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Abstract
Dyslexia is a common learning disability exhibited as a delay in acquiring reading skills despite
adequate intelligence and instruction. Reading single real words (real-word reading, RWR) is
especially impaired in many dyslexics. We performed a genome scan, using variance-components
(VC) linkage analysis and Bayesian Markov chain Monte Carlo (MCMC) joint segregation and
linkage analysis, for three quantitative measures of RWR in 108 multigenerational families, with
followup of the strongest signals with parametric LOD score analyses. We used single-word
reading efficiency (SWE) to assess speed and accuracy of RWR, and word identification (WID) to
assess accuracy alone. Adjusting SWE for WID provided a third measure of RWR efficiency.

All three methods of analysis identified a strong linkage signal for SWE on chromosome 13q.
Based on multipoint analysis with 13 markers we obtained a MCMC intensity ratio of 53.2
(chromosome-wide p < 0.004), a VC LOD score of 2.29, and a parametric LOD score of 2.94,
based on a quantitative-trait model from MCMC segregation analysis. A weaker signal for SWE
on chromosome 2q occurred in the same location as a significant linkage peak seen previously in a
scan for phonological decoding. MCMC oligogenic segregation analysis identified three models of
transmission for WID, which could be assigned to two distinct linkage peaks on chromosomes 12
and 15. Taken together, these results indicate a locus for efficiency and accuracy of RWR on
chromosome 13, and a complex model for inheritance of RWR accuracy with loci on
chromosomes 12 and 15.
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Introduction
Dyslexia is a specific reading disability that cannot be explained by low intelligence or
inadequate instruction. Dyslexia has been estimated to occur in 5–10% of school-age
children (Shaywitz et al., 1990), and is characterized by specific difficulties in spelling and
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word recognition (Raskind, 2001; Vellutino et al., 2004) as well as in reading fluency
(Plomin, 2001). Although by adulthood many individuals have learned to compensate for
the disorder (Raskind, 2001), reading impairment often persists (Pennington et al., 1990),
with adverse social and economic consequences.

Dyslexia is thought to involve deficits in one or more reading-related cognitive processes
(Berninger et al., 2001; Fisher and DeFries, 2002; Francks et al., 2002; Vellutino et al.,
2004). One of these is phoneme awareness, or the ability to recognize and manipulate
individual phonemes, the unit of spoken language that corresponds to letters in an alphabetic
language. A second process is phonological decoding, or the conversion of printed words to
spoken words, which is important in learning new words. A third process is lexical-level
orthographic coding, or the recognition of an entire written word as a unit, which is required
for rapid (fluent) reading. Finally, rapid access to a phonological name code during
phonological decoding is also required for fluent reading, and is assessed through tests of
rapid automatized naming of alphanumeric symbols (Berninger et al., 2001; Denckla and
Rudel, 1976; Wolf et al., 1986; Wolf and Bowers, 1999). Deficits in these processes are all
manifested in impairment of real-word reading (RWR), or word recognition, a major
indicator of reading disability in children (Francks et al., 2002; Stanovich, 1988; Vellutino et
al., 2004). RWR is an indicator of overall reading ability because it is a multicomponent
process involving both lexical orthographic and sublexical phonological processes (Marlow
et al., 2001). In some cases, dyslexic individuals can compensate for impairment in single-
word reading with experience while still deficient in component phonological skills, but they
generally do not reach normal reading ability (Fisher et al., 1999; Lefly and Pennington,
1991). Speed of word recognition as a measure of RWR may be a particularly meaningful
measure: in languages such as German and Finnish, which have regular orthographies, low
reading speed, rather than low reading accuracy, is a common persistent problem in dyslexia
(Landerl, 2001; Leinonen et al., 2001).

A large body of evidence indicates that dyslexia, and specifically, RWR, has a genetic
component (for reviews, see Fisher and DeFries, 2002; Francks et al., 2002; Raskind, 2001).
Aggregation analysis shows patterns of correlation consistent with genetic models for
several dyslexia-related measures including RWR (Hsu et al., 2002; Marlow et al., 2001;
Raskind et al., 2000). Estimates of heritability of various measures of RWR are consistently
high: 0.63 in a sib-pair sample (Marlow et al., 2001); 0.60 and 0.85 in two twin studies in
children (Knopik et al., 2002; Gayán and Olson, 2003, respectively); and 0.45 in a recent
study of adult male twins (Kremen et al., 2005). Segregation analyses of measures of RWR
and other correlated component phenotypes further suggests a genetic basis, with evidence
for a modest number of segregating loci (Chapman et al., 2004; Gilger et al., 1994;
Grigorenko et al., 2003).

Evidence for a genetic basis to RWR is further supported by positive reports of linkage to
specific genomic regions. While reports of linkage of RWR phenotypes to chromosomes 1p
(Grigorenko et al., 2001) and 2p (Loo et al., 2004) have not yet been replicated, several
other regions have shown reproducible evidence for linkage in more than one sample.
Evidence for linkage for RWR has been reported for chromosomes 6p (DYX2, OMIM
600202, http://www.ncbi.nlm.nih.gov/omim) (Cardon et al., 1994; Cardon et al., 1995;
Fisher et al., 1999; Grigorenko et al., 2003; Grigorenko et al., 1997; Grigorenko et al., 2000;
Kaplan et al., 2002), 15q (locus DYX1, OMIM 127700) (Chapman et al., 2004; Grigorenko
et al., 1997; Marino et al., 2004; Nopola-Hemmi et al., 2000; Smith et al., 1983), and 18p
(DYX6, OMIM 606616) (Fisher et al., 2002; Marlow et al., 2003).

There is also evidence that the genetic basis of RWR is complex. As described above,
heritability estimates vary, suggesting that environmental characteristics among samples
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may differ. Characteristics that appear to affect estimates of heritability include IQ (Knopik
et al., 2002) and parental education levels (Kremen et al., 2005), with higher heritability
associated with both higher IQ and parental education levels. Consistent with this, the
highest published estimate of heritability is obtained from a sample representing a relatively
affluent and well-educated population (Gayán and Olson, 2003). In addition, different
measures of RWR have been used in different studies, complicating comparisons and
interpretation of results. These include several different timed and untimed measures, as
well as composite measures that incorporate scores from both types of RWR measures and
also sometimes additional, correlated measures.

