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    Introduction 
 Silencing mediator for retinoic acid and thyroid hormone recep-

tor (SMRT) and nuclear receptor corepressor (N-CoR) are two 

closely related transcriptional corepressors that were isolated 

in a search for factors that mediate transcriptional repression 

by nuclear hormone receptors ( Chen and Evans, 1995 ;  Horlein 

et al., 1995 ;  Sande and Privalsky, 1996 ;  Seol et al., 1996 ;  

Ordentlich et al., 1999 ;  Park et al., 1999 ). The repression activ-

ities of SMRT and N-CoR are manifested through association 

with class I and II histone deacetylases (HDACs;  Alland et al., 

1997 ;  Nagy et al., 1997 ;  Huang et al., 2000 ;  Kao et al., 2000 ; 

 Fischle et al., 2002 ). Both SMRT and N-CoR form stable 

complexes with and serve as activating cofactors for HDAC3 

( Guenther et al., 2001 ;  Fischle et al., 2002 ;  Guenther et al., 

2002 ). In addition to nuclear hormone receptors, SMRT and 

N-CoR also participate in diverse signaling pathways through 

interactions with a variety of transcription factors ( Kao et al., 

1998 ;  Tsai et al., 2004 ;  Goodson et al., 2005 ) and are required 

for normal mammalian development ( Jepsen et al., 2000 ,  2007 ). 

Corepressors have been shown to be involved in several human 

diseases, most notably breast cancers and acute promyelocytic 

leukemias ( Khan et al., 2004 ;  Privalsky, 2004 ). The regulation 

of N-CoR stability has been implicated in several normal and 

aberrant cellular pathways ( Zhang et al., 1998 ;  Khan et al., 

2004 ;  Perissi et al., 2004 ); however, the mechanism of SMRT 

stability regulation has not been clearly defi ned. 

 SMRT contains at least three different types of functional 

domains. Near the N terminus are two Swi/Ada/N-CoR/TFIID 

motifs in addition to two receptor interaction domains near the 

C terminus ( Privalsky, 2004 ). SMRT also contains at least four 

independent repression domains (RDs; I – IV). Because diverse 

proteins are recruited to these RDs, we sought to identify novel 

regulators of SMRT by using RDs III and IV as bait in a yeast 

two-hybrid screen. We identifi ed the peptidyl-prolyl cis-trans 

isomerase, Pin1, as a SMRT-interacting protein. 

 Pin1 is comprised of an N-terminal protein-binding WW 

domain and a C-terminal peptidyl-prolyl isomerase (PPIase) 

domain ( Lu et al., 1996 ;  Yeh and Means, 2007 ). The WW do-

main of Pin1 binds preferentially to phospho-Ser-Pro –  (pS-P) 

or phospho-Thr-Pro (pT-P) – containing peptide sequences 

( Ranganathan et al., 1997 ;  Yaffe et al., 1997 ), and the enzyme 

domain also preferentially isomerizes the prolyl bond after 

pT-P or pS-P. Pin1 is frequently localized to nuclei and serves 
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(1,178 – 1,823) fused to the Gal4 DNA-binding domain (DBD) 

was cotransformed with wild-type (WT) Pin1 or one of these 

mutated forms of Pin1, fused to the Gal4 activation domain 

into yeast cells, and tested for  � -galactosidase activity. C113A/

A118T retained SMRT binding activity ( Fig. 1 F , lane 3), sug-

gesting that enzyme activity was not required for binding, 

whereas both WW domain mutants ( Fig. 1 F , lanes 4 and 5) 

failed to bind SMRT as indicated by loss of  � -galactosidase 

activation. GST pull-down assays confirmed the yeast two-

hybrid data by demonstrating that both WT Pin1 and the C113A/

A118T enzymatic mutant bound HA-SMRT (1,178 – 1,823; 

 Fig. 1 G , lanes 2 and 3), but the S16A/Y23A and R17A WW 

mutants were unable to bind HA-SMRT (1,178 – 1,823;  Fig. 1 G , 

lanes 4 and 5). Together, these data indicate that the integrity 

of the WW domain but not PPIase activity is essential for 

the Pin1 – SMRT interaction both in vitro and in yeast two-

hybrid assays. 

 The importance of the WW domain of Pin1 for SMRT 

interaction suggested that phosphorylation of SMRT might be 

involved in this interaction. As an initial test of this hypothesis, 

extracts of HeLa cells expressing HA-SMRT (1,178 – 1,823) 

were incubated with increasing concentrations of calf intestinal 

phosphatase before incubation with GST – Pin1.  Fig. 1 H  shows 

that phosphatase treatment of extracts dramatically reduced the 

association of SMRT with Pin1 in vitro (lanes 5 and 6). These 

data indicate that phosphorylation of SMRT is very likely to 

play a critical role in Pin1 binding. 

 Pin1 affects SMRT stability 
 To examine the functional signifi cance of the SMRT and Pin1 

association, we tested whether ectopic expression of Pin1 af-

fected the transcriptional repressor activity of SMRT. Transient 

transfections showed that Gal4-SMRT (1,050 – 1,823) potently 

repressed basal transcription of a Gal4 reporter ( Fig. 2 A , lane 1), 

but coexpression of Pin1 reduced SMRT repression activity in 

a dose-dependent manner ( Fig. 2 A , lanes 2 – 4). Because Pin1 

compromised SMRT repressor activity, we hypothesized that 

Pin1 might modulate SMRT-mediated repression by affecting 

its steady-state levels, as has been shown for other nuclear tar-

gets of Pin1. To test this possibility, SMRT (1,012 – 2,507) and 

Pin1 were coexpressed in CV-1 cells. As shown in  Fig. 2 B , ex-

pression of Pin1 had a negative, dose-dependent effect on SMRT 

protein levels. We also evaluated the effect of Pin1 on the ex-

pression of endogenous SMRT by immunofl uorescence micros-

copy. SMRT levels were signifi cantly decreased in cells transfected 

with FLAG-Pin1 ( Fig. 2 C , compare c with f), whereas the lev-

els of the closely related corepressor N-CoR did not change 

( Fig. 2 C , i and l). We confi rmed these observations using siRNA 

targeting Pin1.  Fig. 2 D  shows that when endogenous Pin1 lev-

els were decreased by siRNA, endogenous SMRT protein levels 

increased (lanes 2 and 3), whereas HDAC3 levels showed neg-

ligible differences. Together, these data suggest that Pin1 regu-

lates SMRT abundance. 

