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Abstract
Advances in Fourier transform mass spectrometry have made the acquisition of high-resolution and
accurate mass measurements routine on a chromatographic time-scale. Here we report an algorithm,
Hardklör, for the rapid and robust analysis of high resolution mass spectra acquired in shotgun
proteomics experiments. Our algorithm is demonstrated in the analysis of an Escherichia coli
enriched membrane fraction. The mass spectrometry data of the respective peptides are acquired by
micro-capillary HPLC on an LTQ-Orbitrap mass spectrometer with data-dependent acquisition of
MS/MS spectra. Hardklör detects 211,272 total peptide isotope distributions over a two hour analysis
(75 min gradient) in only a small fraction of the time required to acquire the data. From these data
there are 13,665 distinct, chromatographically persistent peptide isotope distributions. Hardklör is
also used to assess the quality of the product ion spectra and finds that more than 11.2% of the MS/
MS spectra are composed of fragment ions from multiple different molecular species. Additionally,
a method is reported that enzymatically labels N-linked glycosylation sites on proteins, creating a
unique isotope signature that can be detected with Hardklör. Using the protein invertase, Hardklör
identifies 18O-labeled peptide isotope distributions of four glycosylation sites. The speed and
robustness of the algorithm create a versatile tool that can be used in many different areas of mass
spectrometry data analysis.

INTRODUCTION
In recent years, mass spectrometry based proteomics has moved toward handling increasingly
complicated mixtures. To obtain sufficient peak capacity to characterize complex peptide
mixtures, peptides are often separated using multidimensional chromatography to minimize
the overlap of analytes of similar m/z entering the mass spectrometer at any one point in
time1;2. While effective, this approach is inherently slow, and not particularly amenable to
high-throughput analyses. Furthermore, replicate analyses to produce data with appropriate
measures of variance for quantitative comparisons are rarely obtained because of the lengthy
nature of these experiments. Thus, to handle the increasing demand for proteomics analysis
while concurrently performing replicate measurements to obtain statistically meaningful
results, the overall throughput for handling mixtures must be increased.

An alternative to multidimensional chromatography is the use of a mass spectrometer with
sufficient resolution so that when combined with only a single dimension of chromatographic
separation, there is enough peak capacity to handle the complexity of the mixture. Recently,
advances in commercially available Fourier transform mass spectrometers have facilitated the
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routine acquisition of mass spectra at >50,000 resolution, with accurate mass, and on a
chromatographic timescale3;4. With these instruments, an incredible wealth of data can be
acquired in a single μLC-MS experiment. With these high-resolution data, Smith and
coworkers have pioneered the use of accurate monoisotopic mass combined with
chromatographic retention time (Accurate Mass and Time tags or AMT tags) to map signals
measured by μLC-MS with a database of peptides identified previously by tandem mass
spectrometry (MS/MS)5;6. Thus, the throughput of proteomics experiments can be improved
dramatically since any peptide identified previously can now be followed in future experiments
using only the accurate peptide mass and a normalized chromatographic elution time.

Integral to AMT-based experiments is the robust computational determination of the
monoisotopic m/z and charge state for every component in every scan of the μLC-MS run.
While simple in principle, this analysis is complicated by 1) many peptides that are present at
or near the limit of detection, 2) peptides that have complicated isotope distributions, and 3)
overlapping distributions within a complicated mixture. Several computer algorithms have
been developed to deconvolute a complex mass spectrum containing overlapping isotope
distributions at different charge states to produce a simplified list of monoisotopic masses7;
8. Most of these algorithms are either based on, or are a reimplementation of, Horn’s THRASH
algorithm9. While powerful, these algorithms are slow relative to the time required to acquire
the mass spectrometry data – becoming a bottleneck in interpreting μLC-MS data containing
tens of thousands of mass spectra. Furthermore, additional information could potentially be
gleaned using the isotope distributions to recognize unique features to target further
analyses10;11 as opposed to being restricted to only an averagine model12 for estimating the
elemental composition and thus the isotope distribution of a biopolymer.

In this paper we report the development and validation of a new algorithm for the analysis of
high resolution μLC-MS data. This algorithm, Hardklör, has similar sensitivity and specificity
as alternative approaches for extrapolating monoisotopic mass information from complex
datasets, yet is faster and more versatile. Hardklör automates the detection of peptide isotope
distributions (PIDs) from high resolution datasets, with improved handling of overlapping and
in-phase isotope distributions, and with substantial improvements in speed. The improvement
in speed makes possible the identification of unusual isotope distributions and not just those
distributions that fit a common averagine12 model. Using this information we can make
comparisons between complex datasets, flag MS/MS spectra that may be composed of multiple
peptide species, and identify isotope distributions tagged either enzymatically, chemically, or
even metabolically to create a unique isotope distribution.

METHODS
Sample Preparation

Escherichia coli membrane sample preparation—E. coli grown to mid log phase in
LB media were enriched by centrifugation and lysed in ammonium bicarbonate buffer (pH 7.8)
using a French press. The lysate was first spun at low speed (3,000 RPM) and pellet discarded
to remove nuclei and unbroken cells. The remaining supernatant was then subjected to a high
speed spin to enrich for insoluble membrane vesicles. The pellet was then resolubilized using
0.1% RapiGest in 50 mM ammonium bicarbonate buffer and reduced, alkylated, and digested
with trypsin as described previously.13 The resulting peptide mixture was stored at −80 °C
until analysis with an LTQ-Orbitrap as described below.