As for most complex traits, linkage analysis of RWR among studies has also shown
inconsistencies. Positive reports of linkage in focused analyses of chromosome 6p have been
reported for three samples: (1) initially, in a Colorado twin sample for a composite dyslexia
phenotype based partly on RWR (Cardon et al., 1994; Cardon et al., 1995), as well as later
for specific measures of timed and untimed word recognition (Gayán et al., 1999; Kaplan et
al., 2002); (2) for an untimed RWR measure in a sample of British families (Fisher et al.,
1999); and (3) for a composite RWR phenotype in another sample of families from the USA
(Grigorenko et al., 2003). In contrast, we found no evidence for linkage of untimed RWR to
6p in our sample (Chapman et al., 2004). Also, two genome scans that used expanded data
sets from the Colorado twin and British studies reported reduced evidence for linkage of
RWR phenotypes to 6p (Fisher et al., 2002), and, instead, reported strong evidence in both
samples for linkage of RWR phenotypes to a region on chromosome 18p. Although it
appeared that this 18p locus affected specifically single-word reading, a multivariate linkage
analysis (Marlow et al., 2003) suggested that this locus has an influence on multiple
dyslexia-related phenotypes. Similar to the results for 6p, analysis of the 18p region using
our sample failed to confirm linkage of untimed single-word reading (Chapman et al., 2004).
Finally, there is similar variability among studies of RWR on chromosome 15q with four
independent studies using a variety of RWR measures reporting significant or supportive
evidence of linkage (Chapman et al., 2004; Grigorenko et al., 1997; Marino et al., 2004;
Smith et al., 1983). The results for untimed word recognition in our sample of families
support evidence of linkage to 15q (Chapman et al., 2004). In contrast, the genomewide
scans on the two samples performed by Fisher and colleagues (Fisher et al., 2002), failed to
provide evidence of linkage to chromosome 15q. Explanations include use of different
measures for RWR as well as different sample ascertainment.

Additional support for the existence of loci contributing to RWR derives from molecular
studies of genes in the chromosome 6p and 15q critical regions. A recent study of a 575-kb
region on chromosome 6p22.2 identified SNPs with individual evidence of association in a
case-control study, and for which a haplotype of two SNPs in the candidate gene KIAA0319
explained much of the association (Cope et al., 2005). One of the SNPs causes a missense
mutation, Ala →Thr, and was also reported as being significantly associated with dyslexia in
a second sample (Francks et al., 2004). Similarly, two reports provide evidence of linkage
disequilibrium with dyslexia in the chromosome 15q region (Marino et al., 2004; Morris et
al., 2000). A candidate gene, called DYX1C1 or EKN1, was recently identified and mapped
to a position 2.2 cM proximal to the 15q linkage peak (Taipale et al., 2003), based on a
translocation that co-segregated with dyslexia in one large family (Nopola-Hemmi et al.,
2000). Two single-nucleotide polymorphisms (SNPs) in DYX1C1, –3G →A and 1249G
→T, showed evidence for an association with dyslexia (Taipale et al., 2003), and one SNP
(–3G →T in DYX1C1) showed evidence for association with a word recognition phenotype
(Wigg et al., 2004). While it is doubtful that the SNPs identified for either gene are
susceptibility alleles, the evidence for linkage disequilibrium provides additional support for
the presence of genes involved in RWR in these two regions.
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While these mapping and association studies provide considerable support for the general
paradigm of a focus on narrow phenotypes, our ability to draw conclusions about genes
involved in RWR from these studies remains limited for several reasons. First, a wide
variety of related phenotypes have been studied, including timed and untimed as well as
qualitative and quantitative measures of RWR (Chapman et al., 2004). Reproducibility, or
lack thereof, may be affected by the specific measures used. Second, binary traits of
affectation status based in part on RWR are often based on multiple component phenotypes,
using a threshold criterion for affectedness (e.g., Grigorenko et al., 1997). Quantitative traits
have included multivariate phenotypes (e.g., Marlow et al., 2003) and composite univariate
phenotypes derived from several psychometric tests (e.g., Cardon et al., 1994), and the
contribution of individual measures is not readily determined. Third, not all measures
employed as phenotypes have been adjusted for IQ. Using an IQ-adjusted measure for
sample ascertainment is expected to yield a superior sample for genetic studies of specific
reading disability because it excludes potential probands whose reading ability is expected
to be low (Olson et al., 1999). Fourth, mapping studies have used numerous methods of
analysis and types and sizes of pedigrees ascertained (Fisher and DeFries, 2002), which may
inadvertently affect which trait loci are most amenable to linkage detection in a given study.

Here, we report results of a genome scan focusing on two measures of RWR ability. We
chose these related phenotypes for an in-depth analysis based partly on the encouraging
results from a recent targeted linkage study (Chapman et al., 2004). We performed whole-
genome screens using two different methods of analysis. After identifying initial regions of
interest, we typed the families for additional markers and analyzed the augmented data with
three different methods. The use of multiple methods of analysis on the same data should
minimize the frequency of false positive and negative linkage signals that arise due to
limitations or sensitivities of any one method. Our analyses reveal a new locus on
chromosome 13 implicated in speed of word recognition. These analyses also provide
suggestive support for linkage to several other regions, and demonstrate how the information
from quantitative trait locus (QTL) models identified with oligogenic segregation analysis
methods can be used to further our understanding of the genetic architecture, and
consequently, to localize susceptibility genes.

Materials and Methods
Overview of strategy and rationale for analytical approaches

We performed whole-genome screens using two widely different methods of analysis for
linkage: a variance components (VC) approach (Almasy and Blangero, 1998; Amos, 1994)
and a Bayesian Markov chain Monte Carlo (MCMC) joint linkage and segregation analysis
approach (Heath, 1997). We followed up on the strongest linkage analysis results with
additional marker typing and analyses, including parametric LOD score analyses and
simulation studies to estimate empirical p-values. For the LOD score analyses, we obtained
the quantitative trait locus model parameters from segregation analyses.

We used three strategies to maximize the power of our study. First, our sample consists
primarily of extended pedigrees, which offer better power to detect linkage and to localize
genes than do nuclear families or sib pairs (Wijsman and Amos, 1997). Second, we treated
the phenotypes under analysis as continuous rather than as dichotomous traits, which makes
more efficient use of the available information (Graham et al., 1997; Wijsman and Amos,
1997). In the current study we focused on separate measures for timed and untimed RWR,
each based on a single test instrument, and in addition, we analyzed a simple reading-rate
measure constructed by adjustment of the timed measure for the untimed measure. Finally,
we focused on single outcome measures for these initial linkage detection studies. Use of
univariate outcomes has been successful in other studies of complex traits with similar
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complex correlated phenotypes, such as phenotypes associated with cardiovascular disease
and simulated data sets where the underlying truth is known (Blangero, 1995; Wijsman and
Amos, 1997). Also, use of univariate measures permits us to capitalize on both the full
variety of available analytical approaches and the deep understanding of the statistical
properties of the approaches and their sensitivities to violation of distributional assumptions.
The alternative, use of a multivariate approach, restricts the analytical approach because of
limited implementation and added distributional assumptions, and complicates interpretation
because of lack of information about the statistical properties and effects of violation of
distributional assumptions. Also, such methods have not to date provided strong empirical
evidence that they provide substantial gains for linkage detection (Lin and Zou, 2004;
Wijsman and Amos, 1997).