 To determine whether SMRT interaction or the prolyl 

isomerase activity of Pin1 is critical for modulating the tran-

scriptional repression activity of SMRT, the Pin1 mutants de-

scribed in  Fig. 1 E  were used. We found that all three Pin1 

as a regulatory protein for a variety of proteins associated with 

transcription, including cyclin E1, c-Myc, p53, SRC-3, and 

the retinoic acid receptor ( Zacchi et al., 2002 ;  Zheng et al., 

2002 ;  Yeh et al., 2004, 2006 ;  Brondani et al., 2005 ;  Yi et al., 

2005 ;  van Drogen et al., 2006 ). In the case of all of these tran-

scription factors, the binding of Pin1 to a phosphorylated mo-

tif regulates the stability of its target protein. In this study, we 

characterize the interaction between SMRT and Pin1. We fi nd 

that Pin1 binds to phosphorylated SMRT, identify the relevant 

protein kinase as Cdk2, and show that Cdk2 and Pin1 facilitate 

the degradation of SMRT. We also demonstrate that Cdk2 and 

Pin1 are required for ErbB2-mediated degradation of SMRT 

protein. Together, our data reveal a novel mechanism by which 

SMRT is regulated in cells. 

 Results 
 SMRT interacts with Pin1 in a 
phosphorylation-dependent manner 
 In a search for proteins that may regulate SMRT activity, yeast 

two-hybrid screens were performed using pGal4-SMRT (in-

cluding RDs III and IV) as bait against a library derived from 

17-d-old mouse embryos. Among the interacting clones, mouse 

Pin1 was isolated six times, with the longest insert encoding 

full-length Pin1. To test whether exogenous SMRT and Pin1 

interact in mammalian cells, we used extracts of transfected 

mammalian cells for coimmunoprecipitations ( Fig. 1 A ). Using 

 � -HA antibodies, we were able to coimmunoprecipitate FLAG-

Pin1 with HA-SMRT (1,178 – 1,823;  Fig. 1 A , lane 2), indicating 

that these proteins interact. This interaction was confi rmed by 

showing that endogenous SMRT was able to bind GST – Pin1 

( Fig. 1 B , lane 3) but not GST alone ( Fig. 1 B , lane 2). Because 

both Pin1 and 14-3-3 proteins interact with substrates in a 

phosphorylation-dependent manner ( Yaffe and Elia, 2001 ), we 

tested whether 14-3-3 proteins were also able to interact with 

SMRT ( Fig. 1 C ). GST – Pin1 ( Fig. 1 C , lane 2) but not GST –

 14-3-3 �  ( Fig. 1 C , lane 3) was able to pull down HA-SMRT 

(1,178 – 1,823). Finally, Pin1 was also able to coimmunoprecipi-

tate endogenous SMRT ( Fig. 1 D , lane 3), whereas protein A 

beads alone were unable to do so ( Fig. 1 D , lane 2). These data 

confi rm Pin1 to be a SMRT-interacting protein both in vitro and 

in mammalian cells and verify the interaction originally ob-

served in the yeast two-hybrid screen. 

 Pin1 is a 163 – amino acid protein that contains two 

known functional domains, a WW domain (amino acids 6 – 37) 

and a PPIase domain (amino acids 54 – 163;  Fig. 1 E ). Pin1 as-

sociates with its interacting partners through the WW domain, 

a protein – protein interaction module that has been shown 

to bind specifi cally to pS-P or pT-P dipeptide motifs ( Sudol 

et al., 2001 ;  Yaffe and Elia, 2001 ). Mutations of Pin1 such as 

S16A/Y23A and R17A are unable to bind pS/pT-P motifs and 

thus abrogate this binding ( Shen et al., 1998 ;  Lu et al., 1999 ). 

We generated these mutants of Pin1 as well as a C113A/A118T 

mutant that has decreased PPIase activity ( Shen et al., 1998 ) 

by site-directed mutagenesis, and yeast two-hybrid assays 

were used to determine whether the WW domain or isomer-

ase activity is critical for SMRT interaction ( Fig. 1 F ). SMRT 
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Pin1  � / �   MEFs. MEF cells were pulse labeled with [ 35 S]methionine 

and [ 35 S]cysteine followed by a chase with unlabeled amino 

 acids. Cell extracts were subjected to immunoprecipitation with 

SMRT antibodies and autoradiography.  Fig. 2 H  shows that 

SMRT was more stable in Pin1  � / �   MEFs than in Pin +/+  MEFs. 

To confi rm that the effect on SMRT half-life was because of 

Pin1, we transfected HeLa cells stably expressing short hairpin 

RNA against Pin1 ( Reineke et al., 2008 ) with either WT or mu-

tant Pin1 (C113A/A118T).  Fig. 2 I  shows that WT Pin1 de-

creased SMRT stability, whereas the mutant had little effect. 

From these data, we conclude that Pin1 is a SMRT-interacting 

protein that regulates SMRT protein levels by modulating 

SMRT half-life. 