Site-specific isotope labeling of N-linked glycosylation sites—Glycosylated
Saccharomyces cerevisiae invertase (Sigma-Aldrich) was suspended in 50 mM ammonium
bicarbonate buffer with 0.1% RapiGest (Waters) and H2

18O (50 APE; Spectra Stable Isotopes),
reduced with dithiothreitol (DTT), and alkylated with iodoacetamide (IAA). The invertase was
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then digested with 5 μl PNGase-F (New England Biolabs) to cleave the N-linked glycosylation
and add a unique isotope signature to the respective amino acid residues. The protein was then
precipitated with trichloroacetic acid (TCA) to remove the isotope-enriched sample buffer and
re-suspended in 200 μL of 50 mM ammonium bicarbonate buffer containing 0.1% RapiGest.
The 18O-labeled invertase was then digested by adding trypsin at a 1:100 enzyme/substrate
ratio and incubated for four hours with shaking at 37°C. After digestion, 5 M HCl was added
to a final concentration of 200 mM and heated at 37°C for 45 minutes to cleave the RapiGest.
The insoluble film resulting from the cleavage of RapiGest was removed by centrifugation and
the supernatant was stored at −20°C until analyzed with a benchtop LTQ mass spectrometer
as described below.

Acquisition of High Resolution Orbitrap Mass Spectrometry Data—Each protein
digest (10 μg) was loaded from the autosampler onto a fused-silica capillary column (75-μm
i.d.) packed with 15 cm of Luna C18 material (Phenomenex), mounted in the microspray
source, and placed inline with a Surveyor MS HPLC and a MicroAS autosampler
(ThermoFisher Scientific). The HPLC was operated using two buffer solutions: Buffer A was
a mixture of 95% water, 5% acetonitrile, 0.1% formic acid and Buffer B was a mixture of 20%
water, 80% acetonitrile, and 0.1% formic acid. The run began with 27 minutes of 95% buffer
A during the loading of the sample onto the microcapillary column13 where the HPLC flow
was split from 150 μL/min down to ~2 μL/min prior to the autosampler. Following the initial
loading of the sample onto the column, the split location was adjusted from prior to the
autosampler to a micro-Tee (UpChurch Scientific) immediately upstream of the microcapillary
column using the divert valve on the mass spectrometer. The flow through the column was
reduced from ~2 μL/min to ~200 nL/min using a split capillary with less restriction than the
loading capillary. The peptides were eluted from the column using a 68 minute gradient of 5
to 35% Buffer B, and a 5 minute gradient of 35 to 85% Buffer B. The solvent composition was
kept at 85% Buffer B for 2 min. The column was then re-equilibrated with 95% buffer A for
18 minutes, resulting in a total analysis time of 120 min. Mass spectra were acquired using
data-dependent acquisition with a single high resolution mass spectrum at 60,000 resolution
(at m/z 400) acquired in the Orbitrap mass analyzer in parallel with 5 low resolution MS/MS
scans being acquired in the LTQ.

The tandem mass spectra were searched using SEQUEST14 with no enzyme specificity against
a fasta database that consisted of E. coli open reading frames and shuffled decoy sequences of
the same length and amino acid composition of the E. coli open reading frames. Peptide
identifications were filtered with DTASelect15 using the default parameters with the exception
of requiring ΔCN≥0.12 and accepting only fully tryptic peptides.

Acquisition of High Resolution ZoomScans on a Benchtop Linear Ion Trap—
Invertase peptides were analyzed by μLC-MS using an LTQ mass spectrometer. The peptides
were loaded onto a 75-μm fused-silica capillary packed with Luna 5-μm C18 placed inline
with an Agilent 1100 Binary HPLC. Peptides were loaded and eluted from the capillary column
as described above for the LTQ-Orbitrap mass spectrometer. The LTQ mass spectrometer was
operated using 5 scan events where a full MS scan was followed by the data-dependent
acquisition of a ZoomScan and MS/MS spectrum on the most intense signal, followed by a
second ZoomScan and MS/MS spectrum on the second most intense signal. Dynamic exclusion
was turned on during the entire analysis.

Automated Analysis of High Resolution Orbitrap and ZoomScan Data
Hardklör Algorithm Overview—Hardklör is an application written in C++ and compiled
with the Visual C++ 6.0 compiler for use on the Microsoft Windows operating system and the
GNU GCC compiler for use on GNU/Linux distributions. The algorithm reads ASCII or binary
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MS1 format files16 and iteratively processes each spectrum within the file. The application
outputs a tab-delimited text list of monoisotopic mass, charge state, intensity, and presence/
absence of unusual isotope features for each scan. Hardklör follows the general flow shown in
Figure 1 and cycles through five main steps in the processing of mass spectrometry data. These
steps consist of: 1) Peak Finding, 2) Charge State Estimation, 3) Averagine Modeling and
Monoisotopic Mass Prediction, 4) Unusual Peptide Isotope Distribution Detection, and 5)
Analysis. Each of these steps will be described in detail below. Information about obtaining
Hardklör can be found at http://proteome.gs.washington.edu/software/hardklor/.

Peak Finding—Hardklör distinguishes signal from background by eliminating signal below
a predefined signal-to-noise (S/N) cutoff. To calculate the S/N, Hardklör employs an approach
used in the THRASH algorithm9. Briefly, the algorithm assumes that the background signal
over a given m/z region will be acquired more frequently than the signal of the isotope peaks.
Thus, using a plot of the frequency of each intensity value within the window versus intensity,
the background signal (Ib) is estimated by the intensity with the maximum frequency. The noise
is calculated by the full-width at half maximum (FWHM) of the smoothed histogram plot and
the S/N can be calculated for each signal (Ip) using the equation:

This filter is applied to small, overlapping segments of the entire spectrum. We used segments
of 25 m/z, but the size of the filter segments may be specified by the user. The overlapping
spectral segments give flexibility when dealing with varying amounts of background noise
across the spectrum while minimizing the risk of missing a peak because it resided on the edge
of the segment. Peaks shared in the overlap between segments are only considered once in
downstream analysis.

