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Steady-state labeling experiments with [1-13C]Glc were used to measure multiple metabolic fluxes through the pathways of
central metabolism in a heterotrophic cell suspension culture of Arabidopsis (Arabidopsis thaliana). The protocol was based on
in silico modeling to establish the optimal labeled precursor, validation of the isotopic and metabolic steady state, extensive
nuclear magnetic resonance analysis of the redistribution of label into soluble metabolites, starch, and protein, and a com-
prehensive set of biomass measurements. Following a simple modification of the cell culture procedure, cells were grown at
two oxygen concentrations, and flux maps of central metabolism were constructed on the basis of replicated experiments and
rigorous statistical analysis. Increased growth rate at the higher O2 concentration was associated with an increase in fluxes
throughout the network, and this was achieved without any significant change in relative fluxes despite differences in the
metabolite profile of organic acids, amino acids, and carbohydrates. The balance between biosynthesis and respiration within
the tricarboxylic acid cycle was unchanged, with 38% 6 5% of carbon entering used for biosynthesis under standard O2
conditions and 33% 6 2% under elevated O2. These results add to the emerging picture of the stability of the central metabolic
network and its capacity to respond to physiological perturbations with the minimum of rearrangement. The lack of
correlation between the change in metabolite profile, which implied significant disruption of the metabolic network following
the alteration in the oxygen supply, and the unchanging flux distribution highlights a potential difficulty in the interpretation
of metabolomic data.

Although the complexity and plasticity of the met-
abolic network in plants allows them to adapt to
fluctuating environmental conditions, the same prop-
erties also present a significant obstacle to metabolic
engineering (Carrari et al., 2003a; Kruger and Ratcliffe,
2008; Sweetlove et al., 2008). The problem is particu-
larly acute in primary metabolism, where there have
been numerous instances of unsuccessful engineering,
and reflects the current incomplete understanding
of the way in which metabolic networks respond to
environmental and genetic perturbations. Fluxes of
central carbon metabolism are part of the missing
information (Sweetlove et al., 2003), and although they
are necessarily related to enzyme abundances, metab-
olite concentrations, and transcriptional responses

(Carrari et al., 2006; Junker et al., 2007), their reliable
prediction from the available data remains a non-
trivial task (Sweetlove and Fernie, 2005). For this
reason, the development and application of techniques
for the measurement of flux in plants has become an
important area of research (Schwender et al., 2004a;
Fernie et al., 2005; Ratcliffe and Shachar-Hill, 2006).

Steady-state metabolic flux analysis (MFA) has the
capacity to resolve parallel, cyclic, and reversible
fluxes, making it a useful technique for quantifying
metabolic fluxes and investigating the factors that
control them in plants (Roscher et al., 2000; Ratcliffe
and Shachar-Hill, 2006). MFA studies have revealed
novel aspects of plant metabolism, as well as pro-
viding the first measurements of many fluxes in vivo
and independently verifying previous research on
plant metabolism (Schwender et al., 2004a). For exam-
ple, recent work on Brassica napus embryos highlighted
the importance of Rubisco in refixation of CO2 for
improved conversion of photosynthate to seed storage
compounds (Schwender et al., 2004b), while work on
sunflower (Helianthus annuus) embryos (Alonso et al.,
2007a) provided evidence that pyruvate uptake is not
the dominant route for the provision of precursors for
plastidic fatty acid synthesis, in agreement with recent
work on Arabidopsis (Arabidopsis thaliana; Andre et al.,
2007). Recent refinements to MFA theory (Sriram and
Shanks, 2004a; Ghosh et al., 2006; Kruger et al., 2007a;
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Libourel et al., 2007) and the development of special-
ized software (Wiechert et al., 2001; Sriram et al., 2004)
have been accompanied by a rapid increase in the
number of species investigated usingMFA (Schwender,
2008). However, the approach has yet to be applied to
Arabidopsis, and this article describes an MFA study
of respiratory and biosynthetic carbon metabolism in a
heterotrophic Arabidopsis cell suspension.
A key question in the regulation of central car-

bon metabolism is how the simultaneous demands of
catabolic respiratory metabolism and anabolic biosyn-
thetic metabolism are managed. The tricarboxylic acid
(TCA) cycle is central to both processes, generating
reducing equivalents for the mitochondrial electron
transfer chain, and providing precursors for several
biosynthetic pathways (Fernie et al., 2004). Recent stud-
ies have helped to demonstrate the degree to which
the TCA cycle is connected to other metabolic pro-
cesses: for example, antisense knockdown of malate
dehydrogenase (Nunes-Nesi et al., 2005), and fuma-
rase (Nunes-Nesi et al., 2007), and a mutation within
the aconitase gene (Carrari et al., 2003b) all had
marked effects on photosynthetic performance in
tomato (Solanum lycopersicum), while the effects of
oxidative stress on the TCA cycle propagated through-
out the metabolic network in Arabidopsis (Baxter et al.,
2007). MFA has demonstrated that the TCA cycle
operates in different flux modes in different systems.
For example, in B. napus embryos, photosynthetic ATP
production alleviates the need for any cyclic TCA cycle
flux (Schwender et al., 2006), while in other systems,
there appears to be more conventional operation of the
TCA cycle (Rontein et al., 2002; Alonso et al., 2007b)
with both significant respiratory and biosynthetic flux.
MFA can also be used to investigate the response of the
TCA cycle and its associated pathways to different
growth conditions. Recent work revealed that B. napus
embryos respond to a switch from an organic to an
inorganic nitrogen source by increasing anaplerotic
flux through phosphoenolpyruvate carboxylase (PEPC),
thereby replacing the carbon removed from the TCA
cycle for ammonium assimilation (Junker et al., 2007). In
soybean (Glycine max) cotyledons, relative flux through
PEPC was reduced by increased growth temperature
(Iyer et al., 2008).
Thus, a quantitative picture is emerging of TCA

cycle fluxes and the extent to which they vary depend-
ing on the need to generate precursors for biosyn-
thesis and reductant for ATP synthesis. However,
the factors that may control the rates of biosynthesis
and respiration, and the balance between these two
competing processes, have not been tested systemat-
ically. Accordingly, we varied the concentration of
O2 in the medium of an Arabidopsis cell suspension
culture with the aim of perturbing the operation of
the TCA cycle. The effect of this manipulation on
the flux map of central metabolism, and in particular
the effect on the balance between respiratory and
biosynthetic fluxes, was quantified using steady-
state MFA.

RESULTS

Construction and Refinement of a Metabolic Model

The successful application of MFA requires the
construction of a model that not only accurately re-
flects metabolism within the experimental system, but
that also can be solved with the quantity and quality of
data that are likely to be obtainable. To this end, we
constructed an initial model of central carbon meta-
bolism in heterotrophic Arabidopsis cell suspension
cultures using a format compatible with the steady-
state MFA software 13C-FLUX (Wiechert et al., 2001).
The structure of the network was based on informa-
tion from the literature, principally other MFA studies
of heterotrophic metabolism in plants (Schwender
et al., 2006; Alonso et al., 2007a; Sriram et al., 2007),
and from metabolic databases (Schomburg et al., 2004;
Zhang et al., 2005). Reactions primarily associated
with photosynthetic metabolism (Calvin cycle, photo-
respiration) and seed germination (glyoxylate cycle)
were not included, because there is no evidence that
they occur to any significant extent in dark-grown
Arabidopsis cell suspensions. Carbon transitionswithin
the network were derived from the primary litera-
ture and standard biochemical textbooks. Accurate
representation of carbon transitions around the TCA
cycle in the model was confirmed by comparing data
from a 13C NMR analysis of the labeling of organic
and amino acids in methanolic extracts of heterotro-
phic cell suspensions fed with [2,3-13C]succinate for 6
or 18 h with the pattern of label distribution pre-
dicted by the model (data not shown).