 Mapping Pin1 interaction sites 
 To elucidate the mechanism by which Pin1 modulates SMRT 

stability, we fi rst mapped the pS/T-P motifs in SMRT responsi-

ble for Pin1 binding. SMRT deletion constructs fused to the 

yeast Gal4 DBD ( Fig. 3 A , left) were used in yeast two-hybrid 

assays. As shown in  Fig. 3 A , we found that Pin1 does not inter-

act with the N- or C-terminal regions of SMRT; rather, Pin1 

specifi cally interacts with amino acids 1,178 – 1,823 of SMRT 

(containing RDs III and IV). These results were confi rmed by GST 

pull downs ( Fig. 3 B ) showing that Pin1 interacts specifi cally with 

mutants were defective in their ability to relieve Gal4-SMRT 

(1,050 – 1,823) activity to varying degrees ( Fig. 2 E , lanes 3 – 5), 

indicating that both binding (from the WW domain) and enzy-

matic activity (from the PPIase domain) are required for Pin1 to 

affect SMRT-mediated repression. Because ectopic expression 

of Pin1 affected SMRT protein levels, we next examined the ef-

fect of the Pin1 mutants on SMRT protein levels. To test this, 

FLAG-SMRT (1,178 – 1,823) was cotransfected into cells with 

or without WT or mutant forms of HA-Pin1. As seen in  Fig. 2 F , 

WT HA-Pin1 decreased SMRT steady-state levels (lane 2) to a 

much greater extent than did any of the three mutants (lanes 3 – 5). 

Together, these data indicate that both domains of Pin1 partici-

pate in the regulation of SMRT accumulation. Additionally, it is 

likely that a Pin1-dependent decrease in SMRT protein levels is 

responsible for the loss of repression activity ( Fig. 2, A and E ). 

 To further examine the effect of ectopic Pin1 on SMRT, 

we used Pin1  � / �   mouse embryonic fi broblast (MEF) cells ( Yeh 

et al., 2006 ). Consistent with previous data, ectopic expression 

of FLAG-Pin1 in Pin1  � / �   MEFs dramatically decreased HA-

SMRT (1,178 – 1,823) protein levels in a dose-dependent man-

ner ( Fig. 2 G ), indicating that this mechanism is active in MEFs. 

We then determined whether the presence of endogenous Pin1 

altered SMRT stability by performing metabolic pulse-chase 

 labeling assays to measure the half-life of SMRT in Pin1 +/+  and 

 Figure 1.    Pin1 is a SMRT-associating protein.  
(A) Transfected SMRT and Pin1 interact in 
mammalian cells. HeLa cells were transfected 
with either FLAG-Pin1 alone or with both FLAG-
Pin1 and HA-SMRT (1,178 – 1,823). WCEs 
expressing these proteins were subjected to 
coimmunoprecipitation with  � -HA – conjugated 
agarose beads followed by immunoblotting 
with the indicated antibodies. (B) Pin1 inter-
acts with SMRT in vitro. Purifi ed, immobilized 
GST – Pin1 fusion protein was incubated with 
HeLa nuclear extracts, and bead fractions 
were subjected to immunoblotting with  � -SMRT 
antibodies. (C) SMRT interacts with Pin1 but 
not 14-3-3 � . GST pull downs were performed 
using purifi ed GST – Pin1, GST – 14-3-3 � , and 
HeLa WCEs expressing HA-SMRT (1,178 –
 1,823). Top, immunoblotting with  � -HA; bottom, 
Coomassie staining. (D) Endogenous SMRT 
and Pin1 interact in mammalian cells. HeLa 
nuclear extracts were subjected to coimmuno-
precipitation with Pin1 antibodies and immuno-
blotting with the indicated antibodies. Unrelated 
lanes were removed. (E) Schematic representa-
tion of human Pin1. Point mutations used in this 
study are indicated by *. Pin1 contains both 
a WW domain and a PPIase domain. Amino 
acids are indicated by numbers. (F) The Pin1 
WW domain is critical for interaction with 
SMRT in yeast. Y190 cells expressing GAL4 
DBD SMRT (1,178 – 1,823) and the indicated 
GAL4 activation domain Pin1 constructs were 
subjected to  � -galactosidase assays as de-
scribed in Materials and methods. Error bars 
represent  ± SD. (G) The Pin1 WW domain is 
essential for SMRT association in vitro. GST pull 
downs were performed using the indicated 
GST – Pin1 proteins and HeLa WCEs express-
ing HA-SMRT (1,178 – 1,823). Top, immuno-