Study subjects
Recruitment of the sample used for this study has been described in detail elsewhere
(Berninger et al., 2001; Raskind et al., 2000). In brief, families were ascertained through a
school-age proband with low reading ability compared to his or her verbal IQ (VIQ), as
assessed by ten index measures of reading (Berninger et al., 2001). Most probands were
impaired on most or all of the index measures, though they were only required to be
impaired on one. Probands were not excluded for comorbid ADHD, but were excluded for
other medical, neurological or psychiatric conditions associated with learning disabilities. A
total of 874 individuals comprising 108 pedigrees were included in each segregation
analysis (SA). Of the 874 individuals, 720 had phenotype data: 108 probands, 170 additional
children below age 18 years including 120 siblings of probands, and 442 adults over age 18
years, including 11 siblings of probands. Genotype data from a 10-cM STRP marker scan
(see below) were available for a subset of this sample, Subset 1, consisting of 530 subjects
in 51 pedigrees. These families were initially selected for genotyping because they appeared
likely to be informative for a measure of memory for pseudowords (the nonword memory
portion of the prepublication version of the Comprehensive Test of Phonological Processing;
Wagner et al., 1999) (Wijsman et al., 2000). Subset 1 differs from that used previously
(Chapman et al., 2004) because of removal of one family and eight individuals from a
second family (Raskind et al., 2005). The remaining 57 families, Subset 2, were included in
SA, but these families lacked genotype data.

Phenotypes
We assessed RWR efficiency with the prepublication version of the Single Word Efficiency
(SWE) subtest of the Test of Word Reading Efficiency (TOWRE) (Torgesen et al., 1999), a
test of the accuracy and speed of RWR (Berninger et al., 2001). Age-adjusted scores were
calculated as z-scores compared to population norms scaled to have a mean of 0 and SD of
1. We assessed accuracy of RWR using the Word Identification (WID) subtest of the
Woodcock Reading Mastery Test-Revised (WRMT-R) (Woodcock, 1987). Scores were
normalized against grade-specific population norms scaled to have a mean of 100 and SD of
15, using the oldest normative group to normalize adult values. We constructed a third
measure of RWR, SWE ~ WID, from these two test instruments by performing analyses of
SWE in which WID was included as a covariate (see Statistical Analyses for discussion of
covariate adjustment). Using 102 of the 108 pedigrees analyzed here, we had earlier
estimated a correlation of 0.61 between SWE and WID in relatives of probands (Raskind et
al., 2000), which suggests that the two measures do not have identical underlying
architectures. Because SWE measures both rate and accuracy, and WID measures accuracy
alone, our goal was to use the adjusted measure to try to isolate the speed component of
RWR and therefore to identify with greater precision trait loci that affect ability to read
quickly (Raskind et al., 2005).
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Genotypes
DNA was extracted from peripheral blood leukocytes or from transformed cell lines as
described elsewhere (Raskind et al., 1995). A 10-cM genomewide scan was performed by
the NHLBI Mammalian Genotyping Service, Marshfield, WI, using screening set 10 (405
STRP markers, including 378 autosomal markers), on DNA from 428 participants in 51
families (Chapman et al., 2004). Pedigree structure was confirmed using RELPAIR 0.90
(Boehnke and Cox, 1997) using the full set of Marshfield screening set 10 markers. We
removed three markers because of various errors. The set of markers used for the initial
genomewide scans consisted of the 375 remaining autosomal markers from screening set 10,
plus 13 additional markers on chromosomes 2p (D2S391, D2S337, D2S2368), 6p (D6S299,
D6S276, D6S1629), 15q (D15S132, D15S143, D15S978, D15S117) and 18 (D18S1150,
D18S453, D18S1107), which we typed in our laboratory (Chapman et al., 2004). Additional
markers for follow-up (“follow-up markers”) on chromosomes 2q (D2S1326, D2S2241,
D2S142), 11 (D11S987, D11S1314, D11S937), 12 (D12S85, D12S90, D12S326,
D12S1708, D12S348) and 13 (D13S1304) were selected from the Marshfield map and were
obtained from Research Genetics (Huntsville, AL), Applied Biosystems (Foster City, CA) or
IDT (Coralville, IA). Families in Subset 2 were not typed for these additional markers, due
to the lack of flanking markers for genotype verification.

In general, we used the Marshfield genetic maps for our analyses of the autosomes
(http://research.marshfieldclinic.org/genetics). In three instances (Chapman et al., 2004;
Raskind et al., 2005) we changed the map slightly to reflect map distances from the
deCODE map (Kong et al., 2002) and our dataset. Marker positions were converted from a
Kosambi map to a Haldane map for use in linkage analyses. All positions are reported here
on the Haldane map.

Statistical analyses
General approach and strategy—We took several measures to ensure that our overall
analysis was robust to potential pitfalls. We performed whole-genome analyses with both
variance components (VC) and Bayesian Markov chain Monte Carlo (MCMC) analyses,
using all markers per chromosome in multipoint analysis with a sex-averaged map. To guard
against false positive signals resulting from map inaccuracy (Daw et al., 2000) we checked
key signals with single-marker analyses and with multipoint analysis under sex-specific
maps. We carried out segregation analysis employing both maximum-likelihood (ML) and
Bayesian oligogenic MCMC approaches. ML-based SA produces point estimates of model
parameters but can only incorporate one Mendelian locus, whereas the oligogenic MCMC
approach produces posterior distributions of model parameters, which are less
straightforward to interpret, but can incorporate multiple Mendelian loci. We performed
parametric LOD score analyses, including additional follow-up markers, for selected
regions, based on the genome scan results. Although this type of analysis requires a
prespecified model of inheritance, trait model misspecification typically reduces evidence
for linkage over use of a more accurate trait model, and thus is unlikely to give false positive
evidence of linkage (Amos and de Andrade, 2001; Clerget-Darpoux et al., 1986; Greenberg
et al., 1998; Ott, 1999).

Use of several diverse methods with complementary advantages allows us to combine their
strengths and to minimize the number of false positive signals. Both the VC and Bayesian
MCMC methods are well suited for analysis of complex traits (Almasy and Borecki, 1999;
Amos, 1994; Heath et al., 1997; Shmulewitz and Heath, 2001). One advantage to the VC
approach is that it does not require an explicit model of inheritance. Nevertheless, it can be
sensitive to departures from the assumption of multivariate normality of the trait and IBD
distribution (Allison et al., 1999; Blangero et al., 2000), such as those encountered under
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ascertainment of pedigrees for extreme trait values (Epstein, 2002; Glidden and Liang,
2002). Also, because VC analysis is based on pairwise relationships, it does not use the
available mapping information as efficiently as does a parametric approach with a good trait
model. Thus, the addition of parametric LOD score analysis was added to targeted regions
because we expected that it may increase power. Bayesian MCMC oligogenic segregation
linkage analysis enables simultaneous modeling and mapping of multiple diallelic QTLs and
also does not require prespecified model parameters. In addition, unlike VC linkage analysis
(Atwood and Heard-Costa, 2003) this MCMC approach provides relatively precise
localization of QTLs (Daw et al., 1999). The two methods vary greatly in interpretability of
linkage analysis results: the VC approach provides the commonly used LOD scores and p
values based on asymptotic distributions, whereas the MCMC results must be interpreted
under the less familiar Bayesian framework, although posterior parameter distributions are
easily visualized (Wijsman and Yu, 2004), thus providing additional useful insights for
interpretation of results.