The complexity of the network that can be analyzed
is partly determined by the extent to which the redis-
tribution of the 13C-label can be quantified after label-
ing to isotopic steady state. We used the statistical
analysis component of 13C-FLUX, EstimateStat, to
predict errors on optimized flux estimates for differ-
ent network configurations and 13C-labeled precur-
sors and, hence, refined the initial model to the point
where it could be solved with the data obtainable
from a steady-state labeling experiment. By this
method, structurally nonidentifiable fluxes, i.e. those
that can take any value without impacting on the
observed label distribution (Wiechert et al., 2001),
were identified and removed from the network.
For example, flux from 2-oxoglutarate to succinate,
whether occurring via a-ketoglutarate dehydrogenase
or via the g-aminobutyrate (GABA) shunt, was con-
sidered as a single flux, because these parallel path-
ways produce identical distributions of label in their
product, and Suc cycling was excluded from the
model for the reasons discussed elsewhere (Kruger
et al., 2007a). Simplifications were also introduced
where the accuracy of flux estimates was predicted to
be poor, providing that such simplifications would not
prevent conclusions being drawn about the function of
the TCA cycle. The refined network is illustrated in
Supplemental Figure S1.
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Determination of Optimal 13C-Labeled Precursor

EstimateStat was also used to predict the optimal
precursor for estimating TCA cycle fluxes in the refined
model. Figure 1 suggests that [1-13C]Glc provides the
best estimates of flux through the TCA cycle and else-
where in the network. [1-13C]Glc and [U-13C6]Glc per-
formed similarly well for TCA cycle fluxes, with
predicted errors less than the magnitude of the flux
estimates, but this analysis suggested that [1-13C]Glc
provided the more accurate estimates of flux else-
where in the network. [2-13C]Glc appeared to offer
no advantage over [1-13C] or [U-13C6]Glc and is signif-
icantly more expensive. The analysis was repeated
using several different models with more or less
explicitly defined subcellular compartmentation of
glycolysis and the oxidative pentose phosphate path-
way (data not shown). Though the degree of com-
partmentation greatly affected the predicted relative
errors, the qualitative finding that [1-13C]Glc would
provide the smallest relative errors for the majority of
fluxes remained the same. Post hoc analysis of the final
model at the end of the investigation (data not shown)
confirmed that labeling with 100% [1-13C]Glc provided
the most reliable estimates of flux.

Elevated O2 Conditions Perturb Cell Suspension
Culture Metabolism

As oxygen is required to support respiration, the
availability of oxygen to the cell suspension cultures

might be expected to influence overall rates of metab-
olism and/or the partitioning of carbon entering the
TCA cycle between respiration and biosynthesis. To
test this hypothesis, we established a system for cul-
turing cells at elevated O2 concentration by replacing
the aluminum foil used to seal the flasks with Mira-
cloth. After 5 d of growth, there was consistently more
oxygen dissolved in the medium of cultures covered
with Miracloth (elevated O2) than those covered with
foil (standard O2); in a representative experiment, the
oxygen concentration of the culture medium was
161.5 6 12.5 mM for elevated O2 cells and 76.0 6 2.5
mM for standard O2 cells, both of which are lower than
the 270 mM expected for air-saturated water at 21�C
(Truesdale and Downing, 1954). This difference was
sufficient to cause significant increases in the abun-
dance of amino acids (Glu, GABA, and Ala) and
sugars (Glc) and decreases in the abundance of organic
acids (malate, succinate, citrate, and fumarate) under
elevated O2 conditions (Fig. 2). In addition, the rates of
biomass accumulation and Glc consumption were
both greater under elevated O2 conditions; Glc con-
sumption increased from 214 6 45 mg d21 per flask
under standard conditions to 335 6 26 mg d21 per
flask under elevated conditions, while biomass accu-
mulation increased from 174 6 17 mg d21 per flask
to 250 6 19 mg d21 per flask. However, the relative
biomass composition of the cell suspensions after 5 d
of growth (percentage of biomass that consisted of
starch, cell wall, protein, lipids) was the same under
both conditions (Table I). No significant differences
could be detected in the composition of the growth
medium using 1H NMR (data not shown). These
results suggest that a rearrangement of the metabolic
network leads to increased biosynthetic fluxes and a
switch from accumulation of organic acids to accu-
mulation of amino acids in response to elevated O2.
Such a rearrangement could be in the vicinity of the
TCA cycle, given its involvement in both respiratory
and biosynthetic processes, and this hypothesis was
tested using MFA.

Validation of Isotopic and Metabolic Steady State

Steady-state flux analysis requires isotopomer abun-
dances to be measured when the system is at isotopic
and metabolic steady state, i.e. when metabolic fluxes
are constant and when the distribution of label
throughout the network has stabilized (Ratcliffe and
Shachar-Hill, 2006). To confirm that isotopic steady
state was reached after 5 d of growth under both
elevated and standard O2 conditions, cells were fed
with [U-13C6]Glc (6% of total Glc supplied) for 4.5 or
5 d and then the distribution of 13C within soluble
metabolites was analyzed using one-dimensional (1D)
13C NMR. Cumomer abundances as a percentage of
total labeling of a metabolite were calculated and com-
pared between 4.5 and 5 d. There was no significant
variation in abundance for the majority of measure-
ments, and although several measurements showed

Figure 1. The effect of labeled precursor on predicted relative flux
errors (flux error/flux). Simulations used the network illustrated in
Supplemental Figure S1. A relative error of less than one (indicated by
the dashed line) indicates that the predicted flux error is less than the
magnitude of the flux itself. Abbreviations: CO2 (CO2 output), cALD
(cytosolic aldolase), pALD (plastidic aldolase), PK (pyruvate kinase),
G6PDH (Glc-6-P dehydrogenase), PDH (pyruvate dehydrogenase), SDH
(succinate dehydrogenase), MDH (malate dehydrogenase), PEPC (PEP
carboxylase), ME (mitochondrial NAD-ME).
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significant variation, these reflected changes in abun-
dance of ,2.5%, strongly suggesting that these me-
tabolites had reached isotopic steady state after 5 d
(Fig. 3A). Comparison of percentage cumomer abun-
dances between soluble and protein-derived amino
acids after labeling with [1-13C]Glc also revealed few
significant differences (Fig. 3B). Such differences as
were present reflected changes in abundance of

,3.9%, suggesting that turnover of protein is suffi-
ciently rapid for it to be labeled to isotopic steady state
(Roscher et al., 2000). Thus, it was concluded that the
cells were at isotopic steady state after 5 d of growth.

The existence of an isotopic steady state suggests
that any changes in metabolic fluxes over time must be
relatively slow (Roscher et al., 2000). Stronger evidence
for a metabolic steady state in our system is provided
by the fact that the abundance of most soluble metab-
olites did not change from 4.5 to 5.5 d (Fig. 2). In
particular, there were no significant changes in abun-
dance between 5 and 5.5 d of growth, suggesting that
the cells reached metabolic steady state after 5 d. In
addition, the rate of Glc consumption and biomass
increase was constant from 4.5 to 5.5 d (data not
shown).