A unique aspect of Hardklör is how detected peaks are grouped into potential peptide isotope
distributions. Peaks exceeding the S/N threshold (default S/N > 3) are grouped together into
potential isotopic distributions using a novel windowing scheme that self-adjusts from the
smallest m/z width that includes at least two peaks to a maximum of 5 m/z. Beginning from a
window width that encompasses at least two peaks, the window expands to include neighboring
peaks until the 5 m/z threshold is reached. To prevent truncation of a valid isotope distribution,
the window then contracts back to the largest gap between any two peaks in the group. Peaks
that were pushed out of the contracting window are then grouped in a subsequent window and
the process is repeated. The resulting groups of peaks are then submitted for charge state
determination and correlation with predicted combinations of PIDs.

Charge State Determination—Charge state determination is used in Hardklör to minimize
the number of isotope distributions that need to be fit to the group of potential isotope peaks.
We have written a routine known as QuickCharge that estimates charge states for each peak
by computing the reciprocal of the m/z difference between any two peaks. A potential charge
state is computed for every peak by calculating the distance between the respective peak and
the other peaks in the same group – often resulting in multiple putative charge states per single
isotope peak. While the QuickCharge routine does not return a single correct charge state for
each peak, it significantly reduces the total number of combinatorial isotope distributions that
need to be fit to each group of peaks in the later steps of the analysis. Alternatively, the user
can choose to perform no charge state estimation, and Hardklör will consider all possible
isotope distributions within a specified range of charge states. The approach of considering all
isotope distributions within a specified range will be referred to as the Complete method.

Averagine Model and Monoisotopic Mass Prediction—Hardklör uses an
averagine12 model to estimate peptide elemental composition. Averagine is the weighted

Hoopmann et al. Page 4

Anal Chem. Author manuscript; available in PMC 2008 September 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://proteome.gs.washington.edu/software/hardklor/


average of the elemental composition of an amino acid found in proteins. The m/z of the base
isotope peak is multiplied by the charge-state of the distribution to estimate the peptide mass.
Then the mass is divided by the molecular weight of an averagine subunit. The number of
averagine subunits estimates the elemental composition of the polypeptide12. Using the
elemental composition of the computed poly-averagine molecule, the isotope distribution is
calculated with the Mercury algorithm17 to predict an approximate peptide isotope
distribution. Because a group of peaks from the experimental data may consist of one or more
peptides, the m/z value of each centroided peak is used in combination with the peak’s charge
predictions to construct a set of poly-averagine PIDs. The predicted poly-averagine PIDs are
aligned to the observed data at the predicted base isotope peaks, and the monoisotopic mass
of the predicted PIDs that are accepted, as described below, are used to predict the monoisotopic
masses of the observed peptides (Figure 2).

A key component to Hardklör is the ability to detect unusual PIDs that deviate from the
averagine model. These differences may include the presence of atoms other than C, H, O, N
or S and/or non-natural isotope abundances. A user-defined list of possible differences is used
to create variations to the averagine model. Either the standard averagine model or one of the
variants is accepted based on the best similarity score to the observed data.

Combinatorial Analysis of Peptide Isotope Distribution Predictions—Each group
of peaks has multiple estimated PIDs: one PID based upon each peak, and variations for each
of these PIDs including different charge states and averagine model variants. The estimated
PIDs are compared to the observed data using the dot-product similarity metric18. To account
for multiple peptide isotope distributions in the group of peaks, each predicted PID is
considered alone and in combination with one or more other peptide predictions (Figure 3).
No two variants of the same peptide prediction are ever considered together. When combining
predicted PIDs, the intensity of each predicted PID is scaled to the intensity of the
experimentally derived data using the base isotope peak of the predicted distribution and its
respective peak in the experimentally measured spectrum. If two or more predicted PIDs share
an isotope peak, then the contribution to the individual peaks from the respective PIDs, scaled
to the individual base isotope peaks, are summed. If the intensity of a base isotope peak of a
predicted PID is shared by a peak from previously combined predicted PIDs, then the scaled
intensity of the subject PID is the intensity of the respective observed peak minus the intensity
of the respective peak of the combined PIDs. Thus, the contribution of any one predicted isotope
distribution may differ relative to the other PIDs in the combination; however, the relative
abundance of all the peaks within a model remains the same. The PIDs are combined in order
of base isotope peak intensity from least intense to most intense.

To minimize over-fitting the data, the combination with the fewest PID predictions to exceed
the user-defined dot-product threshold is accepted. To make this process as efficient as
possible, each single PID is analyzed first. If the threshold is not exceeded, all possible
combinations of two PIDs are analyzed next. This process is repeated, increasing the number
of combined PIDs, until either the maximum number of combinations specified by the user is
reached or the dot-product threshold is exceeded. Hardklör will always iterate through all
combinations of predicted PIDs at each depth (i.e. the number of combined distributions).
Because all combinations at any depth are considered before terminating the routine, the order
in which the combinations are analyzed does not affect the results. Once the dot-product score
threshold has been exceeded, the PID or PIDs with the highest score is accepted.