Covariate adjustments—Models for analyses included adjustment for age in months,
sex and verbal IQ (as measured by the Wechsler Intelligence Scale for Children—3rd
Edition or by the Wechsler Adult Intelligence Scale—Revised; Wechsler, 1981; Wechsler,
1992) as covariates. Covariate adjustment was performed prior to ML segregation analyses
and parametric LOD-score analyses by linear regression, and during VC linkage analyses
and all Bayesian MCMC analyses.

The effect of age on the traits was modeled as piecewise linear, having a possibly different
slope and intercept in children and adults, using models of the form:

where a is age in months, IQ is verbal IQ, and k and s are indicator variables for child status
(less than 300 months) and male sex, respectively. In the current analysis, only the model for
SWE ~ WID included a sixth coefficient, for WID, indicated by the variable x. A piecewise
linear model for age is appropriate for developmental traits, where there are different age
effects in children and adults. The models yielded residuals that were essentially normally
distributed and showed no evidence for the presence of additional unmodeled age effects.
The parameter values for the models are in Web Table A. The choice of age 25 years (300
months) as the knot is somewhat arbitrary, but conforms to the upper age (299 months)
available for normalizing SWE scores on the TOWRE, and is therefore used to normalize
the scores of adults. Also, because of the difference in the age distributions of the children
and adults (Raskind et al., 2000) and the existence in the sample of very few individuals in
the age range of 18–30 years, results on the coefficients in the regression analysis in this
sample are insensitive to details of this choice of the knot.

Segregation analysis (SA) by maximum likelihood (ML)—Parameters for
Mendelian inheritance of a single QTL were estimated using class D of the logistic
regression models of Bonney (1986) as implemented in the REGC program in S.A.G.E.
version 3.1 (S.A.G.E., 1997). The appropriateness of the model was tested by comparing the
major-gene model to a model with an environmental component only, and by comparing
models with fixed Mendelian transmission probabilities to those with arbitrary probabilities.
No polygenic component was included in the analyses, because only the Mendelian
component was used for parametric LOD score analysis (see below). We did not correct for
ascertainment because we wished to compare directly models generated from ML and
MCMC SA, and such correction is not currently available in the MCMC analysis package.
However, for parametric LOD score analysis, the artificially high minor allele frequency
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expected from failure to correct for ascertainment will likely compensate for other types of
model misspecification encountered when fitting a complex trait to a single-QTL model
(Risch and Giuffra, 1992).

Linkage analysis using variance components (VC)—VC linkage analyses (Almasy
and Blangero, 1998; Amos, 1994) were performed using SOLAR version 2.1
(http://www.sfbr.org/sfbr/public/software/solar/), with exact single-marker and multipoint
IBD scores calculated using Merlin (Abecasis et al., 2002). Components of variance
considered were additive and dominance variance attributable to a major gene (QTL) at the
location considered, plus additive and dominance polygenic variance. Four models were fit
at each marker locus: model M0-a (polygenic), in which the total major-gene variance was
constrained to zero and the polygenic component has only additive variance; model M0-d
(polygenic) in which the major-gene variance was constrained to zero and the polygenic
component has both additive and dominance variance; model M1 (additive), in which both
dominance variance components were constrained to zero; and M2 (dominant), with no
constraint on any of the four variance components. All models contained a component for
residual variance. LOD scores were calculated as log10-likelihood ratios comparing either
M1 to M0-a or M2 to M0-d. Log-likelihood ratios using M0 (a or d) as the restricted
likelihood do not converge to simple χ2 distributions, but rather to mixtures of distributions,
with the LOD score for M1 converging to a 50:50 mixture distribution of a χ2 distribution
with 1 d.f. and a point mass at zero, and the LOD score for M2 to a more complicated
distribution (Self and Liang, 1987). For the latter case we used the χ2 distribution with the
higher degrees of freedom, which is conservative, and used the associated p-value for
interpretation of results. In a few cases we also computed empirical p-values by analyzing
replicates in which single marker genotypes were simulated with MERLIN in the absence of
linkage to the trait. For computational reasons, we generally limited such analyses to single-
marker VC analysis, using 1000 such replicates. The exception was for chromosome 13 and
SWE, as is described in more detail below.

MCMC joint linkage and SA—We used Loki version 2.4.5
(http://www.stat.washington.edu/thompson/Genepi/Loki.shtml) to perform joint oligogenic
segregation and linkage analysis, as well as oligogenic SA in the absence of marker
information. Loki estimates posterior distributions of model parameters using a Bayesian
reversible-jump MCMC sampler (Heath, 1997), conditional on the data and prior
distributions on several parameters (Wijsman, 2002). In this model, the number of QTLs is a
random variable rather than a fixed quantity. Covariate adjustment was performed during the
MCMC analysis, and details of the prior distributions and run conditions used were the same
as described previously (Raskind et al., 2005), with initial linkage scans based on 200,000
MCMC iterations/chromosome, and runs of 400,000 iterations used for estimating genetic
models associated with particular linkage signals. SA was generally based on 50,000
iterations.

Posterior distributions from the MCMC analyses were obtained for the number of QTLs; the
parameters defining the mode of inheritance for QTLs; and, in linkage analyses, the
locations of the QTLs. Specific parameters reported for each QTL accepted in the model
during any given iteration include pA, the frequency of allele A, and two “genotype effects”
εAB = μAB − μAA and εBB = μBB − μAA, where μAA, μAB and μBB, are the means for
genotypes AA, AB and BB, respectively. The allele labels A and B are arbitrary; we
assigned allele A for each QTL such that the genotype BB effect was nonnegative. In some
cases we also obtained the bivariate posterior distribution of εAB and εBB. The total genetic

variance ( ) was calculated from the model parameters for all QTLs, and this variance was
subtracted from the overall trait variance after adjustment for covariates to obtain the
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residual trait variance for that model. We used the posterior mean of  summed over all
QTLs from each iteration, as an estimate of the total genetic variance for a given phenotype:

, where  is the total genetic variation in iteration i, k is the number of

QTLs in the model from iteration i,  is the contribution of the jth QTL in iteration i, and I
is the total number of iterations saved from the analysis (here, one-half of the total iterations
performed after 1000 burn-in iterations). SA results are reported for τβ values of 1, 256 and

1 for SWE, WID and SWE ~ WID, respectively, which maximized . These same values
were also used for the linkage analyses. For linkage analyses, genotype effects were
summarized for all QTLs with a location in a particular interval: anywhere on a
chromosome, in a particular interval on a chromosome, or unlinked to any chromosomes.

