cells signal

hypoxia to the nucleus. Cell 107: 1–3.

14. Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, et al. (1998)

Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumor

angiogenesis. Nature 394: 485–490.

15. Guillemin K, Krasnow M (1997) The hypoxic response: huffing and HIFing.

Cell 89: 9–12.

16. Kvietikova I, Wenger RH, Marti HH, Gassmann M (1997) The hypoxia-

inducible factor-1 DNA recognition site is cAMP responsive. Kid Int 51:

564–566.

17. Peyssonnaux C, Datta V, Cramer T, Doedens A, Theodorakis EA, et al. (2005)

HIF-1{alpha} expression regulates the bactericidal capacity of phagocytes. J Clin

Invest 115: 1806–1815.

18. Cramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R, et al. (2003) HIF-

1alpha is essential for myeloid cell-mediated inflammation. Cell 112: 645–657.

19. Hartmann H, Eltzschig HK, Wurz HKH, Rakin A, et al. (2007) Hypoxia-

independent activation of HIF-1 by Enterobacteriaceae and their siderophores.

Gastroenterology. in press.

20. Walmsley SR, Print C, Farahi N, Peyssonnaux C, Johnson RS, et al. (2005)

Hypoxia-induced neutrophil survival is mediated by HIF-1{alpha}-dependent

NF-{kappa}B activity. J Exp Med 201: 105–115.

21. Cummins EP, Berra E, Comerford KM, Ginouves A, Fitzgerald KT, et al.

(2006) Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving

insight into hypoxia-induced NFkappaB activity. Proc Natl Acad Sci U S A 103:

18154–18159.

22. Cummins EP, Seeballuck F, Keely SJ, Mangan NE, Callanan JJ, et al. (2008)

The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model

of colitis. Gastroenterology 134: 156–165.

23. Hagen T, Taylor CT, Lam F, Moncada S (2003) Redistribution of intracellular

oxygen in hypoxia by nitric oxide: effect on HIF1alpha. Science 302:

1975–1978.

24. Laukoetter MG, Nava P, Lee WY, Severson EA, Capaldo CT, et al. (2007)

JAM-A regulates permeability and inflammation in the intestine in vivo. J Exp

Med 204: 3067–3076.

25. Eckle T, Kohler D, Lehmann R, El Kasmi KC, Eltzschig HK (2008) Hypoxia-

Inducible Factor-1 Is Central to Cardioprotection: A New Paradigm for

Ischemic Preconditioning. Circulation 118: 166–175.

26. Kuhlicke J, Frick JS, Morote-Garcia JC, Rosenberger P, Eltzschig HK (2007)

Hypoxia Inducible Factor (HIF)-1 Coordinates Induction of Toll-Like Receptors

TLR2 and TLR6 during Hypoxia. PLoS ONE 2: e1364.

27. Morote-Garcia JC, Rosenberger P, Kuhlicke J, Eltzschig HK (2008) HIF-1-

dependent repression of adenosine kinase attenuates hypoxia-induced vascular

leak. Blood 111: 5571–5580.

28. Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, et al. (2008)

NF-kappaB links innate immunity to the hypoxic response through transcrip-

tional regulation of HIF-1alpha. Nature.

29. Kempf VAJ, Lebiedziejewski M, Alitalo K, Walzlein J-H, Ehehalt U, et al.

(2005) Activation of hypoxia-inducible factor-1 in bacillary angiomatosis:

Evidence for a role of hypoxia-inducible factor-1 in bacterial infections.

Circulation 111: 1054–1062.

30. van der Flier M, van Leeuwen HJ, van Kessel KP, Kimpen JL, Hoepelman AI, et al.

(2005) Plasma vascular endothelial growth factor in severe sepsis. Shock 23: 35–38.

31. van der Flier M, Stockhammer G, Vonk GJ, Nikkels PG, van Diemen-

Steenvoorde RA, et al. (2001) Vascular endothelial growth factor in bacterial

meningitis: detection in cerebrospinal fluid and localization in postmortem

brain. J Infect Dis 183: 149–153.

32. Zinkernagel AS, Johnson RS, Nizet V (2007) Hypoxia inducible factor (HIF)

function in innate immunity and infection. J Mol Med 85: 1339–1346.

33. Nasimuzzaman M, Waris G, Mikolon D, Stupack DG, Siddiqui A (2007)

Hepatitis C virus stabilizes hypoxia-inducible factor 1alpha and stimulates the

synthesis of vascular endothelial growth factor. J Virol 81: 10249–10257.

34. Han HK, Han CY, Cheon EP, Lee J, Kang KW (2007) Role of hypoxia-

inducible factor-alpha in hepatitis-B-virus6protein-mediated MDR1 activation.