Label Measurements and Estimation of
Instrument Precision

Cell cultures were labeled to isotopic steady state by
growth on 100% [1-13C]Glc for 5 d under elevated O2
and standard O2 conditions. Quantitative 1D 13C NMR
spectroscopy was used to obtain the label measure-
ments necessary for estimation of metabolic fluxes
from soluble metabolites, protein amino acids, and Glc
digested from starch. The contributions to each as-
signed peak were analyzed by line-fitting (Fig. 4,
inset), and the resulting label measurements were
combined appropriately to give relative cumomer abun-
dances. This procedure yielded, from three biological
replicates, a total of 389 relative cumomer abundance
measurements for the standard O2 condition and 429
measurements for the elevated O2 condition. All mea-
surements for a single biological replicate came from the
same batch of cells. The complete measurement dataset
is given in Supplemental Table S1.

To optimize flux estimates, 13C-FLUX minimizes
the variance-weighted sum of squared differences
between the experimental labeling data and simulated
labeling data generated by 13C-FLUX using the flux
estimates. The algorithm is therefore guided to an

Figure 2. A, Representative 1H NMR difference spectrum for elevated
minus standard O2 conditions. NMR spectra of soluble metabolite
extracts of cells grown for 5 d under standard O2 conditions were
subtracted from the corresponding spectra for cells grown under
elevated O2 conditions. Metabolites giving positive signals in this
difference spectrum are more abundant under elevated O2 conditions.
B, The abundance of soluble metabolites in Arabidopsis cell suspension
cells after 4.5 to 5.5 d incubation under standard (s) or elevated (d) O2

conditions. Errors are 61 SD (n = 2 or 3). “a” indicates statistically
significant differences (Student’s t test, P , 0.05) in metabolite abun-
dances between the two conditions for that time point. “b” indicates
statistically significant differences (Student’s t test, P , 0.05) in
metabolite abundance under a particular condition between the indi-
cated time point and 4.5 d growth. No significant differences in
abundance were detected between 5 and 5.5 d growth.

Table I. Biomass composition of Arabidopsis cell cultures under
standard and elevated levels of oxygen

All measurements were made on cell suspension cultures grown at
the same time as those labeled to isotopic steady state with [1-13C]Glc.
Each value is the mean 6 SD of two or three biological replicates as
described in “Materials and Methods.” The data for soluble metabo-
lites are based on the measurements in Figure 2.

Biomass Component
Mass of Biomass Component

Standard O2 Elevated O2

% dry wt

Cell wall 32.03 6 1.01 35.53 6 3.27
Starch 2.06 6 0.87 2.86 6 0.63
Lipids 9.64 6 0.54 10.94 6 0.83
Protein 19.05 6 1.00 19.12 6 1.07
Soluble metabolites 16.27 6 0.69 15.90 6 0.61
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optimal flux solution by the size of the errors assigned
to individual label measurements, and thus the accu-
rate assignment of errors is likely to be important for
the reproducible determination of the true flux solu-
tion. To accommodate this in the analysis, an empirical
relationship was established between relative peak
error and peak signal to noise ratio (SNR; Fig. 4). This
formula was used to assign error estimates to individ-
ual 13C NMR labeling measurements and hence to
relative cumomer abundances.

Exploration of Network Structure and Active Reactions

The 13C-FLUX implementation of the sequential qua-
dratic programming algorithm Donlp2 (Peter Spellucci,
Technische Universität Darmstadt, Germany) was used
to fit the free net and exchange fluxes to the measured
isotopomerdata. Fluxeswerefitted to all three biological
replicates for a single treatment simultaneously to give a
single solution that should represent the average flux
state of the three replicates. To constrain the flux solution
within known bounds, we used the rates of Glc con-
sumption and biomass accumulation, and the biomass
composition (Table I) to calculate input and output
fluxes for cell suspensions grown under elevated and
standard O2 (Sriram et al., 2006; Alonso et al., 2007a;
Supplemental Table S2). Fluxes derived from biomass
measurements were constrained to the mean measured
value and were not allowed to vary during the fitting
procedure (Schwender et al., 2006). Allowing these

Figure 3. A, Demonstration of isotopic steady state of soluble metab-
olites after 5 d growth for cells grown at standard and elevated O2 with
[U-13C6]Glc (6% of total Glc supplied) as label source. Errors are 61 SE

(n = 3 or 4). B, Demonstration of isotopic steady state of protein amino
acids after 5 d growth for cells grown at standard and elevated O2 with
[1-13C]Glc as label source. Errors are 61 SD (n = 2 or 3). In both cases,
cumomer abundances are expressed as a percentage of the total label
within a metabolite. Dotted lines indicate where cumomer abundances
at isotopic steady state should lie.

Figure 4. The dependence of relative error of peak areas on peak SNR
in 1D 13C NMR spectra. From these data, power regression was used to
define an empirical relationship between relative error (RE) and SNR:
RE = 0.62(SNR)20.66. RE was calculated as the SD of three measurements
made on the same sample divided by the average peak area. Measure-
ments were made on a sample of [U-13C6]Glc with a low SNR and on a
mixture of Ala, citrate, Glu, Asp, and malate at higher SNR. Errors are
61 SD (n = 3). Inset, Line-fitting of a representative peak from a 1D 13C
NMR spectrum. Line-fitted peaks are indicated with dashed lines. Peak
annotations indicate the cumomer abundance defined by the area of
the line-fitted peak; 1 corresponds to the presence of 13C at positions
1 to 6 in citrate (standard numbering), 0 corresponds to the presence of
12C, and x corresponds to either 13C or 12C.
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output fluxes to vary (Alonso et al., 2007a) led to un-
acceptably large discrepancies between the fitted bio-
mass fluxes and the measured values. Free net and
exchange fluxes were chosen as recommended else-
where (Wiechert et al., 2001), and exchange fluxes were
constrained to zero for steps considered to be thermo-
dynamically irreversible. At this stage, modifications to
the network were incorporated to reflect the available
isotopomer and biomass data and to test whether alter-
ations to the network structure could improve the fit of
the data as measured by the sum of squared, weighted
differences between the real and simulated data.
Thepresenceofphosphoenolpyruvate carboxykinase

(PEPCK) in the cell cultures is supported by proteomic
analysis (L. Miguet, unpublished data; Baerenfaller
et al., 2008), and the possibility of a significant flux
through PEPCKwas investigated by allowing a revers-
ible flux through the PEPC step (ana1; Fig. 5). This
exchange flux was consistently assigned a small but
significant value during fitting of the elevated O2 data-
set, suggesting that the PEPCK reaction occurs in
Arabidopsis cells. A similar flux has been detected in
developing sunflower embryos (Alonso et al., 2007a).
The labeling data from amino acids synthesized

from cytosolic (Ala; see Miyashita et al., 2007) and
plastidic (Val, Ile, and Leu) pyruvate indicated that

pyruvate in these compartments is not at isotopic
equilibrium. This was modeled by introducing sepa-
rate pools of pyruvate in the plastid and cytosol
(ppyruvate and cpyruvate; Fig. 5). However, the in-
troduction of an irreversible uptake of pyruvate into
the plastid did not improve the fit of the data, sug-
gesting that the labeling data contained little infor-
mation on the uptake of pyruvate. A similar result
was obtained with sunflower embryos (Alonso et al.,
2007a), and a recent investigation, in which decreased
plastidic pyruvate kinase produced severe decreases
in lipid accumulation in Arabidopsis, is consistent
with the hypothesis that uptake from the cytosol is not
the main route by which the plastidic pyruvate pool is
maintained (Andre et al., 2007).