Because the MCMC approach in Loki is based on a Bayesian framework, the strength of
evidence for linkage in a particular data set and analysis cannot be expressed as a LOD score
or as a p value. Instead, as described elsewhere (Raskind et al., 2005) we report the intensity
ratio (IR), the ratio of the number of QTLs accepted in a particular region relative to the
number expected if the distribution of QTLs were uniform across the genome, given the
posterior mean of the total number of QTLs. The IR is conservative relative to the Bayes’
factors sometimes calculated from the posterior distributions of QTL location, if the
posterior number of QTLs per iteration is greater than the prior mean number (Wijsman,
2002; Wijsman and Yu, 2004), and provides the ratio of the observed to expected number of
times a particular location is accepted for a QTL in the linkage analysis, basing the
expectation on the posterior mean number of QTLs. Another measure of signal intensity is
the posterior probability of linkage (PPL) (Vieland, 1998), defined as the probability of
linkage given the prior distributions and the data. The PPL to a chromosomal region is
determined from MCMC output by calculating the proportion of MCMC iterations in which
at least one QTL is accepted in the region.

Parametric LOD score analyses—Parametric LOD score analyses for small numbers
of markers in key regions with positive evidence of linkage were carried out using
FASTLINK (Cottingham et al., 1993). LOD scores were calculated based on genetic models
for quantitative traits obtained from SA with both S.A.G.E. and Loki, using a maximum of
three simultaneous markers because of computer memory constraints. Where the MCMC
SA identified more than one prominent model of transmission, the model from the SA that
was most similar to that associated with a linkage signal in the region was used. Covariate
adjustments were performed using linear regression as described above, and the residuals
were used as adjusted trait values. We also calculated heterogeneity LOD scores using
HOMOG, but since the likelihood maximized under homogeneity, these results are not
shown.

Additional analyses on chromosome 13—We carried out two additional analyses to
further explore our strongest linkage result, which was for SWE on chromosome 13 (see
Results). First, in addition to the 3-marker multipoint LOD scores obtained with exact
computation, we estimated parametric LOD scores using simultaneously all 13 markers on
chromosome 13 with an MCMC method implemented in the program LM_MARKERS from
version 2.7 of the MORGAN suite of programs
(http://www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.shtml). To the best
of our knowledge, this is the only currently available program that provides parametric
multipoint LOD score analysis for a quantitative trait model with many markers. Simulation
studies (not shown) indicate that the approach used by LM_MARKERS slightly
underestimates LOD scores in the presence of linkage. In this approach, sets of meiosis
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indicators consistent with observed data are sampled with a Gibbs sampler by MCMC and
are used to calculate parametric LOD scores, given a particular genetic model for a diallelic
QTL (George and Thompson, 2003; Thompson, 2003). The overall LOD score estimate is
based on the mean of the likelihoods, computed for each iteration, over all iterations.
Sequential imputation was used to generate 5000 initial sets of meiosis indicators (Kong et
al., 1994), with the set yielding the greatest likelihood chosen as the starting configuration.
Sampling was performed by scan, with equal probabilities of using a whole-meiosis and a
whole-locus sampler (George and Thompson, 2003). Analyses were run over a long run of
200,000 MCMC iterations, following a 20,000-iteration burn-in period. The use of sex-
specific maps did not substantially change the results obtained (data not shown).

The second analysis consisted of a simulation study to obtain empirical p-values under the
null hypothesis of absence of linkage. With Merlin (for VC) or the program GENEDROP
from the MORGAN package (for MCMC), we simulated marker data in the absence of
linkage to the trait, using the empirical allele frequency distributions, missing data patterns,
and meiotic maps as in the real-data analyses. Five hundred such simulated data sets were
each analyzed with the same VC methods and the Bayesian MCMC oligogenic linkage
analysis methods used on the real data, as described above, except that only 50,000 MCMC
iterations were used for analysis. Computational demands limited this analysis to only
evaluation of evidence of linkage of SWE to chromosome 13, and to analysis performed
only for VC and Bayesian MCMC linkage analysis methods. The number of feasible
replicates was similarly limited.

Quality control of genotype data—We checked the genotype data for Mendelian
inconsistencies and highly unlikely genotypes, and resolved such potential genotype errors,
as described previously (Chapman et al., 2004). Most individuals in the sample were well
genotyped (Raskind et al., 2005), and thus we do not expect the results from statistical
analyses to be highly sensitive to small changes in the estimated marker allele frequencies.

Results
Segregation analysis for real-word reading

Oligogenic SA indicated the presence of multiple QTLs affecting RWR, with distinct modes
of transmission. From the MCMC SA we estimated the number of QTLs each accounting
for at least 10% of the total variance of each trait, after adjustment for covariates: means of
1.6 for SWE, 2.1 for WID and 1.5 for SWE~WID. We investigated the mode of inheritance
in greater detail using maximum-likelihood SA and analysis of posterior distributions of
model parameters from MCMC SA.

Both ML and MCMC SA produced similar models for SWE (Table I). The parameter values
differed primarily in that the estimate from ML had a slightly greater difference between the
mean trait values of genotypes AB and BB than did the estimates from the MCMC model.
From the MCMC analysis, the posterior bivariate distribution of genotype effects contained
a single clear mode, as did the univariate distribution of pA (data not shown).

MCMC SA produced evidence for multiple QTLs for WID (Table I). The MCMC SA for
WID produced a trimodal posterior distribution of genotype effects, representing three
clearly different modes of transmission (Fig. 1a). The mode with the greatest posterior
density corresponds to a slightly overdominant model with a heavily affected rare
homozygote with mean trait value 2.8 SD below the overall trait mean (Fig. 1a, model 1 and
Table I, model WL1). The three MCMC modes from the segregation analysis separated in
linkage analyses to two different locations in the genome (Fig. 1b and Fig. 1c), as described
further below. Unlike the MCMC results, the model parameters at convergence for ML
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analysis depended heavily on the starting values, and numerous models of similar likelihood
were obtained, precluding identification of a single best model for WID.

In the case of SWE ~ WID, both methods of analysis found a slightly overdominant
transmission model with a rare and heavily affected minor homozygote (Table I). Analysis
by ML estimated a considerably greater difference between the genotype AA and AB trait
means (model RWS) than did analysis with the oligogenic MCMC approach (model
RWL1). We found the existence of these models to be highly sensitive to the presence of
three extreme scores for the adjusted phenotype, with values between −2.9 and −4.0, within
the dataset of 108 families. However, a second mode in the posterior distribution from the
MCMC analysis (model RWL2), with a larger minor allele frequency and much smaller
differences in genotype means, was largely insensitive to changes in the three outlying trait
values (data not shown), indicating that it was more appropriate for use in parametric
linkage analyses.