Biochem Biophys Res Commun 357: 567–573.

35. Wakisaka N, Kondo S, Yoshizaki T, Murono S, Furukawa M, et al. (2004)

Epstein-Barr virus latent membrane protein 1 induces synthesis of hypoxia-

inducible factor 1 alpha. Mol Cell Biol 24: 5223–5234.

36. Garofalo RP, Haeberle H (2000) Epithelial regulation of innate immunity to

respiratory syncytial virus. Am J Respir Cell Mol Biol 23: 581–585.

37. Haeberle HA, Nohe B, Eltzschig HK, Unertl K, Dieterich HJ (2006) Effect of

synthetic colloids on major histocompatibility complex class II expression. J Clin

Anesth 18: 96–101.

38. Haeberle HA, Casola A, Gatalica Z, Petronella S, Dieterich HJ, et al. (2004)

IkappaB kinase is a critical regulator of chemokine expression and lung

inflammation in respiratory syncytial virus infection. J Virol 78: 2232–2241.

39. Haeberle HA, Kuziel WA, Dieterich HJ, Casola A, Gatalica Z, et al. (2001)

Inducible expression of inflammatory chemokines in respiratory syncytial virus-

infected mice: role of MIP-1alpha in lung pathology. J Virol 75: 878–890.

40. Haeberle HA, Nesti F, Dieterich HJ, Gatalica Z, Garofalo RP (2002) Perflubron

reduces lung inflammation in respiratory syncytial virus infection by inhibiting

chemokine expression and nuclear factor-kappa B activation. Am J Respir Crit

Care Med 165: 1433–1438.

41. Haeberle HA, Takizawa R, Casola A, Brasier AR, Dieterich HJ, et al. (2002)

Respiratory syncytial virus-induced activation of nuclear factor-kappaB in the

lung involves alveolar macrophages and toll-like receptor 4-dependent pathways.

J Infect Dis 186: 1199–1206.

42. Kilani MM, Mohammed KA, Nasreen N, Tepper RS, Antony VB (2004) RSV

causes HIF-1alpha stabilization via NO release in primary bronchial epithelial

cells. Inflammation 28: 245–251.

43. Olszewska-Pazdrak B, Casola A, Saito T, Alam R, Crowe SE, et al. (1998) Cell-

specific expression of RANTES, MCP-1, and MIP-1alpha by lower airway

epithelial cells and eosinophils infected with respiratory syncytial virus. J Virol

72: 4756–4764.

44. Ueba O (1978) Respiratory syncytial virus. I. Concentration and purification of

the infectious virus. Acta Med Okayama 32: 265–272.

45. Kisch AL, Johnson KM (1963) A plaque assay for respiratory syncytial virus.

Proc Soc Exp Biol Med 112: 583–589.

46. Bohrer H, Qiu F, Zimmermann T, Zhang Y, Jllmer T, et al. (1997) Role of

NFkappaB in the mortality of sepsis. J Clin Invest 100: 972–985.

47. Eckle T, Krahn T, Grenz A, Kohler D, Mittelbronn M, et al. (2007)

Cardioprotection by ecto-59-nucleotidase (CD73) and A2B adenosine receptors.

Circulation 115: 1581–1590.

48. Eckle T, Faigle M, Grenz A, Laucher S, Thompson LF, et al. (2007) A2B

adenosine receptor dampens hypoxia-induced vascular leak. Blood.

49. Eltzschig HK, Eckle T, Mager A, Kuper N, Karcher C, et al. (2006) ATP release

from activated neutrophils occurs via connexin 43 and modulates adenosine-

dependent endothelial cell function. Circ Res 99: 1100–1108.

50. Kohler D, Eckle T, Faigle M, Grenz A, Mittelbronn M, et al. (2007) CD39/

ectonucleoside triphosphate diphosphohydrolase 1 provides myocardial protec-

tion during cardiac ischemia/reperfusion injury. Circulation 116: 1784–1794.

HIF during RSV Infection

PLoS ONE | www.plosone.org 10 October 2008 | Volume 3 | Issue 10 | e3352



51. Grenz A, Zhang H, Hermes M, Eckle T, Klingel K, et al. (2007) Contribution of

E-NTPDase1 (CD39) to renal protection from ischemia-reperfusion injury.
FASEB J 21: 2863–2873.

52. Eckle T, Fullbier L, Wehrmann M, Khoury J, Mittelbronn M, et al. (2007)

Identification of ectonucleotidases CD39 and CD73 in innate protection during
acute lung injury. J Immunol 178: 8127–8137.

53. Eltzschig HK, Abdulla P, Hoffman E, Hamilton KE, Daniels D, et al. (2005)
HIF-1-dependent repression of equilibrative nucleoside transporter (ENT) in

hypoxia. J Exp Med 202: 1493–1505.