RESULTS
Hardklör was tested using an enriched membrane fraction from E. coli. Peptides formed from
the digestion of this sample by trypsin were analyzed by μLC-MS on a hybrid LTQ-Orbitrap

Hoopmann et al. Page 5

Anal Chem. Author manuscript; available in PMC 2008 September 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



mass spectrometer. The high-resolution mass spectra acquired in the electrostatic Fourier
transform mass analyzer of the Orbitrap were processed using Hardklör. Within each group of
peaks, Hardklör was configured to map up to three different peptide isotope distributions with
charge states ranging from +1 to +3, with a dot-product threshold of 0.90. The software then
returned a predicted monoisotopic mass and charge state for each peptide isotope distribution
from each scan. These predictions were further supported by observing the same peptide
isotope distribution in at least three of four consecutive scans. These PIDs were considered to
be a set of persistent distributions and were separated from spurious incorrect distributions.

Figure 4 illustrates the detection of the monoisotopic m/z from the raw LTQ-Orbitrap μLC-
MS data using Hardklör. The spectra acquired during the entire run are represented as a two
dimensional image with time on the x-axis, m/z on the y-axis, and the log normalized intensity
as a heat map color scale. The image of the raw data displays all peaks and is complicated by
chemical noise and by the complexity of the isotope distributions. The image of the same data
processed by Hardklör displays only the predicted monoisotopic peaks. Even over the relatively
narrow m/z and time range that is displayed in the figure, Hardklör is able to extract hundreds
of PIDs and reduce the unwieldy raw data (Figure 4A) to a very simplified output (Figure 4B).
When applied over the entire μLC-MS datafile, Hardklör can detect hundreds of thousands of
PIDs.

Figure 5 shows a typical example of Hardklör results from a single high resolution Orbitrap
scan. From this single scan, Hardklör correctly identified the monoisotopic mass and charge
state of 71 PIDs (Figure 5A). These data span a dynamic range of >3 orders of magnitude – a
large range for a single scan of data this complicated. Within this scan, there are several
overlapping isotope distributions (e.g. m/z range 824–828), as there are with most scans, that
are correctly computed. Also, within this scan are two clearly detectable signals (indicated by
# signs) that are not labeled by Hardklör. After additional analysis (discussed below), Hardklör
correctly detects and assigns these PIDs a charge state of +4. While Hardklör can handle
peptides (and proteins) of any charge state, the user settings limited the analysis to +1, +2, and
+3 charge states to minimize the overall analysis time.

For the entire μLC-MS datafile, Hardklör found 211,272 PIDs (FDR < 1.0%; estimated using
a decoy averagine model with 50% atom percent excess 15N) from a total of 4,376 Orbitrap
spectra acquired over a 2 hour HPLC gradient. These total PIDs were further reduced to 13,665
chromatographically persistent PIDs as described above. By grouping PIDs into those that
persist chromatographically over time, we reduce the likelihood that any one detected PID
could be a result of a spurious random event and minimize redundancy by grouping isotope
distributions that belong to a single molecular species.

Figure 6 shows the dynamic range of Hardklör among the persistent PIDs. The log-scaled
maximum intensities of the PIDs are on the x-axis, and the number of PIDs is on the y-axis.
While the majority of the PIDs have an intensity of 105 counts, Hardklör can identify
distributions with intensities ranging from 103 to greater than 107 counts. Even for a short 75
minute chromatographic separation, the LTQ-Orbitrap combined with Hardklör can detect
features spanning a dynamic range of 5-orders of magnitude. This large dynamic range
illustrates that Hardklör is not limited to identification of PIDs for only the most abundant
proteins in a cell. When combined with an instrument like the Orbitrap, Hardklör can
characterize peptides in a very short analysis time that span a dynamic range that is normally
only feasible with lengthy multidimensional separations2;19.

To assess the performance of different methods for PID identification, comparisons were made
between five different methods for charge state determination. The five methods implemented
are the Complete method, our QuickCharge algorithm, and the previously reported
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Patterson, FFT, and combined Patterson-FFT algorithms20. The Complete method does not
apply a charge state algorithm per se but instead assigns all possible charge states (+1, +2, or
+3) to each peak’s m/z value. In contrast to using a charge state algorithm, when the
Complete method was used, a poly-averagine distribution was calculated for all charge states,
and the distribution with the best dot-product similarity score was accepted. The Patterson,
FFT, and Patterson-FFT algorithms were expanded so that, as with the QuickCharge
algorithm, they provided a set of estimated charge states that is a subset of the Complete method.
Incorrect charge states from each method should score poorly because the spacing of the isotope
peaks and the number of averagine subunits in the calculated isotope distribution will be
incorrect. Thus, by applying an additional layer of computation to reduce the number of charge
states, and therefore PIDs to analyze, we hope to increase the overall speed of analysis.

Table 1 summarizes the performance of each charge state method by comparing the number
of persistent PIDs and the computation time at different score thresholds. Each analysis was
performed on an Intel Xeon 2.4GHz processor. For three different charge states, the use of the
Patterson, FFT, and Patterson-FFT algorithms increased the computation time beyond any
benefit gained by reducing downstream computation; however, the QuickCharge algorithm
performed fast enough to reduce the computation time to approximately 1/3 of the time
necessary to compute the Complete method. At a similarity score threshold of 0.90, the
Patterson and FFT algorithms produced more persistent PIDs than the Complete method, yet
they did not increase the fraction of PIDs that matched the SEQUEST results. Although the
QuickCharge algorithm had the fewest persistent PIDs, it maintained a roughly equivalent
fraction of PIDs that matched the SEQUEST results as well as the Complete method. Thus,
our QuickCharge algorithm fulfills its purpose in providing an increase in speed without a
significant loss in performance.