Recent data also suggest that cytosolic and plastidic
isoforms of NADP-malic enzyme (ME) are expressed
constitutively in heterotrophic tissues of Arabidopsis
(Gerrard Wheeler et al., 2008). While addition of a
plastidic NADP-ME (ana3 oxaloacetate / ppyruvate;
Fig. 5) to the model did not improve the fit of the data,
analysis using EstimateStat suggested that this flux
could be determined with good precision from our
labeling data and it was therefore included in the final
model. Addition of a cytosolic isoform of NADP-ME
(oxaloacetate/ cpyruvate; Fig. 5) did not improve the

Figure 5. Metabolic model used for the
determination of intracellular fluxes.
Free net fluxes are indicated with red
arrows, while free exchange fluxes are
indicated with red circles. All other
exchange fluxes were constrained to
zero during parameter fitting. The di-
rection of arrows indicates the direc-
tion of positive flux as defined in
the model. Flux names are given in
italics. Abbreviations: fum (fumarate),
OAA (oxaloacetate), cit (citrate), aKG
(a-ketoglutarate). Standard abbrevia-
tions of amino acid names are used.
Dashed boxes indicated where the
subcellular localization of a metabolite
or reaction cannot be inferred from the
data or from the literature. The letters
“p”, “c,” and “m” preceding metabo-
lite names indicate separate pools of
that metabolite in the plastid, cytosol,
and mitochondrion, respectively. PPP
indicates the pentose phosphate path-
way. Output of CO2 from the system
is included in the model but not illus-
trated here.
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fit above that obtained with PEPCK and the plastidic
NADP-ME, and, in addition, its presence greatly in-
creased the flux errors predicted by EstimateStat. For
this reason, cytosolic NADP-ME was not included in
the final model. However, in trials where cytosolic
NADP-ME was included, the fitting process consis-
tently assigned it a small but significant flux, and the
flux through PEPCK decreased to zero. This suggests
that what we describe as PEPCK flux (the reversibility
of PEPC) could equally be described as flux through
cytosolic ME.

Model Validation and Statistical Analysis

The final network structure is shown in Figure 5,
and in 13C-FLUX format, in Supplemental Table S3.
The fitting procedure was initiated 150 times for both
datasets with random initial flux estimates, and a
feasible flux solution was found in over 85% of fits
under both conditions. Some free fluxes converged
to similar values in each run of the fitting algorithm,
and for these fluxes the distribution of solutions was
unimodal (Fig. 6). These fluxes included all the net
fluxes, apart from flux through cytosolic aldolase
under elevated O2 conditions, and all the exchange
fluxes associated with the TCA cycle. In contrast, some
of the remaining free fluxes did not converge to similar
values in each run, with the solutions appearing to
adopt a random distribution, suggesting that there is
little information in the labeling data to constrain the
fluxes to a particular value. The flux solution giving
the lowest sum of squared weighted differences for
each dataset was taken forward for further analysis
and is referred to as the optimal flux solution.

Figure 7 shows that there was good agreement
between the observed labeling data for the standard
O2 and elevated O2 conditions and the labeling data
predicted from the optimal flux solutions. Moreover,
all measurements contributing more than 1% of the
total sum of squared weighted differences could be
removed from the fit (24 measurements contributing
40% of the residuum for standard O2 conditions and
21 measurements contributing 29% of the residuum
for elevated O2 conditions) without altering the opti-
mum flux solution, demonstrating that these poorly
fitting measurements were not important in con-
straining the fit. It can be concluded that the optimal
flux solutions provide adequate descriptions of the
labeling data.

The errors for the optimal fluxes were derived using
EstimateStat and are summarized in Table II. To ensure
that biological error present within the replicate label
measurements and biomass fluxes was translated into
errors in the flux estimates, the labeling data, exclud-
ing the poorly fitting data described above, were
reduced to a single set of measurements (see “Mate-
rials and Methods”). It was then possible to use
EstimateStat in combination with replicate fitting ex-
periments (Fig. 6) to define a list of fluxes that were
statistically well determined (Wiechert et al., 2001).

Flux Maps of Central Carbon Metabolism under
Standard and Elevated Oxygen Conditions

Table II contains net and exchange fluxes together
with errors calculated using EstimateStat for the opti-
mal flux solutions under standard and elevated O2
conditions. Figure 8 shows the TCA cycle and its
associated biosynthetic fluxes in detail. From Figure 8

Figure 6. Distribution of flux solutions during replicate fitting for the
standard (s) and elevated (d) O2 datasets. A, Net fluxes. B, Exchange
[0,1] fluxes. The best (lowest sum of squared residuals) 25 solutions for
each dataset are shown, with each point representing a single solution.
Exchange fluxes (Xch [0,1]) are expressed on a normalized scale
following hyperbolic transformation, defined by Xch [0,1] = JXch/(1 +
JXch), where JXch is the true exchange flux. Net (J), exchange, forward (Jf),
and reverse (Jr) fluxes are related by J = Jf 2 Jr and JXch = min (Jf, Jr)
(Wiechert et al., 2001).
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and the data in Table II, it is clear that elevated O2
brings about an increase in flux through the TCA cycle
and through the biosynthetic pathways associated
with it. However, the proportion of carbon entering
the TCA cycle that is used for biosynthesis is unaf-
fected by the increased O2 concentration, with 38% 6
5% of carbon used for biosynthesis under standard O2
conditions and 33% 6 2% under elevated O2 condi-
tions. Moreover, if the net fluxes throughout the net-
work are expressed relative to the rate of Glc uptake, it
is apparent that elevated O2 did not bring about a
major rearrangement of the metabolic network, either

at the level of the TCA cycle or at the level of the whole
network (Fig. 9).

DISCUSSION

This study aimed to quantify multiple fluxes within
the central carbon metabolism of Arabidopsis and to
investigate the effect of an altered O2 concentration on
the relationship between respiratory and biosynthetic
fluxes around the TCA cycle. The flux maps reported
here are the first, to our knowledge, to be obtained
using steady-state MFA for Arabidopsis, and they
show that while an elevated O2 concentration in a
cell culture can increase fluxes throughout the meta-
bolic network and alter the abundance of soluble
metabolites, these changes do not require either a
major reorganization of the network or a change in the
balance between respiratory and biosynthetic flux.

Reliable Quantification of Metabolic Fluxes

Flux quantification was carried out using data
obtained by 1D 13C NMR from three biological repli-
cates of a [1-13C]Glc labeling experiment, leading to a
set of statistically well-determined flux estimates that
appears to represent the global optimum flux solution.
The MFA protocol incorporated several refinements
aimed at improving the precision and reliability of the
flux estimates.

First, to increase the likelihood of being able to
accurately quantify TCA cycle fluxes, we began our
investigation by predicting the optimal 13C-labeled
precursor to use for isotopic steady-state labeling
experiments. While the approach used here consid-
ered fewer parameters than recent work in this area
(Ghosh et al., 2006; Libourel et al., 2007), it nevertheless
indicated that the use of [1-13C]Glc would permit the
accurate quantification of TCA cycle fluxes and asso-
ciated biosynthetic and anapleurotic fluxes. To extend
this relatively simple approach beyond the most com-
monly available isotopomers of Glc, it will be neces-
sary to develop methods for predicting how the
precise mixture of 13C-labeled precursors influences
the labeling measurements that can be made.