blotting with  � -HA; bottom, Coomassie staining. (H) Phosphatase treatment disrupts the SMRT – Pin1 interaction in vitro. HeLa WCEs expressing HA-SMRT 
(1,178 – 1,823) were treated with increasing amounts of calf intestinal phosphatase followed by GST pull downs. Top, immunoblotting with  � -HA; bottom, 
Coomassie staining.   
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 Figure 2.    Pin1 down-regulates SMRT protein levels.  (A) Overexpression of Pin1 relieves SMRT repression. CV-1 cells were transiently transfected with Gal4-
SMRT (1,050 – 1,823), increasing amounts of Pin1, and a thymidine kinase – luciferase reporter. Luciferase activity was measured 36 – 48 h after transfection; all 
experiments were performed in triplicate. Error bars represent  ± SD. (B) Overexpression of Pin1 has a negative effect on SMRT steady-state levels. SMRT (1,012 –
 2,507), FLAG-Pin1, and GFP were cotransfected into CV-1 cells. WCEs were subjected to immunoblotting with the indicated antibodies. (C) Ectopic expression 
of Pin1 affects endogenous SMRT levels in MCF-7 cells. Cells were transfected with FLAG-Pin1 or FLAG-vector and immunostained with the indicated antibodies 
24 h after transfection. (top) DAPI staining; (middle)  � -FLAG staining; (bottom) SMRT or N-CoR staining. Arrowheads indicate transfected cells. Bar, 5  μ m. (D) siRNA-
mediated knockdown of Pin1 increases SMRT protein levels. HeLa cells were transfected with either a control oligonucleotide or one of two Pin1-targeting siRNAs. 
Cells were harvested 72 h later, and WCEs were subjected to immunoblotting with the indicated antibodies. (E) Pin1 mutants lose the ability to relieve SMRT 
repression. CV-1 cells were transiently transfected with Gal4-SMRT (1,050 – 1,823), Pin1 WT or mutants, and a thymidine kinase – luciferase reporter. Luciferase 
activity was measured 36 – 48 h later; all experiments were performed in triplicate. Error bars represent  ± SD. (F) Pin1 mutants lose the ability to down-regulate 
SMRT levels. CV-1 cells were cotransfected with FLAG-SMRT (1,178 – 1,823) and HA-tagged Pin1 WT or mutants. WCEs were subjected to immunoblotting with 
the indicated antibodies. (G) Exogenous overexpression of Pin1 in Pin1  � / �   MEFs decreases SMRT levels. HA-SMRT (1,178 – 1,823), FLAG-Pin1, and GFP were 
cotransfected into Pin1  � / �   MEFs, and immunoblotting was performed using the indicated antibodies. (H) SMRT half-life is increased in Pin1  � / �   MEFs. Pin1 +/+  and 
Pin1  � / �   MEFs were pulse labeled with [ 35 S]methionine and [ 35 S]cysteine and chased with cold growth medium as described in Materials and methods. WCEs 
were prepared and subjected to immunoprecipitation, and protein levels were detected by autoradiography. Left,  35 S autoradiography; right, quantifi cation of 
immunoprecipitated  35 S-labeled SMRT. Error bars represent  ± SD. (I) SMRT destabilization requires Pin1 isomerase activity. HeLa cells stably expressing shRNA 
against Pin1 were transfected with SMRT (1,178 – 1,823) and either WT Pin1 or Pin1 (C113A/A118T) and treated with 100  μ g/ml CHX for the indicated times, 
and immunoblots were performed using the indicated antibodies. Left, immunoblot; right, quantifi cation of SMRT levels normalized to actin levels.   
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in complete loss (lane 9). Among the phosphorylated sites, 

S1241 and S1469 are both consensus Cdk target sites of the 

motif S/T-P-X-R/K. An additional possible Cdk site at T1445 

was not phosphorylated based on the mass spectrometry anal-

ysis ( Fig. 3 C , Cdk sites indicated by  � ). Because loss of two 

potential Cdk sites abrogated GST – Pin1 interaction (S1241 

and T1445;  Fig. 3 D ), we next investigated whether Pin1 could 

interact with SMRT phosphorylated at those three Cdk sites. 

We performed pull downs with GST – Pin1 and immunoblotted 

using phosphospecifi c antibodies for the three Cdk sites ( Fig. 3 E ). 

We found that GST – Pin1 interacted with HA-SMRT (1,178 –

 1,823) that was phosphorylated at these three Cdk sites ( Fig. 3 E , 

lanes 6, 9, and 12). Collectively with the phosphatase data 

( Fig. 1 H ), these results reveal that phosphorylation of SMRT 

is critical for its interaction with Pin1. 

the SMRT fragment corresponding to RDs III and IV ( Fig. 3 B , 

lane 6) but neither the N- nor C-terminal fragments ( Fig. 3 B , 

lanes 3 and 9). 

 Because the interaction between SMRT and Pin1 is de-

pendent on the phosphorylation status of SMRT ( Fig. 1 H ), 

we used mass spectrometry to identify in vivo phosphoryla-

tion sites in FLAG-SMRT (1,178 – 1,823). Four phosphopep-

tide sequences were identifi ed, indicating that S1241, T1373, 

T1469, S1762, and S1765 were phosphorylated ( Fig. 3 C ,  * ). 

We used N-terminal deletion constructs (1,281 – 1,823 and 1,463 –

 1,823;  Fig. 3 C ) expressed in HeLa cells to determine whether 

any of the identifi ed phosphorylation sites were critical for 

interaction with GST – Pin1.  Fig. 3 D  shows that deletion past 

the fi rst phosphorylation site (S1241) resulted in some loss of 

GST – Pin1 binding (lane 6), whereas further deletion resulted 

 Figure 3.    Mapping the Pin1 interaction domain in SMRT.  (A) Yeast two-hybrid mapping of the Pin1 interaction domain. Left, diagram of Gal4-DBD-SMRT 
fragments used; right, normalized  � -galactosidase activity. Amino acids are indicated by numbers. Error bars represent  ± SD. (B) GST pull down mapping 
of Pin1-interacting regions in SMRT. HeLa WCEs expressing the indicated HA-SMRT constructs were subjected to pull downs using GST – Pin1 and immuno-
blotted with anti-HA antibodies. (C) Schematic diagram of SMRT showing in vivo phosphorylation sites as mapped by mass spectrometry ( * ), Cdk consen-
sus motifs ( � ), and deletion constructs used in  Fig. 3 D . Amino acids are indicated by numbers. (D) GST pull downs of N-terminal deletions of HA-SMRT. 
HeLa WCEs expressing the indicated HA-SMRT constructs were subjected to pull downs using GST – Pin1 and immunoblotted with anti-HA antibodies. 
(E) Phosphorylated SMRT interacts with Pin1 in vitro. HeLa WCEs expressing HA-SMRT (1,178 – 1,823) were subjected to pull downs using GST – Pin1 and 
immunoblotting with the indicated antibodies. WB, Western blot.   
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Pin1 binding in vitro ( Fig. 5 E , lane 5). Pin1 binding was not ob-

served in the absence of kinase ( Fig. 5 E , lane 3), indicating that 

phosphorylation is required for the interaction. These data indicate 

that Cdk2 can bind and phosphorylate SMRT and is likely to be a 

kinase that facilitates Pin1 binding by generating pS/T-P sites. 