To assess the sensitivity and specificity of each charge state method, we used a nonstandard
isotope composition for nitrogen (50% atom percent excess 15N) to estimate the chance of
obtaining a random match to an incorrect isotope distribution. Because the nitrogen isotope
composition used in the E. coli growth medium was of natural abundance, the number of PIDs
returned with this alternative isotopic composition could be used as a proxy measure of the
number of false discoveries returned by Hardklör (Table 1, Column 4). The FFT, Patterson,
and Patterson-FFT algorithms showed minimal improvement over the Complete method and
QuickCharge algorithm. The QuickCharge algorithm had significant reduction in
computational overhead when compared to the other charge-state algorithms evaluated. Thus,
the QuickCharge algorithm provides a fast, yet robust, method for PID feature detection.

A unique feature of Hardklör over alternative approaches to PID feature detection7;9;21 is how
it handles overlapping isotope distributions. Hardklör deconvolutes multiple overlapping
peptide distributions by considering multiple combinations of PIDs. This combinatorial
approach evaluates the similarity of each combined set of averagine models against the peaks
in the experimentally measured distribution. Each poly-averagine distribution and its
combination with one or more of the other poly-averagine distributions in the set are scored
until a combination exceeding a preset similarity threshold is found. In this manner, accurate
PIDs can be obtained even for overlapping distributions.

Figure 7 illustrates Hardklör’s ability to deconvolute overlapping PIDs. The distributions show
isotope peaks from one peptide nested between the isotope peaks of a second peptide. Some
isotope peaks from different peptides share the same m/z and each contributes to the abundance
of the peak. Hardklör can deconvolute two PIDs that share peaks, even when the PIDs have
different charge states (Figure 7A). Additionally, Figure 7B illustrates Hardklör’s
deconvolution of three PIDs over a narrow 4 m/z range with nested isotope peaks, shared
isotope peaks, and charge states of +2 and +3. Hardklör’s accurate deconvolution of complex
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spectra allows the mining of rich samples instead of constraining analysis to simplified
mixtures and only the most abundant peptides.

Because Hardklör can handle the deconvolution of multiple overlapping PIDs, it can be used
to evaluate the frequency at which an MS/MS spectrum contains multiple molecular species.
Database searching algorithms generally assume that each MS/MS spectrum contains only a
single component and will likely fail to provide an adequate interpretation for a spectrum with
more than one component at similar signal intensities. The MS/MS spectra in this LTQ-
Orbitrap dataset were obtained using data-dependent acquisition by isolating and activating a
3 m/z isolation window around the selected precursor ion. The 3 m/z isolation widths of the
preceding scans of the MS/MS spectra were compared to the Hardklör results. A total of 9,567
MS/MS spectra were acquired over the 2 hour analysis, of which there were 1,530 unique MS/
MS peptide spectrum matches (PSMs) when searched with SEQUEST and filtered using
DTASelect (FDR < 1.0%; assessed using a shuffled decoy database). These 1,530 PSMs were
mapped to 278 non-redundant proteins. Hardklör identified a single PID in the 3 m/z window
of the preceding Orbitrap survey scan for 1,086 (71.0%) of the PSMs. However, a surprisingly
large number of the MS/MS spectra that were successfully mapped to peptide sequences
contained two and three PIDs: 144 (9.4%) and 15 (1.0%), respectively. A likely explanation
for why SEQUEST was still able to find a PSM even for MS/MS spectra containing multiple
molecular species is that one peptide provided the most dominant signal. Interestingly,
Hardklör did not find any PIDs in the Orbitrap data from which 285 (18.6%) of the PSMs were
obtained. The relatively large number of missing PIDs cannot be explained solely by false
positive peptide identifications by SEQUEST, because the FDR was estimated to be less than
1% using a shuffled decoy database. Instead, the lack of an apparent PID was often because
the intensity of the PID was insufficient to score well with Hardklör. While an MS/MS spectrum
can be triggered from a single spurious signal in the spectrum, Hardklör requires an entire
isotope distribution of sufficient S/N and accuracy to obtain a PID.

The analysis of the Hardklör results can also be expanded to include all 9,567 MS/MS spectra.
From these data, the number of MS/MS spectra that Hardklör found zero, one, two, and three
PIDs in the 3 m/z isolation widow from the Orbitrap data was 2,805 (29.3%), 5,693 (59.5%),
947 (9.9%) and 122 (1.3%), respectively. When a SEQUEST search was performed on only
the MS/MS spectra with zero or one Hardklör PID and filtered using DTASelect, 1,387 unique
PSMs were obtained (FDR < 1.0%; assessed using a shuffled decoy database). These 1,387
PSMs were mapped to 263 non-redundant proteins. While only a fraction of the acquired MS/
MS spectra were ultimately matched to peptide sequences, elimination of the 11.2% of the total
spectra containing multiple species that cannot be handled appropriately by database search
algorithms still yielded 94.6% of the protein identifications made when using the entire datafile.

The number of Hardklör persistent PIDs matching the database search results was similar
regardless of the approach used to derive the charge-state (Table 1). The QuickCharge
algorithm performed competitively with alternative charge state determination methods at
score thresholds greater than 0.90. The 1,530 unique MS/MS PSMs were compared to the list
of monoisotopic masses and charge states of the Hardklör results obtained from the high
resolution Orbitrap scans. If a result from both lists had the same charge state, the same
monoisotopic mass within 10 ppm, and the same approximate retention time, then the two
results were considered a match. Thus, the 1,200 chromatographically persistent PIDs that
matched MS/MS identifications using SEQUEST accounted for 78.4% of the total peptides
identified. While at first glance the fraction of the Hardklör-detected PIDs that matched
SEQUEST results (8.8%) might seem surprisingly low, this value is similar to the 5–10% value
usually reported for the fraction of total MS/MS spectra that are identified by database
searching.