Second, to quantify the biosynthetic capacity of the
TCA cycle more completely than hitherto, measure-
ments of organic and amino acids derived from the
TCA cycle were incorporated into the model (Fig. 2,
analysis of protein hydrolysate). While the list of
quantified biomass components deriving from the
TCA cycle is not exhaustive, accounting for these extra
biosynthetic demands in the model should provide a
more accurate picture of how the TCA cycle functions
in respiration and biosynthesis. In contrast to previous
work in this field, all of the biomass and labeling
measurements were made on cell cultures initiated
from the same stock cultures and grown concurrently.
This should ensure that the labeling data and biomass
data are consistent with each other, which may not

Figure 7. Comparison of experimental and simulated labeling data for
the optimal flux solutions under standard O2 (A) and elevated O2 (B)
conditions. The input labeling data (measured cumomer abundance) is
compared to the value predicted by 13C-FLUX for the optimum flux
solution (predicted cumomer abundance) under standard and elevated
O2 conditions.
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otherwise be the case, particularly for soluble metab-
olites that show significant batch-to-batch variability.

Finally, to avoid the need to calculate averages of
relative cumomer abundances, which are nonlinear
functions of metabolic fluxes, fluxes were fitted simul-
taneously to three separate biological replicates. This
process was assisted by assigning specific errors to
individual measurements on the basis of SNR (Fig. 4).
Biological error was applied to the estimates of flux
measurement precision (Table II) by assessing the
relative error present in replicate cumomer abundance

measurements. Repeated fitting of the model com-
bined with statistical analysis then indicated fluxes
that were both statistically well determined and which
took similar values in each run. Fulfillment of both of
these criteria is important, as statistically well-defined
fluxes may not always have a single optimal value.
In our investigation, this is the case for the net flux
chex2 under elevated O2 conditions (Fig. 6), and, hence,
biological conclusions made on the basis of consider-
ation of a single flux solution, or indeed a subset of flux
solutions, risk being erroneous.

Table II. Metabolic fluxes in Arabidopsis cell cultures under standard and elevated levels of oxygen

Fluxes were determined by fitting labeling and biomass data to the model shown in Figure 5. Net fluxes are the optimum estimate 6 SD as
determined by EstimateStat. A negative value indicates that the direction of net flux is opposite to that assumed in the model (Fig. 5). Exchange fluxes
(JXch) are given as the optimum estimate, with lower and upper asymmetric bounds corresponding to the optimum normalized [0,1] exchange
flux61 SD (see legend to Fig. 6). Where the bounds of the normalized exchange flux lie outside the [0,1] range, an exchange flux of 0 (#0) or infinity
(‘,$1) is given. Where no exchange flux is given, the value was constrained to zero in the fit. See Supplemental Table S4 for the complete flux solu-
tion. DH, Dehydrogenase.

Flux Name Description
Standard O2 Elevated O2

Net Flux Exchange Flux Net Flux Exchange Flux

mmol d21 per flask mmol d21 per flask

upt Glc uptake 1.322 6 0.071 2.066 6 0.077
CO2 CO2 output 2.772 6 0.349 4.498 6 0.291

Hexose/triose metabolism
chex1 Cytosolic phosphoglucoseisomerase 0.010 6 0.425 0.000 (0.000, ‘) 20.481 6 0.396 2.196 (1.770, 2.778)
chex2 Cytosolic aldolase 20.003 6 0.425 0.000 (0.000, 0.429) 20.494 6 0.396 0.000 (0.000, 0.864)
chex3 Cytosolic pyruvate kinase 0.805 6 0.070 1.330 6 0.083
cpex Hexose phosphate uptake by plastid 0.921 6 0.448 0.755 (0.212, 2.184) 1.893 6 0.407 0.000 (0.000, 0.223)
phex1 Plastidic aldolase 0.752 6 0.424 0.000 (0.000, 2.206) 1.630 6 0.401 0.000 (0.000, 2.389)
phex2 Plastidic pyruvate kinase 0.422 6 0.050 0.622 6 0.050
cphex Glyceraldehyde-3-P DH 1.570 6 0.084 2.380 6 0.110
ppp1 Oxidative pentose phosphate pathway 0.402 6 0.200 0.599 6 0.161

Biomass accumulation
hcellwall Cell wall (hexose component) 0.293 6 0.031 0.466 6 0.053
pcellwall Cell wall (pentose component) 0.063 6 0.007 0.101 6 0.012
starchOUT Starch 0.022 6 0.010 0.044 6 0.010
lipidOUT Acetyl-CoA in phospholipid 0.275 6 0.031 0.446 6 0.047
glycerolOUT Glycerol in phospholipid 0.003 6 0.000 0.004 6 0.000

TCA cycle
cmex Pyruvate uptake by mitochondrion 0.754 6 0.069 1.205 6 0.082
tca1 Mitochondrial pyruvate DH 0.773 6 0.068 1.205 6 0.081
tca2 Citrate synthase 0.773 6 0.068 1.205 6 0.081
tca3 Aconitase and isocitrate DH 0.727 6 0.067 1.185 6 0.081
tca4 a-Ketoglutarate DH and succinate DH 0.649 6 0.066 0.003 (0.000, 0.019) 1.050 6 0.079 0.000 (0.000, 0.031)
tca5a+b Fumarase and malate DH 0.646 6 0.066 99.000 (19.075, ‘) 1.074 6 0.080 99.000 (20.365, ‘)

Anaplerotic fluxes
ana1 PEPC/PEPCK 0.286 6 0.043 0.068 (0.033, 0.105) 0.349 6 0.048 0.149 (0.131, 0.167)
ana2 Mitochondrial ME 0.019 6 0.014 0.000 6 0.048
ana3 Plastidic ME 0.000 6 0.035 0.035 6 0.007

Amino acid and organic acid synthesis
ala Ala synthesis 0.051 6 0.007 0.125 6 0.015
asp Asp synthesis 0.102 6 0.006 0.145 6 0.011
glu Glu synthesis 0.078 6 0.005 0.134 6 0.006
scit Citrate accumulation 0.046 6 0.005 0.021 6 0.002
smal Malate accumulation 0.039 6 0.006 0.037 6 0.004
ssucc Succinate accumulation 0.019 6 0.002 0.002 6 0.000
sfumOUT Fumarate accumulation 0.001 6 0.000 0.000 6 0.000
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The relative simplicity of the protocol developed in
this study suggests that it may be possible to determine
metabolic fluxes in heterotrophic tissue cultures of
Arabidopsis reasonably easily, potentially allowing a
wide range of genotypes and environmental conditions
to be analyzed. The large datasets collected in this study
will allow us, by exploiting the ability of 13C-FLUX to
determine the sensitivity of individual label measure-
ments to changes in fluxes (see Schwender et al., 2006),
to identify the minimum dataset needed to acquire
accurate and robust estimates of metabolic fluxes in
Arabidopsis. Because the acquisition and analysis of
large numbers of 1D 13C NMR measurements from
multiple sources (soluble metabolites, starch, and pro-
tein amino acids) is currently a time-consuming pro-
cess, this refinement should reduce the experimental
effort required for future investigations. To apply our
approach to different genotypes, it will, however, be
necessary adapt the method for systems other than cell
suspension cultures, which require considerable time
and effort to establish.