 If Cdk2 generates Pin1-binding sites in vivo, we hypothe-

sized that Cdk2 may have an effect similar to that of Pin1 on SMRT 

stability. To test this hypothesis, we coexpressed Cdk2 and cyclin A 

in HeLa cells to determine the effects on SMRT steady-state 

levels. As seen in  Fig. 6 A , Cdk2 and cyclin A coexpression 

decreased HA-SMRT (1,012 – 2,507) protein levels (lane 2). 

Additionally, overexpression of Cdk2 and cyclin A increased 

HA-SMRT (1,012 – 2,507) phosphorylation at two of the three pu-

tative Cdk sites ( Fig. 6 B , lane 2) when these extracts were normal-

ized for HA-SMRT (1,012 – 2,507) levels. Consistent with these 

results, expression of a dominant-negative (DN) mutant form 

of Cdk2 (D145N) led to the accumulation of HA-SMRT (1,012 –

 2,507) protein ( Fig. 6 C ) and a marked decrease in HA-SMRT 

(1,012 – 2,507) phosphorylation at the predicted Cdk sites as visual-

ized by immunoblotting with phosphospecifi c antibodies ( Fig. 6 D ). 

We further confi rmed these observations using siRNA targeting 

Cdk2.  Fig. 6 E  shows that endogenous SMRT levels increase when 

Cdk2 levels are knocked down. Furthermore, Cdk2 overexpression 

signifi cantly decreased steady-state protein levels of WT HA-

SMRT (1,178 – 1,823) but not HA-SMRT 3 ×  (1,178 – 1,823), indi-

cating that Cdk phosphorylation sites are critical for this regulation 

( Fig. 6 F , compare lanes 1 and 2 with lanes 3 and 4). Together, these 

data indicate that Cdk2 is a critical regulator of SMRT stability. 

 To examine whether Cdk2-mediated SMRT destabilization 

is dependent on Pin1, we used siRNA targeting Pin1 to deplete 

endogenous Pin1 from cells.  Fig. 6 G  shows that Pin1 knockdown 

blocked the ability of Cdk2 – cyclin A to decrease steady-state lev-

els of HA-SMRT (1,178 – 1,823; compare lanes 1 and 2 with lanes 3 

and 4). Furthermore, a Pin1 mutant with decreased isomerization 

activity, C113A/A118T, also blocked the destabilization effects of 

Cdk2 on HA-SMRT (1,178 – 1,823;  Fig. 6 H ). These data indicate 

that endogenous Pin1 contributes to HA-SMRT (1,178 – 1,823) 

degradation through a Cdk2-dependent pathway. 

 Because deletion of Cdk sites in SMRT leads to loss of Pin1 

binding, we next investigated the importance of these sites by 

generating a Ser → Ala and Thr → Ala triple mutant SMRT (SMRT 

3 × ;  Fig. 3 C ,  � ). The phosphospecifi c antibodies were unable to 

detect this mutant ( Fig. 4 A , lane 2), confi rming the specifi city of 

the antibodies. SMRT 3 ×  (1,012 – 2,507) was much less able to 

interact with GST – Pin1 ( Fig. 4 B , lane 6) than the WT, indicating 

that intact Cdk consensus sites are critical for interaction with 

Pin1. In addition, we also generated double and single Cdk mu-

tants in SMRT and found that single mutations had no signifi cant 

effect on Pin1 binding, whereas the double mutants showed only 

slight decreases in Pin1 binding (unpublished data). SMRT 3 ×  

(1,178 – 1,823) was also more stable than the WT protein, as 

shown by cycloheximide (CHX) treatment in HeLa cells ( Fig. 4 C ). 

These data indicate that consensus Cdk sites in SMRT are phos-

phorylated and critical for the SMRT – Pin1 interaction. 

 SMRT is a Cdk2 target 
 Because mutation of putative Cdk sites in SMRT abrogated both 