Hoopmann et al. Page 8

Anal Chem. Author manuscript; available in PMC 2008 September 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



At the resolution that these experiments were performed, the Orbitrap mass spectrometer was
able to resolve PIDs with charge states greater than +3. Thus, the analysis was performed a
second time using the QuickCharge algorithm on charge states from +1 to +5 with a score
threshold of 0.90. Hardklör identified 219,941 PIDs, 14,070 persistent PIDs, and 1,202 matches
to the SEQUEST results. In total, 501 and 130 of the total persistent PIDs were identified as
charge states +4 and +5 respectively. The two additional matches to the SEQUEST results
come from better deconvolution of overlapping PIDs at +4 or +5 charge states with those of
+1, +2, or +3. Addition of the two extra charge states to the Hardklör analysis only added one
minute to the computation time when using the QuickCharge algorithm.

To assess our ability to identify peptides containing unusual isotope distributions, we
developed a method to specifically tag asparagine residues containing an N-linked
glycosylation with a non-endogenous mixture of 16O and 18O. Glycosylated asparagine
residues of the S. cerevisiae protein invertase were labeled with 16O:18O mix using the enzyme
PNGase-F. PNGase-F catalytically cleaves the N-acetylglucosamine-asparagine amide bond,
converting the asparagine to aspartic acid through the incorporation of oxygen from water in
the solution. Invertase was digested with PNGase-F in 1:1 mixture of unlabeled water and
H2

18O (50% APE) to label the sites of glycosylation. The isotope distributions were then
measured using zoom-scans acquired over a 10 m/z window using data-dependent acquisition
on an LTQ ion trap mass spectrometer.

If a peptide contained an N-linked glycosylation site, then the carboxylic acid of the resulting
aspartic acid was labeled with a mixture of 18O-enriched and natural abundance oxygen at a
ratio of approximately 1:1. The mixture of 16O:18O labeling created a unique shape to the
peptide distribution that can be predicted by the summation of the 18O-labeled and unlabeled
distributions weighted by the APE (Figure 8). Peptide isotope distributions containing the
unique shape were identified from the zoom-scan mass spectra using Hardklör and the correct
site of glycosylation was validated from the MS/MS spectra.

Seventeen unique invertase peptides were identified from the MS/MS spectra, of which four
of these PSMs should contain sites of glycosylation in agreement with previous studies22.
Analysis of the peptide isotope distributions with Hardklör correctly assigned the monoisotopic
mass, charge state, and presence or absence of 18O-labeling to 16 of the invertase peptides.
The single exception was a case where Hardklör made no determination because the isotope
distribution within the respective zoom-scan spectrum was of insufficient signal-to-noise.
Hardklör correctly identified 18O-labeled PIDs for the four peptides containing sites of
glycosylation. One peptide (AEPILNISNAGPWSR) was identified from the MS/MS spectra
to have both glycosylated and non-glycosylated forms. The unglycosylated peptide contained
an asparagine residue with natural abundance isotopes, whereas the glycosylated peptide was
present as an aspartic acid (after PNGase-F treatment) with a 50% enrichment of a single 18O
atom (Figure 8). Thus, Hardklör can discriminate between labeled and unlabeled peptides using
a simple and efficient enzymatic labeling strategy, even when the modified peptide is present
at low stoichiometry.

DISCUSSION
Unique Aspects of Hardklör for the Detection of Peptide Isotope Distributions

The combinatorial approach for the analysis of PIDs used by Hardklör provides a powerful
method for identifying multiple overlapping peptide distributions, including those of mixed
charged states. This combinatorial approach has a distinct advantage over alternative methods
that first try to identify a single isotope distribution from the overlapping mixture, subtract the
signal from that predicted distribution, and then proceed by identifying additional distributions.
In using a subtractive method, an incorrect PID prediction at the beginning can result in a
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cascade of erroneous subsequent PID predictions, because the incorrect signal will be
subtracted from the combination of isotope distributions. The downside of a combinatorial
approach is that it can create a computational bottleneck because the number of combinations
to analyze (C) is represented by the following equation:

where v is the number of variations in the predicted distributions and p is the number of
predicted distributions to analyze. The number of combinations to be analyzed exponentially
increases with the number of variations to compute for each of the predicted distributions. For
example, if we have five predicted distributions to analyze using the Complete method, each
with three charge state variants (+1, +2, or +3), the total number of combinations to analyze
all possibilities is a reasonable 1,023. However, if the number of predicted distributions were
doubled to 10, the number of combinations explodes to 1,048,575. A simple solution is to limit
the depth of combinations, i.e. do not consider combinations of more than three predicted
distributions. This bottleneck can be further minimized by reducing the number of variations
and predicted distributions in the combinatorial set. The QuickCharge algorithm with Hardklör
is a simple single-pass, inverse distance computation of charge states that dramatically reduces
the complexity of the combinatorial set by reducing the number of charge state variations, and
thus considerably improves the speed of analysis. In some cases the number of combinatorial
distributions considered is reduced if, for any predicted distribution, the QuickCharge
algorithm can eliminate all potential charge states. While the QuickCharge algorithm is
simplistic, it performs well when compared to other common charge state algorithms in
correctly identifying PIDs, and dramatically outperforms them in terms of computational
speed. Because of this improvement in speed, Hardklör is capable of analyzing shotgun
proteomics data from an LTQ-Orbitrap mass spectrometer in significantly less time than it
takes to acquire the data and using only a single processor with humble specifications.