Genomewide linkage scans
In the initial genomewide linkage scan for SWE, several regions provided evidence of
linkage with VC and/or MCMC analysis (Fig. 2a-b). Except where noted we present VC
results in the text for the dominance genetic variance model. Three regions gave consistent
positive results with both methods: chromosome 2q (IR = 15.3 and VC-LOD = 1.62 at
D2S1399; 169 cM); the pericentromeric region of chromosome 13 (IR = 22 and VC-LOD =
1.41 at ATA5A09; 23 cM); and more modest evidence on chromosome 11 (IR = 10.6 and
VC-LOD = 1.07 at D11S2371; 83 cM). Each of these three regions is described in more
detail below, particularly chromosome 13, which gave considerably stronger evidence for
linkage with additional markers and followup analyses. The locations on 2q and 11
correspond to locations identified earlier in this sample with evidence of linkage for related
measures of phonological decoding efficiency (Raskind et al., 2005). Chromosome 12q gave
evidence for linkage in VC analysis with both additive and dominance models (VC-LOD =
1.8 at D12S1064; 105 cM), corresponding to a weak, bifurcated MCMC peak. Finally, two
regions on chromosomes 3q (VC-LOD = 2.56 at D3S1763; 194 cM) and 9q (VC-LOD = 1.7
at D9S2157 and D9S1838; 161–181 cM) had moderately strong scores from VC analysis
under a model that included dominance variance. These latter regions were not pursued
further because of weak support from VC-LOD scores without dominance variance (Fig.
2a), and because MCMC single-marker analysis and parametric analysis based on models
from the segregation analyses failed to support evidence for linkage to these two regions
(results not shown).

A somewhat different profile emerged from the initial scan for WID (Fig. 2c-d). Only two
genomic regions, on chromosomes 12 and 15, provided relatively strong evidence for
linkage from both VC and MCMC oligogenic analysis. Interestingly, the three modes of
inheritance identified by MCMC SA in the absence of markers (Fig. 1a) corresponded
precisely to models identified from two linkage signals on these two chromosomes. The
QTLs mapping to the region on chromosome 15 with evidence of linkage represented Model
WL1 (Table I) from the MCMC SA (Fig. 1a vs. Fig. 1b), while the QTLs mapping to
chromosome 12 represented Models WL2 and WL3 (Table I) from the MCMC SA (Fig. 1a
vs. Fig 1c). We previously characterized the chromosome 15 linkage signal (Chapman et al.,
2004), associated with model WL1, here with IR = 16.4 at 43 cM and relatively weak
support from the VC analysis. The second signal on chromosome 12 was associated with the
other two QTL models (Fig. 1c), giving IR = 6 and VC-LOD = 1.5 at D12S297. Finally,
modest evidence for linkage near the q-telomere of chromosome 11 was obtained with
MCMC analysis (IR = 7.7 at 151 cM), but did not correspond to a sizeable VC signal.
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The results from the genome scan for SWE adjusted for WID had partial overlap with the
results obtained for SWE alone (Fig. 2e-f). In general, linkage signals obtained with this
additional adjustment weakened signals obtained with SWE alone. Suggestive evidence for
linkage with both VC and MCMC approaches persisted on chromosomes 12 (IR = 7.3 and
VC-LOD = 1.47 at D12S1052; 92 cM) and 13 (IR = 7.5 and VC-LOD = 1.21 at ATA5A09,
45 cM). In contrast, the SWE peak on chromosome 2q (Fig. 2a-b) was markedly reduced by
additional adjustment for WID (IR = 3.4 and VC-LOD = 0.65 at D2S1334, 158 cM).

Detailed linkage analyses
Four regions were investigated in more detail. These regions were selected (1) because they
represented strong signals in the genome scans with consistent results across analysis
methods, (2) because they represented signals that were observed across all three traits under
investigation, and/or (3) because there was similar evidence of linkage to the same region
for related measures (Raskind et al., 2005). In each region at least one additional marker was
genotyped, and additional analyses were performed, including single-marker and parametric
LOD score analyses.

Chromosome 13—With the addition of a new marker and additional analyses,
chromosome 13 provided significant evidence of linkage for SWE to the interval between
D13S1304 and ATA5A09. The parameters for the QTLs identified in the pericentromeric
region by MCMC oligogenic joint segregation and linkage analysis were virtually identical
to model RL1, identified in oligogenic segregation analysis alone (results not shown).
Genotypes for D13S1304 strengthened the evidence of linkage to the interval between
D13S1304 and ATA5A09 (Fig. 3a). Strong evidence of linkage (maximum LOD = 2.94)
was obtained with an MCMC-based parametric 13-marker LOD score analysis using on a
quantitative trait model from the MCMC SA (Model RL1, Table I). The 13-marker LOD
score maximized at 17.4 cM (Fig. 3b) and represented increases of 1.59 over the maximum
single-marker parametric LOD score obtained with D13S1304 (Web Table B), and an
increase of 0.13 over the maximum parametric LOD score obtained with the same trait
model and exact computation with the three markers D13S787, D13S1304, and ATA5A09
that flank this region (Fig. 3a). All individual markers in the region gave results that were
consistent with positive evidence for linkage for all three analysis approaches (Web Table
B), and markers D13S1304 and ATA5A09 individually gave VC-LOD scores of 2.22 and
2.14, respectively. These results with single markers suggest that evidence of linkage is not
explained by a single, influential marker. The posterior probability of linkage to
chromosome 13 was estimated as 0.566 from the Bayesian MCMC analysis. Results from
500 marker data sets simulated in the absence of linkage to the trait locus support the strong
evidence for linkage: these simulated marker data sets gave empirical chromosome-wide p-
values of 0.004 and 0.04 for the observed multipoint maximum MCMC IR = 53.2 and VC-
LODmax = 1.99, respectively.

The effect of adjusting SWE for WID was to reduce the peak strength the linkage signal on
chromosome 13. Evidence of linkage for SWE ~ WID increased over the original genome
scan with addition of D13S1304, but remained modest with a MCMC PPL of 0.298. Neither
the multipoint VC-LOD nor parametric LOD scores exceeded 1.5, although the two-point
VC-LOD was 1.64 at ATA5A09 (data not shown). The location of the maximum VC-LOD
shifted to ATA5A09 at 22 cM, and the position of the LODmax and maximum IR similarly
moved to 32–33 cM on the map. Model parameters for this location from oligogenic joint
linkage and segregation analysis were similar to model RWL2 obtained in the absence of
linkage (results not shown).
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Chromosome 2q—Evidence of linkage to chromosome 2q was relatively unchanged with
addition of three markers near D2S1399, the location of the highest linkage scores. There
was only a slight enhancement of the multipoint VC-LOD score for SWE (VC-LOD = 1.74)
(Fig. 4). The maximum parametric LOD score was slightly higher (LOD = 1.88), and was
obtained for the three-marker combination D2S1334—D2S1326—D2S1399, using
transmission model RS (Table I). The location of the maximum multipoint LOD score was
about 11 cM distal to D2S1399. Single-marker LOD analyses supported evidence for
linkage to this region, with positive LOD scores for all markers between D2S1334 and
D2S142 (Web Table C), but the LOD scores generally maximized at recombination
fractions in the range of 0.2–0.25. Since computation of heterogeneity LOD scores provided
no evidence of heterogeneity, these results are most consistent with trait model
misspecification.