Pin1 binding and its effect on SMRT stability, we hypothesized 

that phosphorylation by Cdk – cyclin complexes might be respon-

sible for generating Pin1-binding sites.  Fig. 5 A  shows that endog-

enous Cdk2 and its activating cyclins A and E were capable of 

coimmunoprecipitating endogenous SMRT from HeLa nuclear 

extracts (lanes 3 – 5). However, cyclin E did not effi ciently immuno-

precipitate Cdk2. Interestingly, neither N-CoR nor HDAC3 was 

detected in these immunocomplexes. To confi rm these obser-

vations, we coexpressed HA-SMRT (1,178 – 1,823) and Cdk2 in 

mammalian cells. As expected, Cdk2 coimmunoprecipitated with 

SMRT ( Fig. 5 B , lane 3). Furthermore, Cdk2 phosphorylated WT 

GST-SMRT (1,178 – 1,578;  Fig. 5 C , lane 2) but not the GST-3 ×  

mutant (1,178 – 1,578;  Fig. 5 C , lane 4) or a GST – SMRT (1,560 –

 1,823) fragment that does not contain any consensus Cdk 

phosphorylation sites ( Fig. 5 C , lane 6), indicating that S1241, 

T1445, and S1469 are required for Cdk2-dependent phosphoryl-

ation in vitro. Additionally, Cdk2 specifi cally phosphorylated all 

three of the predicted Cdk sites in vitro ( Fig. 5 D , lane 2). Addition 

of active Cdk2 to purifi ed His6-SMRT (1,178 – 1,823) facilitated 

 Figure 4.    Mutations of Cdk sites in SMRT 
disrupt Pin1 interaction.  (A) Phosphospecifi c 
antibodies recognize WT but not mutant SMRT. 
HeLa cells were transfected with either WT 
HA-SMRT (1,178 – 1,823) or a 3 ×  mutant 
(S1241A/T1445A/S1469A), and WCEs were 
prepared for immunoblotting with the indi-
cated antibodies. (B) Mutation of Cdk sites in 
SMRT disrupts Pin1 interaction in vitro. HeLa 
cells were transfected with HA-SMRT WT 
(1,012 – 2,507) or the 3 ×  mutant, and WCEs 
were subjected to pull downs with GST – Pin1 
and immunoblotted with  � -HA antibodies. 
(C) Mutation of Cdk sites stabilizes SMRT. HeLa 
cells were transfected with HA-SMRT (1,178 –
 1,823) or the 3 ×  mutant and treated with 
100  � g/ml CHX for the indicated times. WCEs 
were immunoblotted with the indicated anti-
bodies. Left, immunoblot; right, quantifi cation 
of SMRT levels normalized to actin levels.   
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for 72 h followed by RNA extraction and RT-PCR. We exam-

ined the expression of known ER �  gene targets such as c-Myc 

and progesterone receptor (PR). As shown in  Fig. 7 E , tamoxi-

fen treatment repressed both c-Myc and PR expression but not 

the control gene 36B4 (lanes 1 and 2), whereas knockdown of 

SMRT compromised tamoxifen-mediated repression of both 

c-Myc and PR expression (lanes 3 and 4), and knockdown of Pin1 

or Cdk2 increased repression of both genes (lanes 5 – 8). Inter-

estingly, knockdown of Pin1 led to increases in c-Myc and PR 

transcription, whereas Cdk2 knockdown increased PR tran-

script levels. These data indicate that SMRT is critical for ER � -

dependent gene repression in response to tamoxifen. Because 

tamoxifen suppresses cell proliferation of BT-474 cells, we also 

examined whether knockdown of SMRT, Pin1, or Cdk2 affected 

proliferation rates.  Fig. 7 F  shows that knockdown of SMRT in-

creased cell proliferation when compared with siControl, whereas 

Cdk2 showed a slight decrease in cell proliferation compared 

with the control. Together, these data indicate that control of 

SMRT stability likely has multiple cellular effects, including 

gene expression and cell proliferation. 

 Discussion 
 Here we show that the corepressor SMRT interacts with both 

the PPIase Pin1 and the cell cycle – dependent kinase Cdk2, two 

proteins that are downstream effectors of Her2/Neu/ErbB2 

( Neve et al., 2000 ;  Ryo et al., 2002 ). Pin1 requires an intact 

WW domain and phosphorylation of SMRT for this interaction. 

 ErbB2 destabilizes SMRT protein level 
 Because ErbB2/Her2/Neu has been shown to increase Cdk activ-

ity and up-regulate Pin1 expression in certain breast cancers ( Ryo 

et al., 2002 ;  Timms et al., 2002 ), we next investigated whether 

ErbB2 activity could modulate SMRT half-life. Using heregulin, 

a small protein activator of ErbB2, and AG825, a chemical inhibi-

tor of ErbB2, we analyzed SMRT half-life. MCF-7 cells show a 

decrease in SMRT half-life when treated with heregulin as com-

pared with the vehicle control ( Fig. 7 A ). Furthermore, in BT-474 

cells that overexpress ErbB2, both transfected HA-SMRT (1,012 –

 2,507;  Fig. 7 B , right) and endogenous SMRT ( Fig. 7 B , left) 

half-life decreased upon heregulin treatment. Conversely, upon 

treatment with the ErbB2 inhibitor AG825, both SMRT half-life 

( Fig. 7 B ) and SMRT protein levels increased ( Fig. 7 C ). Finally, 

to test whether ErbB2 acts upstream of Cdk2 and Pin1, we used 

siRNA targeting either Pin1 or Cdk2 to evaluate SMRT protein 

levels. BT-474 breast cancer cells were transfected with siRNAs 

followed by treatment with heregulin.  Fig. 7 D  shows that hereg-

ulin decreased SMRT protein levels by half (lanes 1 and 2), 

whereas siRNA targeting either Pin1 or Cdk2 blocked this effect 

(lanes 3 – 6). Collectively, these results indicate that ErbB2 signal-

ing upstream of Cdk2 and Pin1 is a potential regulatory cascade 

involved in regulating the stability of SMRT. 