A novel feature of Hardklör’s isotope distribution analysis is the ability to identify unusual
isotope distributions. Hardklör is able to differentiate PIDs that include uncommon atoms or
isotopic enrichments that deviate from a standard averagine model. We have demonstrated
identification of 18O-label peptides, but Hardklör’s differential analysis can be extended to
include other atoms, molecules, or levels of enrichment. This capability makes Hardklör a
powerful tool for molecular profiling when combined with a specific labeling approach to target
specific classes of molecules.

Application to Peptide Identification and Comparative Experiments
One of the primary uses of Hardklör in our laboratory is to make comparisons between
experiments. These comparisons can either be qualitative comparisons to previous runs where
the PIDs have been identified using tandem mass spectrometry or quantitative comparisons in
PID abundance. The qualitative aspects of this application bear a strong resemblance to AMT
tag experiments. By using normalized chromatographic elution times combined with the
detection of high resolution and accurate monoisotopic mass measurements, peptides can be
identified from a database of previously identified isotope distributions23;24. The dynamic
range of intensities of PIDs that we are able to detect with Hardklör using a one-dimensional
2 hour analysis on an LTQ-Orbitrap is greater than that reported previously for the detection
of peptides using data-dependent MS/MS with a multidimensional separation of ~24 hours2;
19. By combining Hardklör with high resolution mass spectrometry data, which improves the
overall peak capacity in the μLC-MS analysis, peptides can be identified using high speed
separations that either make MS/MS acquisition impractical or the characterization of the MS/
MS spectra impossible because of the overlapping PIDs. Once a database of identified
persistent PIDs has been acquired using extensive fractionation and data-dependent acquisition
of tandem mass spectra, future analyses can be used to characterize the unfractionated mixture
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using only normalized elution time and accurate mass from the deconvolution of multiple
overlapping PIDs.

As mentioned above, Hardklör also facilitates quantitative comparisons between multiple
different samples. In this case, PIDs are not being mapped to a database of previously identified
features, but are used to compare the intensities between analyses. Because of the high mass
measurement accuracy of Fourier transform mass spectrometers, even PIDs that deviate
somewhat in retention time can be associated with persistent PIDs between different samples
by only imposing crude restrictions for similarity in retention time. Thus, we believe that
because of Hardklör’s speed and ability to handle overlapping mixtures of high complexity, it
will become an essential tool in increasing the overall throughput of comparative proteomics
measurements.

Use of Hardklör for Improving MS/MS Identifications
Hardklör can also be used to improve MS/MS PSMs. One method of estimating the false
discovery rate of PSMs is to perform the search on a database containing both real protein
sequences and random amino acid sequences, known as decoys25;26. Because false PSMs are
expected to hit the decoys at the same frequency as real peptides, parameters can be adjusted
to minimize decoy hits and thus improve the confidence of peptide identification; however,
using very stringent parameters can also increase elimination of true PSMs — i.e. false
negatives. Other labs have reported the use of high mass measurement accuracy of the peptide
precursor ion to minimize false positives while maintaining a large percentage of true positive
peptide identifications27;28. An under-appreciated step in this process is the accurate
determination of the monoisotopic mass of PIDs from large molecular weight peptides. At a
molecular weight above approximately 2,000 Da, the monoisotopic mass will no longer be the
most intense isotope peak. Hardklör can accurately identify the monoisotopic mass of PIDs to
within the mass accuracy of the mass spectrometer. Thus, by eliminating peptide identifications
with monoisotopic mass outside the Orbitrap mass measurement accuracy, it is possible to
validate PSMs and eliminate false positives without having to resort to overly stringent
database filtering parameters.

High resolution mass spectrometers enable increased throughput relative to low resolution
instruments because a loss in peak capacity of the chromatographic separation can be made up
by the improved resolution of the mass analyzer. However, assuming the MS/MS precursor
isolation window remains unchanged, the compressed chromatographic separation increases
the number of MS/MS spectra containing fragment ions from multiple precursor ions. We have
shown that in the analysis of the E. coli fraction presented here, greater than 12% of the acquired
MS/MS spectra contained more than one molecular species. Because Hardklör is able to
identify overlapping PIDs, we are able to flag MS/MS spectra containing multiple components
prior to database searching. By flagging MS/MS spectra prior to database searching, these
spectra can either be triaged to minimize computational resources spent on spectra that are
unlikely to provide a PSM or redirected to software specifically designed to interpret
fragmentation spectra containing multiple components29.

Hardklör’s capability to identify unusual PIDs can be used to improve database searching
efficiency. The most common approach to handling MS/MS spectra derived from peptides
containing modified amino acid residues is to perform differential modification searches30. A
single differential modification on an amino acid requires the algorithm to consider that amino
acid with and without a change in mass every time it is encountered in the database. Thus each
modification adds an exponential increase in search time on an already computationally
expensive process.
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When combined with a strategy to specifically tag peptides to create a unique isotope
distribution, Hardklör can separate MS/MS spectra into distinct groups so that customized
differential modification searches can be performed on only a small number of spectra. We
have shown how Hardklör can be used to identify peptides that contain N-linked glycosylation,
but this approach can be expanded to the analysis of any chemical moiety that can be selectively
tagged to produce a unique isotope signature. An excellent example is the selective alkylation
of cysteine residues with an isotope distribution encoded tag (IDEnT) to constrain search
parameters in the identification of peptides10. While IDEnT labeling is a powerful tool, its
widespread adoption has been hindered by the lack of available software to automatically detect
the peptides containing cysteine tagged residues. Hardklör can be used to automatically identify
residue-specific chemical modifications and is not limited to IDEnT labeling. Additionally,
Hardklör can identify peptides containing endogenous post-translational modifications such
as chloro- and bromo-tyrosine31;32 (data not shown). Thus, the availability of Hardklör creates
a flexible platform for scientists to design experiments to specifically target peptides containing
modifications (either in vivo or in vitro) of interest.