The TCA Cycle in Arabidopsis

While the flux distribution centered on the TCA
cycle in heterotrophic Arabidopsis cell suspensions
under standard O2 conditions is qualitatively similar
to flux distributions in other plant species (Rontein
et al., 2002; Alonso et al., 2007a, 2007b; Sriram et al.,
2007), there are nonetheless quantitative differences
that may reflect the precise function of the TCA cycle
in different systems. Entry of carbon into the TCA
cycle via both pyruvate dehydrogenase and PEPC has
been observed in all MFA studies of plants. In the
Arabidopsis cells, the flux through PEPC was 38% of
pyruvate uptake by the mitochondrion, identical to the
value obtained for soybean embryos (38%; Sriram
et al., 2004b) and similar to values obtained for tomato
cell suspension cultures (27% in pre-stationary phase;

Rontein et al., 2002) and Catharanthus roseus hairy root
cultures (23%; Sriram et al. 2007). While these values
for PEPC broadly agree with those measured in other
tissues, the flux through NAD-ME as a percentage of
pyruvate uptake was the lowest yet measured in plants
(2.5%), contrasting with the previous lowest value
found in tomato cell suspensions at pre-stationary
phase (6%) and values as high as 66% found in B.
napus embryos (Schwender et al., 2006). This result
suggests that a dominant role of this enzyme in
pyruvate production, as proposed by others (Tronconi
et al., 2008), may be a specific feature of leaves in
which malate that accumulates during the light is
metabolized in the subsequent dark period. Because

Figure 8. The effect of altered O2 concentration
on metabolic fluxes. A, Standard O2; B, Elevated
O2. The width of arrows is proportional to flux of
carbon through a particular step calculated from
the flux estimates in Table II and the number of
carbon atoms in the metabolites involved in each
reaction. Reactions that carry no flux under the
specified condition are not included. Forward and
reverse fluxes for ana1 (PEPCK) are illustrated.
Exchange fluxes for tca4 and tca5a + 5bwere also
determined (Table II) but are omitted for clarity.
The fraction of carbon entering the TCA cycle
used for biosynthesis was calculated as: (4ana3 +
4asp + 5glu + 6scit + 4smal + 4ssucc + 4sfum-
OUT)/(3cmex + 4ana1).

Figure 9. The effect of elevated O2 on metabolic fluxes relative to the
rate of Glc uptake. Fluxes corresponding to the optimal solution are
divided by the rate of Glc uptake, thereby permitting changes in
organization of the metabolic network to be distinguished. Errors are
61 SD as determined using EstimateStat. Flux names correspond to
those given in Figure 5 and Table II.
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our cells show no sign of hypoxia under standard O2
conditions, the lack of NAD-ME flux is consistent with
the proposed role for NAD-ME under low O2 (Roberts
et al., 1992; Edwards et al., 1998).

In Arabidopsis under standard O2 conditions, 38%
of carbon entering the TCA cycle was used for bio-
synthetic processes, including the synthesis of protein
and accumulation of amino acids and organic acids
(Fig. 8; Table II). Little to no carbon was withdrawn
from the TCA cycle for plastidic fatty acid synthesis,
consistent with the view that the main route of carbon
supply for fatty acid synthesis is via plastidic pyruvate
kinase and not via plastidic ME or uptake of pyruvate
from the cytosol (Schwender et al., 2006; Alonso et al.,
2007a; Andre et al., 2007). Withdrawal of TCA cycle
carbon for biosynthesis has also been observed in
several MFA analyses, and the proportion of carbon
removed presumably reflects the balance between the
demand for biosynthetic precursors and the ATP re-
quired to convert those biosynthetic precursors into
end products and maintain other cell functions. For
example, in B. napus embryos (Schwender et al., 2006),
70% of carbon entering the TCA cycle was used for
biosynthetic processes. Here, photosynthetic produc-
tion of ATP reduced the need for the TCA cycle to
generate reductant for the mitochondrial electron
transport chain, and most of the carbon entering the
TCA cycle was removed for the elongation of fatty
acids in the cytosol. On the other hand, in sunflower
embryos (Alonso et al., 2007a), only 6% of carbon
entering the TCA cycle was used for biosynthesis,
confirming the importance of the TCA cycle in meet-
ing cellular energy demand in this system.

The Metabolic Response to Increased O2 Concentration

The increased rates of biomass accumulation and
Glc consumption in the Arabidopsis cell suspension
culture at elevated O2 concentrations were associated
with increases in net fluxes throughout the metabolic
network (Fig. 8; Table II). These higher fluxes corre-
sponded to higher rates of ATP synthesis; calculations
based on the optimal flux solutions, assuming that 2.5
molecules of ATP are produced for each NADH and
1.5 molecules produced for each FADH2 (Brand, 1994),
suggest that the rate of ATP production increased by
around 50%, from 15 mmol d21 per flask to 23 mmol
d21 per flask, under elevated O2 conditions. Increased
ATP levels and rates of protein synthesis have also
been detected in response to increased O2 levels in cell
suspensions of peanut (Arachis hypogaea; Verma and
Marcus, 1974). While an increase in O2 concentration
would increase ATP production if the oxygen avail-
ability under standard conditions limited the activity
of cytochrome oxidase, this seems unlikely given that
the O2 levels in the cell suspension culture were well
above the Km of cytochrome oxidase (0.13 mM in
soybean root mitochondria; Millar et al., 1994). Thus,
there would have to be a large O2 concentration
gradient between the medium and the mitochondrion

for this explanation to be plausible. Moreover, measure-
ments of soluble metabolites gave no indication that the
cells were hypoxic under standard conditions. For ex-
ample, the abundance of Ala and GABA was signifi-
cantly lower under standard conditions than under
elevated O2 conditions (Fig. 2), whereas these metabo-
lites typically accumulate during hypoxia (Miyashita
and Good, 2008). It is possible that the effect on meta-
bolic fluxes is related to the observations that have been
made on growing potato (Solanum tuberosum) tubers
(Geigenberger et al., 2000), where glycolytic flux in-
creased toward the outside of the tuber where the O2
concentration was higher. This effect was not limited to
glycolysis, as rates of starch synthesis, lipid synthesis,
and protein synthesis all increased at higher O2 concen-
trations (van Dongen et al., 2004, and refs. therein). On
this basis, it has been proposed that variation in O2
concentration may affect metabolism independently of
any effect on cytochrome oxidase activity, perhaps as an
adaptation that adjusts metabolism to the availability of
O2 and prevents respiration driving a tissue into anoxia
when oxygen supply is limited (Geigenberger, 2003).

While manipulation of O2 concentration brought
about marked changes in absolute fluxes, expressing
flux relative to the rate of Glc uptake showed that there
was no major rearrangement of the metabolic network
despite the associated changes in soluble metabolite
levels (Fig. 2). In particular, MFA indicates that ratios
of internal fluxes in the TCA cycle and elsewhere
remained almost constant (Fig. 9), a result in keeping
with the unchanged biomass proportions (Table I).
Thus, the changes in levels of organic acids, amino
acids, and sugars can be produced without major
changes in relative fluxes within central metabolism.
The fluxes that lead to the accumulation of soluble
metabolites in this system are very small compared to
fluxes though the core of carbon metabolism (Table II),
so only small net changes in flux are required to
produce large changes in the relative abundance of the
soluble metabolites. For example, the 72% decrease in
citrate accumulation relative to Glc uptake that oc-
curred at elevated O2 could be produced with a change
in citrate synthase flux of only 4%. Similarly, subtle
changes in relative fluxes around oxaloacetate may be
responsible for some of the changes in soluble metab-
olite abundances (Fig. 2). For example, under elevated
O2 conditions, there was a detectable (22%) decrease in
relative flux through PEPC (Figs. 8 and 9), while flux
through PEPCK increased (Table II), possibly contrib-
uting to the decreased abundance of organic acids.
However, in general, it appears that the differences in
rates of accumulation of soluble metabolites arose from
rearrangements of the central metabolic network that
are smaller than can currently be detected using MFA.

Overall, the O2 concentration did not exert signifi-
cant control over the balance between respiration and
biosynthesis under these conditions, even though it
had a significant influence on the growth of the cells.
Heterotrophic Arabidopsis cultures may therefore re-
spond to changes in O2 concentration by altering rates
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of respiration, biosynthesis, and ultimately growth
proportionally, such that the demand for ATP to sup-
port biosynthesis is balanced by the rate of respiratory
processes that generate ATP.