 To further characterize the role of the Cdk2- and Pin1-

dependent SMRT degradation pathway in tamoxifen resistance, 

we treated BT-474 cells with siRNA targeting either SMRT, 

Pin1, or Cdk2 to examine gene expression. After siRNA treat-

ment, cells were treated with or without 4-hydroxytamoxifen 

 Figure 5.    Cdk2 interacts with and phosphor-
ylates SMRT to generate Pin1-binding sites. 
 (A) Endogenous SMRT coimmunoprecipitates 
with Cdk2 in HeLa nuclear extracts. Coimmuno-
precipitations were performed as described in 
 Fig. 1 D  using the indicated antibodies (top) 
followed by immunoblotting with the indicated 
antibodies (left). Unrelated lanes were re-
moved. (B) Exogenous Cdk2 and SMRT inter-
act. HA-SMRT (1,178 – 1,823) and FLAG-Cdk2 
were cotransfected into HeLa cells. Coimmuno-
precipitations were performed as in  Fig. 1 A  and 
immunoblotted with the indicated antibodies. 
(C) Cdk2 phosphorylates SMRT in vitro. Puri-
fi ed GST-SMRT proteins (WT 1,178 – 1,578, 
3 ×  mutant 1,178 – 1,578, and WT 1,560 –
 1,823) were incubated with purifi ed Cdk2 and 
[ 32 P]ATP. Samples were resolved by SDS-PAGE 
and transferred to a polyvinylidene difl uoride 
membrane before autoradiography. Top, auto-
radiography; bottom, Coomassie staining; 
*, GST-SMRT (1,178 – 1,578); **, GST-SMRT 
(1,560 – 1,823). (D) Cdk2 phosphorylates 
S1241, T1445, and S1469 of SMRT. In vitro 
kinase assays were performed as aforemen-
tioned using GST-SMRT (1,178 – 1,588), Cdk2, 
and unlabeled ATP. Immunoblotting was per-
formed with the indicated antibodies. (E) Cdk2 
phosphorylation of SMRT generates Pin1-
binding sites. His6-SMRT (1,178 – 1,823) was 
subjected to in vitro kinase assays as described 
in D. After kinase reactions, samples were 
subjected to GST pull downs with GST – Pin1. 
Immunoblotting was performed with the indi-
cated antibodies. Unrelated lanes were removed.   
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( Fig. 7 G ). Consistent with these observations, activation of 

Her2/Neu/ErbB2 promotes SMRT degradation, whereas in-

hibition of Her2/Neu/ErbB2 stabilizes SMRT. These data suggest 

Cdk2 phosphorylates SMRT at consensus Cdk motifs to gener-

ate Pin1-binding sites and consequently targets SMRT for deg-

radation, the latter also requiring the PPIase activity of Pin1 

 Figure 6.    Cdk2 stimulates SMRT phosphorylation in HeLa cells.  (A) Coexpression of Cdk2 and cyclin A decreases SMRT steady-state levels. HeLa cells 
were cotransfected with HA-SMRT (1,012 – 2,507), GFP, FLAG-Cdk2, and FLAG – cyclin A as indicated. Unrelated lanes were removed. (B) Coexpression 
of Cdk2 and cyclin A increases SMRT phosphorylation. HeLa cells were transfected as in A and treated with 20 nM calyculin A for 1 h before harvest. 
Unrelated lanes were removed. (C) DN Cdk2 increases SMRT steady-state levels. HeLa cells were transfected with HA-SMRT (1,012 – 2,507), GFP, and 
FLAG-DN-Cdk2 (D145N), and WCEs were immunoblotted with the indicated antibodies. (D) DN Cdk2 decreases SMRT phosphorylation. HeLa cells 
were transfected as in C and treated with 20 nM calyculin A 1 h before harvest. WCEs were subjected to immunoblotting with indicated antibodies. 
(E) siRNA-mediated knockdown of Cdk2 increases SMRT protein levels. Transfections were performed as in  Fig. 2 D . (F) Cdk2 overexpression does not affect 
mutant SMRT protein levels. HeLa cells were cotransfected with HA-SMRT (1,188 – 1,833) 3 ×  mutant, GFP, FLAG-Cdk2, and FLAG – cyclin A as indicated. 
(G) Endogenous Pin1 is required for Cdk2-mediated SMRT degradation. HeLa cells were cotransfected with HA-SMRT (1,188 – 1,833), GFP, FLAG-Cdk2, 
FLAG – cyclin A, and either siRNA-targeting Pin1 or control oligonucleotides as indicated. (H) Mutant Pin1 can block Cdk2-mediated SMRT degradation. 
HeLa cells were cotransfected with HA-SMRT (1,188 – 1,833), GFP, FLAG-Cdk2, FLAG – cyclin A, and either WT HA-Pin1 or the C113A/A118/T mutant as 
indicated. (A – H) WCEs were subjected to immunoblotting with the indicated antibodies.   
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ative activity of tamoxifen therefore depends on the relative 

abundance of corepressors and coactivators ( Graham et al., 

2000a , b ;  Fujita et al., 2003 ). Indeed, both SMRT and N-CoR 

are required for the antiproliferative effects of tamoxifen in 

MCF-7 cells ( Keeton and Brown, 2005 ). Additionally, certain 

coactivators such as AIB1/SRC-3 have been shown to be up-

regulated in ErbB2-positive breast tumors, which would further 

disrupt the corepressor/coactivator ratio ( Osborne et al., 2003 ), 

and it is interesting that SRC-3 turnover is also regulated by 

Pin1 ( Yi et al., 2005 ) and reversible phosphorylation ( Wu et al., 

2007 ). Here we show that SMRT protein levels can be modulated 

by the oncogene Her2/Neu/ErbB2 to alter the ratio of corepressors 

a concerted regulation of a transcriptional corepressor initiated 

by extracellular stimuli functioning to activate a transmembrane 

tyrosine kinase receptor. 

 In tamoxifen-responsive breast cancer cells, tamoxifen-

bound ER �  recruits corepressor complexes to inhibit ER � -

target gene expression ( Smith et al., 1997 ;  Fleming et al., 2004 ). 