Application to Real-Time “Intelligent” Data-Dependent Acquisition
The current approach to data-dependent acquisition is to select precursor ions from the most
intense signal and to work down in intensity. This approach limits MS/MS spectra acquisition
to the most intense peptides and peptides of low intensity in the context of much more intense
peptides may elute from the column before they are ever selected for MS/MS. As a result, many
interesting classes of molecules may be ignored.

The speed of Hardklör should facilitate real-time calculations during the acquisition of mass
spectrometry data. Instead of selecting only the most intense precursors for MS/MS spectra,
Hardklör could be used for data-dependent selection or elimination of PIDs with specific
features. For example, Hardklör could be used to direct MS/MS spectra acquisition to regions
that contain only a single PID and to eliminate regions with overlapping isotope distributions.
Because most co-eluting peptides have some small variation in their elution times, Hardklör
could be used to acquire MS/MS spectra at points where the two precursor ions do not overlap,
potentially leading to two PSMs instead of only one or none. Furthermore, Hardklör could be
used to target the acquisition of MS/MS spectra of peptides containing a uniquely labeled
isotope distribution as described above. Integral to the development of Hardklör has been the
provision of a modular and flexible platform for the analysis of high resolution shotgun
proteomics data. This flexibility makes possible the integration of Hardklör with other
software, including instrument data-systems, with only minor modifications.

CONCLUSION
The Hardklör algorithm is a robust tool with many applications in the analysis of high resolution
mass spectra. We have demonstrated the algorithm’s ability to rapidly detect the monoisotopic
mass of peptides in the context of a very complex mixture. Using a combinatorial approach,
we demonstrate the deconvolution of overlapping PIDs. Although our combinatorial approach
to deconvolution trades the speed of subtractive methods for a more robust analysis, the use
of the relatively simple QuickCharge method to reduce the number of charge state
combinations improves the overall speed of the algorithm almost 100-fold over previously
reported approaches. We have demonstrated the identification of peptides containing an
unusual isotope distribution using high resolution scans on a benchtop ion-trap mass
spectrometer. While the identification of unusual isotope distributions was demonstrated by
enzymatic cleavage of N-linked glycosylation in the presence of 18O-enriched water, Hardklör
can be used to detect virtually any unique isotope distribution feature. We also demonstrated
Hardklör’s use in determining whether MS/MS spectra were acquired from an m/z window
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that contained multiple PIDs. Using these data can provide a measure of the quality of the
product ion scans because algorithms used to interpret these spectra assume one spectrum
equals one peptide sequence. These capabilities make Hardklör a useful tool for the analysis
of μLC-MS data from high resolution mass spectrometers.
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Figure 1.
General approach for the analysis of μLC-MS data using Hardklör.
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Figure 2.
Illustration of base isotope peak alignment. Hardklör selects a peak (A) and constructs two
averagine models at charge states of +1 (B) and +2 (C). The averagine models are aligned to
the base isotope peak and a correlation score is computed (D and E). The predicted peptide
isotope distribution that matches the measured isotope distribution with the highest similarity
is accepted (E).
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Figure 3.
Combinatorial analysis of peptide isotope distributions with Hardklör. A list of averagine
models is created for each peak in the observed distribution. Each averagine model is scored
alone and in combination with the other models. The averagine model distribution or
combination of distributions that has the closest similarity to the observed distribution is
accepted.
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Figure 4.
Two-dimensional images of peptide isotope distributions before and after Hardklör analysis.
(A) Images of the complexity of raw data from which peptide isotope distributions are derived.
The red rectangle in the top image shows the region that is enlarged in the bottom image. (B)
Hardklör has reduced the data to monoisotopic m/z values. The lengths of the lines represent
persistence over multiple scans, one of the criteria for validating the isotope distributions, and
the log normalized intensity is expressed using a heat map color scheme.
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Figure 5.
Example of Hardklor PIDs identified in a single scan. (A) Red stars (*) indicate the
monoisotopic masses of PIDs with charge states of +1, +2, or +3. Blue pound signs (#) are
some examples of visually obvious PIDs that were skipped because their charge states were
outside the user-specified parameters (e.g. +4) (B) Enlarged region from 750 to 850 m/z.
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Figure 6.
Dynamic range of persistent peptide isotope distributions identified using Hardklör. Isotope
distributions were automatically detected over an intensity range that spans ~103 to ~107 counts
on the LTQ-Orbitrap.
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Figure 7.
Identification of overlapping peptide isotope distributions. (A) Deconvolution of two peptide
isotope distributions of different charge states that share two peaks. (B) Deconvolution of three
peptide isotope distributions over a 4 m/z spectral segment. Peptides were identified with
different charge states, overlapping distributions (peptides #1 and #3), and shared peaks
between distributions (peptides #2 and #3).
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Figure 8.
Example of isotope labeling a glycosylated peptide. (A) Isotope distribution for the non-
glycosylated form of the invertase peptide, AEPILNISNAGPWSR. (B) Isotope distribution of
the glycosylated form of the same peptide after digestion with PNGase-F in the presence of
H2

18O at 50% APE. The monoisotopic mass (first peak) is slightly heavier because of the
conversion of an asparagine to aspartic acid. The distinctive pattern of peak heights is a result
of a single 18O present in 50% of the peptide molecules.
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