Network Stability

Stability of relative fluxes in carbon metabolism has
become a recurring theme in plant MFA studies. While
certain environmental and genetic perturbations have
been shown to alter the flux distribution in the central
metabolic network (Spielbauer et al., 2006; Junker
et al., 2007; Iyer et al., 2008), it is also possible for the
fluxes to vary in absolute magnitude without any
change in their relative values. This is certainly the
case in the Arabidopsis cell study reported here, and a
similar result was obtained in a less statistically rigor-
ous flux analysis of a tomato cell suspension, where
the relative fluxes through glycolysis, the TCA cycle,
and the oxidative pentose phosphate pathway re-
mained similar, even though the net fluxes decreased
over the culture period (Rontein et al., 2002). Similarly
analysis of wild-type, hybrid, and starch-deficient
maize (Zea mays) lines (Spielbauer et al., 2006) revealed
few differences in relative fluxes despite the great
variation in accumulation of starch and seed weight
across the genotypes. A similar trend has also been
observed in microorganisms (Fischer and Sauer, 2003,
2005) and yeast (Saccharomyces cerevisiae; Blank et al.,
2005). For example, the systematic flux ratio analysis of
137 Bacillus subtilis gene deletion mutants revealed
that although there was more than 30% variation in
growth rate in 90% of the mutants examined, relative
fluxes varied by only 3% to 8% (Fischer and Sauer,
2005). Thus, the emerging picture is one in which
central metabolism is well adapted to the demands
that can be put on it, and it seems likely that only
environmental or genetic perturbations that have a
major impact on overall biomass composition (Iyer
et al., 2008) or uptake fluxes (Junker et al., 2007) are
likely to affect metabolism to a degree that an effect on
relative fluxes in central carbon metabolism can be
detected using MFA.
The stability of the central metabolic network also

complicates the interpretation of metabolite profiling
data. The levels of most metabolites represent only a
very small fraction of the total biomass, making it
unlikely that changes in level will reflect significant
changes in flux within the central network. Thus, the
changes in metabolite abundance caused by altering
the availability of oxygen (Fig. 2) do not lead to easily
identifiable perturbations in the flux map (Fig. 8).
Further improvements in the accuracy and precision
of MFA may alleviate this problem, but it will also be
important to complement MFA with the continued
development of sophisticated models of plant metab-
olism (Sweetlove et al., 2008). Ultimately, this can be
expected to establish the relative merits of composition
and flux as the basis for defining metabolic pheno-
types (Ratcliffe and Shachar-Hill, 2005).

CONCLUSION

A comprehensive description of the fluxes through
the TCA cycle and associated pathways in an Arabi-
dopsis cell suspension has been obtained using a
robust steady-state stable isotope-labeling protocol.
Increasing the concentration of dissolved oxygen in-
creased fluxes throughout the network and caused
changes in the soluble metabolite profile, while at the
same time having no effect on the proportion of carbon
entering the TCA cycle that was used for biosynthesis
and no significant impact on the relative flux distri-
bution in the central network. Ultimately, while the
mechanism by which the cells respond to increased
oxygen has yet to be established, the study demon-
strates the utility of MFA as a tool for probing the
impact of an environmental perturbation on the oper-
ation of the central metabolic network.

MATERIALS AND METHODS

Experimental System

Cell suspensions of Arabidopsis (Arabidopsis thaliana) ecotype Landsberg

erecta (May and Leaver, 1993) were maintained in 250-mL Erlenmeyer flasks

under a 16-h-light, 8-h-dark cycle at 21�C on an orbital shaker. Every 7 d,

15 mL cell suspension was subcultured into 90 mL freshMurashige and Skoog

medium supplemented with 3% (w/v) Glc, 0.5 mg/L naphthylacetic acid, and

0.05 mg/L kinetin. Heterotrophic cell suspensions were produced by sub-

culturing 15 mL of a 7-d-old, light-grown cell suspension into 90 mL fresh

medium and incubating in the dark at 21�C on an orbital shaker. The

concentration of oxygen in the growth medium was altered by controlling

the rate of diffusion of air into the flask air space via the material used to seal

the cultures. Standard O2 cultures were sealed with a double layer of

aluminum foil, while elevated O2 cultures were sealed with four layers of

Miracloth (Merck Chemicals) secured with Micropore (3M) surgical tape.

Oxygen Electrode Measurements

Measurements of dissolved oxygen concentration weremade using a Clark

type oxygen electrode at 21�C. Arabidopsis cell suspension (1 mL) was

transferred to the electrode chamber, and oxygen consumption wasmonitored

until the trace became linear. The linear portion was extrapolated to time zero

to determine the oxygen concentration at the point of sample addition.

Isotopic Steady-State Labeling

Cells were labeled to isotopic steady state by subculturing light-grown cell

suspension into medium where a proportion of the unlabeled Glc was

replaced with 13C-labeled Glc (Cambridge Isotope Laboratories and Sigma-

Aldrich). This procedure has been shown to have no discernible effect on the

flux distribution through the Arabidopsis metabolic network (Kruger et al.,

2007b). Biological variation was assessed by subculturing from three separate

light-grown stocks that had been maintained independently for several

weeks. Cultures were incubated on an orbital shaker in the dark at 21�C for

4.5, 5, or 5.5 d, as appropriate. Cells were harvested by vacuum filtration

through a single paper filter, washed with 210 mL Glc-free growth medium,

weighed, and immediately frozen in liquid N2. Tissue was stored at 280�C
prior to analysis.

Soluble metabolites were extracted from frozen tissue labeled to isotopic

steady state using perchloric acid (Kruger et al., 2007b). Following the final

freeze-drying step, samples were redissolved in 10% 2H2O, with 10 mM EDTA,

25 mM 1,4-dioxane, and 10 mM KH2PO4/K2HPO4, pH 7.5, for NMR spec-

troscopy. Starch was extracted from the insoluble residue remaining from

perchloric acid extractions. The residue was washed and autoclaved in 100

mM sodium acetate, pH 4.8, for 2 h. Gelatinized starch was then enzymatically

digested overnight at 37�C with 30 units of a-amylase (Roche) and 5 units of
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amyloglucosidase (Roche). The supernatant, containing Glc released from

starch, was freeze dried and redissolved in 10% 2H2O with 25 mM 1,4-dioxane

for 13C NMR analysis.

Protein was extracted by repeated washing of ground, lyophilized tissue

with phosphate buffered saline (130 mM NaCl, 100 mM Na2HPO4/NaH2PO4,

pH 7.0). Prior to hydrolysis, protein was precipitated using 12% TCA, washed

with ice-cold acetone, and resuspended in 6 M HCl. Hydrolysis was carried

out in Pierce hydrolysis tubes; samples were degassed and flushed with N2

three times, then heated at 95�C for 24 h under vacuum. Samples were freeze

dried to remove HCl and redissolved in 10% 2H2O with 25 mM 1,4-dioxane,

pH 7.5, for 13C NMR analysis.

Biomass Analysis

Growth rate of cell suspensions was determined from fresh weight

recorded during harvest and converted to change in dry weight by assuming

that fresh cells contained 95% water by weight. This value was supported by

experiments in which cell mass was determined before and after freeze

drying. Measurements of the abundance of protein, amino acids, cell wall,

starch, lipids, and soluble metabolites weremade using either tissue labeled to

isotopic steady state with [1-13C]Glc or tissue grown concurrently from the

same stock cultures.