Chromosome 11—Typing of three additional markers in the region of chromosome 11
implicated for linkage here and previously (Raskind et al., 2005) also provided little change
in the support for linkage (Fig. 5). Parametric LOD score analysis with markers D11S987,
D11S1314 and D11S2371 provided additional suggestive evidence of linkage with LODmax
= 1.65 and LODmax = 1.47 from models RL1 and RS, respectively, with the LOD score
maximizing at 93 cM. This location was somewhat displaced from the MCMC and VC
peaks at 79 and 82 cM, with maximum VC-LOD < 1, and IR = 6.2, respectively.

Chromosome 12—The most consistent evidence for linkage to chromosome 12 was
obtained for WID. Multipoint analysis for WID, with additional markers, gave strong
agreement among the three methods of analysis, with all approaches achieving a maximum
score at marker D12S297 (71 cM) (Fig. 6a), and with little change in the location of the
highest scores as new markers were included in the analysis. Additional investigation of the
QTL models obtained with the Bayesian MCMC analysis approach revealed heterogeneity
in the localization of the two models mapping to this region (Fig. 1c): QTLs with locations
proximal to marker D12S85 (67 cM) primarily belonged to WL2, while QTLs with locations
distal to D12S85 belonged predominantly to WL3 (data not shown). Because WL3 was the
model best represented at the location with the maximum IR, we chose it for use in
parametric 3-marker LOD score calculations. Signal strengths were all modest, with
multipoint peak VC and 3-marker parametric LOD scores of 1.78 and 1.61, respectively, and
an MCMC IR of 6.0.

Additional analyses of SWE and SWE~WID gave consistent evidence for linkage across
more than 30 cM, with less focused localization than was obtained for WID. Several
markers gave fairly strong evidence for linkage in single-marker analysis (Web Table D).
Results were similar for SWE and SWE ~ WID, with D12S1064 (103 cM) in both cases
providing the strongest evidence of linkage in single-marker analysis: VC-LOD = 2.19, IR =
29.1 and LODmax = 2.56 for SWE, using the trait model on SA model RS; and VC-LOD =
1.34 for SWE ~ WID. Maximum multipoint linkage signals for these two phenotypes were
broad and somewhat lower than the maximum single-marker LOD scores for the VC and
Bayesian MCMC analyses. Three-marker parametric LOD scores gave LODmax = 1.46 for
SWE based on markers D12S326-D12S1708-D12S1064, and LODmax = 1.54 for SWE ~
WID, based on model RWL2 and markers D12S90-D12S1294-D12S1052.

Discussion
We present here the results of genome scans for three related measures of real-word reading
ability. Our scan for accuracy and speed of RWR (SWE) provided strong evidence for a
locus on chromosome 13q12 with a parametric MCMC-based lod score of almost 3, and an
empirical chromosome-wide p-value of 0.004 for results based on an oligogenic joint
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linkage and segregation analysis. In addition, we obtained support for a locus on
chromosome 2 previously implicated using this dataset for phonemic decoding efficiency
(Raskind et al., 2005). Results using our rate measure (SWE ~ WID) suggest that the locus
on chromosome 13 affects primarily the rate of RWR. When we considered accuracy alone
(WID), our strongest evidence for linkage was that previously identified on chromosome
15q (Chapman et al., 2004), although we also obtained weaker evidence here of linkage to
chromosome 12. We were pleased to find consistency in the details of the QTL models
identified by oligogenic segregation analysis alone, and the QTL models identified as part of
the linkage analysis: even for the most complicated oligogenic trait model (that for WID),
one of three QTL models identified in segregation analysis maps to chromosome 15, while
the other two models map to a single interval on chromosome 12.

Our analyses revealed significant evidence for a novel locus for speed of word recognition
on chromosome 13q. Evidence for linkage to 13q was still present when SWE was adjusted
for WID, and no evidence was seen in this region using WID alone. Both of these results
suggest that this locus is primarily associated with speed of word recognition. The absence
of a prominent signal for WID on chromosome 13 may result from compensation for
accuracy, but not rate, of word recognition in adults. In a subset of families from our dataset,
when relative criteria (SWE compared to Verbal IQ) were used, affected adults were
impaired in SWE but not WID (R. Abbott and V. W. Berninger, unpublished data). In
contrast, their affected children (probands) were affected in both WID and SWE whether
relative criteria or absolute criteria (at or below 1 SD below the population mean) were used.
Consistent with this, in the current sample, the correlation between SWE and WID was 0.65
in the probands, but only 0.46 in the adults. These patterns suggest that a persisting
subphenotype of dyslexia in adults is manifested through SWE rather than WID.

There is evidence from other studies for linkage to the proximal q arm of chromosome 13
for measures related to RWR. Although evidence for linkage of RWR phenotypes to this
region has not been previously reported, significant evidence for linkage to a locus on 13q21
was reported for an IQ discrepancy measure of reading in a study focusing on specific
language impairment (Bartlett et al., 2002). The measure used was WRMT-R Word Attack
(WA) (Woodcock, 1987), which is a measure of accuracy of phonological decoding, and
evidence for linkage was obtained with a parametric approach about 44 cM distal to the
location of the LODmax reported here for SWE. A speed-based measure of RWR was not
used in the study by Bartlett et al. In addition, the values we obtained for the PPL of SWE to
chromosome 13 are similar to the PPL of 0.53 reported by Bartlett et al., although care
should be taken when comparing these PPL statistics, because they have different prior
probability models and the sample sizes may not be large enough to completely overcome
assumptions about prior distributions. Also, although the peak IR was considerably lower,
the PPL for linkage of SWE ~ WID to chromosome 13 was still substantial. More work is
needed to further evaluate the possibility that our results and those of Bartlett et al. may
represent the same locus, especially in view of the difference in ascertainment of the two
samples. Other reports of linkage to this region on 13q also have potential connections.
Intriguingly, our maximum IR for SWE on chromosome 13 is located only about 5 cM
proximal to a region implicated in linkage analysis of autism (Barrett et al., 1999), including
measures of language acquisition in the parents of probands (Bradford et al., 2001).

Linkage peaks on chromosomes 2q and 11 in the present study overlapped locations
implicated for measures of phonological decoding efficiency in analyses on the same sample
of families (Raskind et al., 2005), but our results do not strongly support the existence of
loci affecting word recognition on several other chromosomes with previous reports of
linkage. Our linkage peak for SWE on chromosome 2q, at marker D2S1399, occurs at the
same location as a significant finding for PDE, a measure of speed and accuracy of
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phonological decoding. Evidence for linkage to chromosome 2q persisted when PDE was
adjusted for WA, suggesting that this locus acts primarily in speed of phonological
decoding. Weak evidence for linkage to chromosome 11 in the case of SWE also occurs in
the same region as suggestive linkage signals for both PDE and PDE adjusted for WA at
marker D11S1314 (80 cM). The presence of a weak signal for SWE in the same locations as
PDE supports this conclusion, and implies that this locus may affect word recognition as
well as phonological decoding. Finally absence of strong support in our sample for loci
affecting word recognition on chromosomes 1p, 2p, 6p or 18p in regions with previous
reports of linkage is typical of complex traits and is not surprising, given the complex nature
of dyslexia. Lack of confirmation should not be interpreted as exclusion of these other
regions. Factors such as differences in the definition of the RWR phenotype may affect the
results, as may ascertainment procedures used to obtain the families (Sillanpää and Auranen,
2004), and the well-known requirement for greater sample sizes in replication studies than in
the original sample noted by Suarez et al. (1994).