54. Hartmann H, Eltzschig HK, Wurz H, Hantke K, Rakin A, et al. (2008)
Hypoxia-independent activation of HIF-1 by enterobacteriaceae and their

siderophores. Gastroenterology 134: 756–767.
55. Kong T, Westerman KA, Faigle M, Eltzschig HK, Colgan SP (2006) HIF-

dependent induction of adenosine A2B receptor in hypoxia. Faseb J 20:
2242–2250.

56. Morote-Garcia JC, Rosenberger P, Kuhlicke J, Eltzschig HK (2008) HIF-1-

dependent repression of adenosine kinase attenuates hypoxia-induced vascular
leak. Blood.

57. Eltzschig HK, Karhausen J, Kempf VA (2006) Acute oxygen-sensing
mechanisms. N Engl J Med 354: 975–977.

58. Karhausen J, Haase VH, Colgan SP (2005) Inflammatory Hypoxia: Role of

Hypoxia-Inducible Factor. Cell Cycle 4.
59. Kong T, Eltzschig HK, Karhausen J, Colgan SP, Shelley CS (2004) Leukocyte

adhesion during hypoxia is mediated by HIF-1-dependent induction of beta2
integrin gene expression. Proc Natl Acad Sci U S A 101: 10440–10445.

60. Eltzschig HK, Thompson LF, Karhausen J, Cotta RJ, Ibla JC, et al. (2004)
Endogenous adenosine produced during hypoxia attenuates neutrophil accu-

mulation: coordination by extracellular nucleotide metabolism. Blood 104:

3986–3992.
61. Wotzlaw C, Otto T, Berchner-Pfannschmidt U, Metzen E, Acker H, et al. (2007)

Optical analysis of the HIF-1 complex in living cells by FRET and FRAP.
FASEB J 21: 700–707.

62. Synnestvedt K, Furuta GT, Comerford KM, Louis N, Karhausen J, et al. (2002)

Ecto-59-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates
permeability changes in intestinal epithelia. J Clin Invest 110: 993–1002.

63. Liu Y, Cox SR, Morita T, Kourembanas S (1995) Hypoxia regulates vascular

endothelial growth factor gene expression in endothelial cells. Identification of a

59 enhancer. Circ Res 77: 638–643.

64. Krishnamachary B, Berg-Dixon S, Kelly B, Agani F, Feldser D, et al. (2003)

Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1.

Cancer Res 63: 1138–1143.

65. Kaidi A, Qualtrough D, Williams AC, Paraskeva C (2006) Direct transcriptional

up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes

colorectal tumor cell survival and enhances HIF-1 transcriptional activity during

hypoxia. Cancer Res 66: 6683–6691.

66. Karhausen J, Furuta GT, Tomaszewski JE, Johnson RS, Colgan SP, et al. (2004)

Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis.

J Clin Invest 114: 1098–1106.

67. Kempf VA, Lebiedziejewski M, Alitalo K, Walzlein JH, Ehehalt U, et al. (2005)

Activation of hypoxia-inducible factor-1 in bacillary angiomatosis: evidence for a

role of hypoxia-inducible factor-1 in bacterial infections. Circulation 111:

1054–1062.

68. Carroll PA, Kenerson HL, Yeung RS, Lagunoff M (2006) Latent Kaposi’s

sarcoma-associated herpesvirus infection of endothelial cells activates hypoxia-

induced factors. J Virol 80: 10802–10812.

69. Beldi G, Enjyoji K, Wu Y, Miller L, Banz Y, et al. (2008) The role of purinergic

signaling in the liver and in transplantation: effects of extracellular nucleotides

on hepatic graft vascular injury, rejection and metabolism. Front Biosci 13:

2588–2603.

70. Blader IJ, Manger ID, Boothroyd JC (2001) Microarray analysis reveals

previously unknown changes in Toxoplasma gondii-infected human cells. J Biol

Chem 276: 24223–24231.

71. Vaena de Avalos S, Blader IJ, Fisher M, Boothroyd JC, Burleigh BA (2002)

Immediate/early response to Trypanosoma cruzi infection involves minimal

modulation of host cell transcription. J Biol Chem 277: 639–644.

72. Spear W, Chan D, Coppens I, Johnson RS, Giaccia A, et al. (2006) The host cell

transcription factor hypoxia-inducible factor 1 is required for Toxoplasma gondii

growth and survival at physiological oxygen levels. Cell Microbiol 8: 339–352.

HIF during RSV Infection

PLoS ONE | www.plosone.org 11 October 2008 | Volume 3 | Issue 10 | e3352