Protein extracted with phosphate buffered saline was quantified using the

Bradford assay. The amino acid content of labeled protein hydrolysates was

determined by HPLC (Bruckner et al., 1995) after 1D 13C NMR analysis; amino

acids were derivatized with O-phthaldialdehyde, separated using a reverse

phase C18 column, and quantified by fluorescence using standard curves.

Starch was quantified by autoclaving duplicate samples of ground, unla-

beled, lyophilized tissue for 1 h in 25 mM sodium acetate, pH 4.8. Fifteen units

of a-amylase (Roche) and 5 units of amyloglucosidase (Sigma-Aldrich) were

added to one of the samples, and both samples were placed at 37�C overnight.

Glc in the supernatants from both samples was quantified using a spectro-

photometric assay (Sweetlove et al., 1996), and the abundance of starch was

calculated from the difference in the amount of Glc in the enzyme treated and

untreated samples. The same spectrophotometric assay was used to quantify

Glc in the growth medium.

Cell wall was extracted by repeated washing of a knownmass of unlabeled

ground lyophilized tissue with a mixture of phenol, acetic acid, and water in

the ratio 2:1:2 (Sriram et al., 2006). Insoluble material remaining was washed

with distilled water to remove residual phenol, freeze dried, and weighed.

The mass was corrected for the presence of contaminating starch using the

starch quantification protocol above.

Lipids were extracted from a known mass of ground, labeled, lyophilized

tissue using hexane and isopropanol according to an established protocol

(Hara and Radin, 1978; Mhaske et al., 2005). Solvent was removed by gentle

heating and lipids quantified by weight.

Soluble metabolites were extracted with methanol as described elsewhere

(Le Gall et al., 2003). A known mass of ground, lyophilized tissue was shaken

with 70% methanol, 30% buffer (1 mM sodium 3-trimethylsilylpropionate 2H4

[TSP], 1 mM EDTA, 50 mM KH2PO4, 50 mM KH2PO4) for 30 min. Solvent was

removed under vacuum and samples were redissolved in 800 mL 2H2O for 1H

NMR analysis. Quantification was based on the addition of a known quantity

of TSP to representative samples.

NMR Spectroscopy

Spectra were recorded on a Varian Unity Inova 600 spectrometer (Varian).

1D 13C NMR spectra were recorded at 150.9 MHz using either a 10-mm

broadband or a 10-mm 13C/31P switchable probe, and in all experiments

Waltz16 decoupling was applied during the detection period to decouple 1H

signals. Spectra were referenced to 1,4-dioxane at 67.3 ppm. Where absolute

quantification of labeling was not required, a recycle delay of 6 s was used,

and the NOE was induced during the relaxation delay to increase SNR values.

For quantitative data, the recycle delay was extended to 19 s and the nuclear

Overhauser effect was not induced. Acquisition times of the order of 60 h

(10,240 scans) were required to obtain suitable spectra from labeled samples

for accurate line-fitting. Spectra were acquired in blocks of 1,024 scans that

were manually summed following inspection to confirm that there was no

significant degradation during acquisition. 1D 1HNMR spectra were recorded

at 600 MHz using a 5-mm HCN triple resonance probe and the standard

Varian pulse program. Presaturation was applied during the relaxation delay

to suppress the water signal, and spectra were referenced to TSP at 0 ppm.

Two-dimensional 1H/13C gHMBC and gHSQC spectra were recorded at 600

MHz (1H) and 150.9 MHz (13C) using a 5-mmHCN triple resonance probe and

standard Varian pulse programs. WURST-40 or Garp1 decoupling was ap-

plied during the detection period to remove 13C-1H coupling.

All spectra were processed and analyzed using NUTS (Acorn NMR). 1D
13C spectra were processed using a line-broadening of 2.5 Hz for spectra

requiring line-fitting or 1 Hz for spectra requiring integration. 1D 1H spectra

were processed using a line-broadening of 1 Hz. 1H and 13C assignments were

based on literature values, comparison with pure standards, and the results of

two-dimensional NMR experiments. Spectral deconvolution (line-fitting) of

1D 13C spectra was carried out using the line-fitting subroutine in NUTS.

During line-fitting, resonance frequency, signal intensity, line-width, and

fraction Lorentzian lineshape were varied to minimize the difference between

the real and simulated spectra.

The SNR values for the 1D 13C NMR signals from soluble extracts of cells

labeled to isotopic steady state with [1-13C]Glc varied over more than two

orders of magnitude between different metabolites and different experimental

conditions. Variation in extraction efficiency and sample fresh weights also

contributed to considerable variation in signal intensity for the same metab-

olites between biological replicates. Because instrumental precision depends

on SNR, it would have been incorrect to assign the same relative error to every

label measurement during optimization of fluxes. We therefore recorded

replicate quantitative 1D 13C NMR spectra of standard samples of organic and

amino acids (25 mM Ala, 50 mM citrate, 5 mM Glu, 0.5 mM Asp, and 1 mM

malate) and [U-13C6]Glc. Signal intensities were measured by line-fitting, and

the relative error of the same signal over three replicate spectra was correlated

with the corresponding SNR (Fig. 4). An empirical relationship between SNR

and relative peak error was determined (Fig. 4), and this formula was used to

assign error estimates to 13C NMR labeling measurements.

Metabolic Modeling

Metabolic modeling was carried out using 13C-FLUX (version 20050329;

Wiechert et al., 2001, and refs. therein). The EstimateStat component of 13C-

FLUX was used to refine the metabolic network. To do this, initial flux

estimates were taken from the literature (Rontein et al., 2002), and lists of 1D
13C NMRmeasurements were taken from steady-state experiments carried out

previously in our lab (P. Lelay, unpublished data). The CumoNet component

of 13C-FLUX was then used to predict a set of cumomer and isotopomer

abundances consistent with the initial flux estimates, and these abundances

were combined appropriately to produce pseudo 1D 13C NMR datasets in

which the label measurements perfectly reflected the underlying fluxes. An

error of 5% was assumed for each measurement within this dataset. Estimate-

Stat was then used to determine the errors associated with the flux estimates.

The same approach was used to predict the optimum labeled precursor for

minimization of predicted flux estimate errors. Here, the refined network was

used in conjunction with sets of 1D 13C NMR measurements derived from

experiments specific to the fed precursor.

The estimated flux errors produced by EstimateStat are sensitive to

measurement configuration and relative measurement errors but do not

depend on absolute label measurements (Wiechert et al., 2001). To derive flux

error estimates that incorporate biological error, we determined the relative

error in cumomer abundances between the different biological replicates. To

do this, we first normalized the labeling data from the three biological

replicates using the group scaling factors estimated during the fitting process

(Wiechert et al., 2001). The average and SD of replicate normalized cumomer

abundances were then calculated, and these measurements used with

EstimateStat to estimate flux errors. To combine the errors in fluxes derived

from the biomass data with errors associated with the labeling data, the

biomass-derived fluxes were set as free fluxes for this part of the analysis, and

the biomass-derived fluxes and their SDs were defined in the Flux Measure-

ments section of the input file.

Statistical Analysis

All indications of statistical significance are based on a Student’s t test with

P , 0.05 unless otherwise indicated.

Supplemental Data

The following materials are available in the online version of this article.
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Supplemental Figure S1. Diagram of model used for optimal precursor

prediction.

Supplemental Table S1. Complete measurement configuration.

Supplemental Table S2. Calculation of biomass derived fluxes.

Supplemental Table S3. Complete metabolic model (13C-FLUX network

definition) used for fitting.

Supplemental Table S4.Complete optimal flux solutions for Standard and

Elevated oxygenation conditions.
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