Our analyses provide evidence for a genetically complex locus on chromosome 12. Both the
current analysis of real word reading efficiency and a previous analysis of phonological
decoding efficiency (Raskind et al., 2005) provided modest, but consistent, evidence of
linkage to the same region with several methods of analysis. Evidence for linkage
maximized over an interval of about 25 cM, depending on the specific phenotype and
whether VC or oligogenic analysis was used. Two explanations may account for this
variation in location. First, because of the assumption of a diallelic trait model, the MCMC
approach may be more sensitive than the VC analysis to an underlying multiallelic trait
model. The existence of two trait models for WID with the same location on chromosome
12 supports this interpretation since such multimodality has been observed in other
situations where there is evidence for multiple alleles (Daw et al., 1999; Gagnon et al.,
2003). Second, the assumption of an explicit trait model may mean that undetected data
errors may more strongly influence the MCMC analysis. Results for two-point analysis
compared to multipoint analysis are consistent with the interpretation that some aspect of
model or data error may have influenced our results. Single-marker analyses, which are less
sensitive to influences of both data and model error, identified D12S1064 as the marker with
strongest evidence for linkage across all analysis approaches, and multipoint analysis based
on a single QTL in the region gave the greatest displacement of estimated location.

The results presented here illustrate a particularly useful aspect of oligogenic segregation
analysis. For all traits analyzed, the posterior distributions of QTL models obtained in
oligogenic segregation analysis closely matched the equivalent distributions subsequently
identified in linkage analyses. This gave particularly useful information for WID, since with
a trimodal QTL model, no clear maximum-likelihood model was obtained via likelihood-
based segregation analysis. In contrast, the MCMC oligogenic approach allowed
investigation of the possibility of multiple modes of transmission and identified three such
distinct modes for WID. These results suggest that failure to obtain a clear model from a SA
assuming only one Mendelian locus may occur under a genetically heterogeneous trait. The
MCMC oligogenic joint linkage and segregation analysis, on the other hand, was able to
divide the modes of transmission between two specific locations in the genome, showing
evidence for heterogeneity not only from segregation analysis, but also in the presence of
linked markers. The SWE ~ WID phenotype further illustrates the advantages of an
oligogenic modeling approach. This trait also gave different results for the two SA
approaches, with two modes of transmission under the MCMC approach. The MCMC
analysis provided additional information from which to choose parameters of a trait model
for parametric LOD score analysis, giving positive evidence of linkage to chromosome 13q.
Important insights regarding the genetic architecture of a trait can thus be obtained with
oligogenic SA, and can be used making informed choices in design and analysis.
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In summary, the results presented here provide evidence for linkage of a locus contributing
to real-word reading efficiency on chromosome 13, and suggest that rate and accuracy
measures for single-word reading have both shared and unique genetic determinants with
each other and with other measures of phonological coding efficiency (Raskind et al., 2005).
Although RWR incorporates phonological decoding to some extent, the present study
indicates that some loci affecting RWR are unlikely to also govern phonological decoding.
Specifically, in addition to the well-characterized DYX1 locus on chromosome 15, a rate and
accuracy locus on chromosome 13 appears to contribute to RWR ability but not to
phonological decoding. These studies highlight the complexity of dyslexia, and the need to
focus on specific, well-defined measures of reading ability in genetic studies of this common
trait.
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Figure 1.
Plots of the posterior distribution of genotype effects for QTLs fitted in MCMC oligogenic
model scans for WID adjusted for age, sex and verbal IQ. The relative posterior density
(vertical axis) of QTLs accepted into the model over all MCMC iterations is plotted as a
function of the effects of genotypes AB and BB relative to genotype AA (εAB and εBB,
respectively). For clarity, allele A is always designated so that the εBB is at least zero, and
the range of genotype effects is the same for all three panels. (a) All QTLs accepted in an
MCMC segregation analysis. Numbers 1, 2, 3 correspond to the three genetic models WL1,
WL2 and WL3 listed in Table I. The plateau of posterior density near the origin represents a
background of QTLs of small effect. (b) QTLs placed between 38 and 48 cM in a joint
MCMC segregation and linkage analysis of chromosome 15. (c) QTLs placed between 57
and 78 cM in an MCMC analysis of chromosome 12.
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Figure 2.
Whole-genome linkage scans for the phenotypes SWE (a, b), WID (c, d) and SWE adjusted
for WID (e, f) using multipoint VC (top panel of each pair, VC-LOD) and MCMC (bottom
panel, log(IR)) methods of analysis. VC-LOD scores with and without dominance variance
are graphed with dashed and solid lines, respectively. Phenotypes were adjusted for age
(with separate slopes for subjects above and below 25 years), sex and verbal IQ. Only
MCMC IR values ≥1 (i.e., log(IR) ≥0) are shown, for consistency with the VC-LOD scores,
which are bounded below at zero. Chromosome numbers are indicated above each pair of
panels.
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Figure 3.
Multipoint linkage analyses for SWE on chromosome 13. (a) Multipoint VC LOD scores
(solid line), MCMC log IR (dashed line) and parametric LOD scores (alternating dashes and
dots) are shown for the pericentromeric half of the chromosome. A dotted line marks the
score expected in the absence of linkage (LOD score = 0, IR = 1). Four-point parametric
LOD scores were calculated using segregation model RL1 (Table I) and the three markers
indicated by arrowheads. (b) Multipoint MCMC parametric LOD scores for SWE, based on
model RL1, and incorporating all available chromosome 13 markers.
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Figure 4.
Multipoint linkage analyses for SWE on chromosome 2q. Multipoint VC LOD scores,
MCMC log IR and parametric LOD scores are designated as in Fig. 3a. Four-point
parametric LOD scores are shown using model RS (Table I) and the markers indicated by
arrowheads.
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Figure 5.
Multipoint linkage analyses for SWE on chromosome 11. Multipoint VC LOD scores,
MCMC log IR and parametric LOD scores are plotted as in Fig. 3a. Four-point parametric
LOD scores using model RL1 and the three markers indicated by arrowheads.
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Figure 6.
Multipoint linkage analyses for WID (a), SWE (b) and SWE ~ WID (c) on chromosome 12.
Multipoint VC LOD scores, MCMC log IR and parametric LOD scores are plotted as in Fig.
3a. Four-point parametric LOD scores are shown using the marker combinations indicated
by arrowheads in each panel. See text for explanation of choice of genetic models for WID.
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