Decreased levels of corepressors correlate with acquired tamox-

ifen resistance ( Lavinsky et al., 1998 ), whereas high expression 

of coactivators favors an agonist effect for tamoxifen ( Shang 

and Brown, 2002 ;  Shou et al., 2004 ). Overexpression of SMRT 

or N-CoR promotes the antagonist activity of tamoxifen in tran-

sient transfection assays ( Jackson et al., 1997 ). The antiprolifer-

 Figure 7.    ErbB2 attenuates SMRT levels 
in breast cancer cells.  (A) SMRT half-life in 
MCF-7 cells. Cells were pulse labeled with 
[ 35 S]methionine and [ 35 S]cysteine and chased 
with cold growth medium. Additionally, cells 
were treated with 100 ng/ml heregulin or a 
vehicle control for 30 min before labeling. 
Top,  35 S autoradiography; bottom, quantifi ca-
tion of immunoprecipitated  35 S-labeled SMRT. 
(B) SMRT half-life in BT-474 cells. Experiments 
were performed according to the description 
in A with the addition of 0.1 � M AG825 treat-
ment. Unrelated lanes were removed. Left, 
endogenous SMRT; right, transfected HA-SMRT 
(1,012 – 2,507); top,  35 S autoradiography; 
bottom, quantifi cation of immunoprecipitated 
 35 S-labeled SMRT. (C) AG825 treatment in-
creases SMRT protein levels. BT-474 cells were 
treated with 0.1  � M AG825 or vehicle control 
for 48 h. WCEs were immunoblotted with the 
indicated antibodies. (D) ErbB2 controls SMRT 
levels through a Pin1- and Cdk2-dependent 
pathway. BT-474 cells were transfected with 
siRNAs for 24 h followed by treatment with 
100 ng/ml heregulin for 48 h. WCEs were 
subjected to immunoblotting with the indicated 
antibodies. Quantifi cation of SMRT levels normal-
ized to actin is shown below the blot; quantifi -
cation was performed in Photoshop. (E) SMRT 
is required for ER � -dependent repression in 
response to tamoxifen. BT-474 cells were 
transfected with siRNAs for 48 h followed by 
treatment with 100 nM 4-hydroxytamoxifen for 
72 h. Total RNA was harvested followed by 
cDNA generation. RT-PCR was performed us-
ing primers targeting the indicated genes. Top, 
ethidium bromide staining; bottom, quantifi ca-
tion of three sets of experiments for each gene. 
(F) SMRT is required for tamoxifen-dependent 
inhibition of cell proliferation. BT-474 cells were 
transfected with siRNAs as in E. 48 h after 
transfection, cells were counted, split evenly onto 
plates, and treated with 100 nM 4-hydroxy-
tamoxifen for the indicated times. Proliferation 
was measured every 24 h. Error bars repre-
sent  ± SD. (G) Model of SMRT regulation by 
Pin1 and Cdk2. SMRT is phosphorylated by 
Cdk2 – cyclin A complexes. These phosphoryl-
ation sites serve as binding sites for Pin1, which 
subsequently targets SMRT for degradation. 
Additionally, Pin1 may act in other pathways 
to affect tamoxifen resistance, as knockdown 
of Pin1 in BT-474 cells did not signifi cantly up-
regulate SMRT protein levels.   
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sensitivity through other pathways independent of controlling 

SMRT protein levels. 

 Pin1 is capable of promoting both stabilization and degra-

dation of several target proteins ( Yeh and Means, 2007 ); however, 

in many cases, the mechanisms underlying these opposing activ-

ities remain largely unexplored. In the case of c-Myc, Pin1 pro-

motes a conformational change that allows rapid dephosphorylation 

of a specifi c threonine residue that is required for the binding of a 

ubiquitin E3 ligase ( Yeh et al., 2004 ). In other cases, the confor-

mational switch to certain prolyl isomers (cis or trans) also makes 

the target protein better substrates for particular E3 ubiquitin 

ligases (and therefore better substrates for degradation) or protein 

phosphatases ( Yi et al., 2005 ;  van Drogen et al., 2006 ;  Yeh et al., 

2006 ;  Wu et al., 2007 ;  Yeh and Means, 2007 ). Proteins such as 

c-Myc, cyclin E, and SRC-3 use a common Pin1-interacting mo-

tif to facilitate turnover by the E3 ligase Fbw7. As this motif does 

not exist in SMRT, it is likely that a different E3 ligase may be 

involved. Thus, identifi cation of components of the degradation 

machinery responsible for Pin1- and Cdk2-dependent SMRT 

degradation warrants further investigation and may reveal poten-

tial new therapeutic targets for treatment of certain breast cancers. 

 Phosphorylation of SMRT by Cdk2 may participate in 

some integral aspect of cell cycle regulation. Certain genes re-

quired for cell cycle progression may require removal or degrada-

tion of SMRT from their promoters in order for cells to proliferate. 

Another interesting hypothesis is that SMRT may play roles other 

than that of a corepressor as recent studies have indicated, includ-

ing involvement in DNA damage repair pathways and cell cycle 

regulation ( Li et al., 2006 ;  Yu et al., 2006 ). Additionally, it will be 

important to explore other potential regulators of SMRT stability 

and activity that may play a role in human development and dis-

ease generation or progression. Our observation that cyclin E co-

immunoprecipitated SMRT but not Cdk2 is intriguing. This could 

be caused by the inaccessibility of the epitope by cyclin E anti-

bodies. Alternatively, but not exclusively, these data suggest that 

the association of cyclin E with SMRT is independent of Cdk2. 

It will be interesting to further investigate the functional signifi -

cance of the association between SMRT and cyclin E. 

 The ability of Pin1 to control SMRT protein levels ap-

pears to be cell type dependent, as Pin1 knockdown signifi -

cantly increases SMRT protein steady-state levels in HeLa but 

not in BT-474 cells ( Fig. 2 D  and  Fig. 7 D ). In contrast, knock-

down of Cdk2 increases SMRT protein levels in both HeLa and 

BT-474 cells ( Fig. 6 E  and  Fig. 7 D ). These observations suggest 

that Cdk2 may use Pin1-dependent or -independent pathways to 

promote SMRT degradation. ErbB2 activation stimulates Cdk2 

activity, and knockdown of Cdk2 signifi cantly increases steady-

state levels of SMRT proteins and blocks ErbB2-mediated SMRT 

degradation, indicating that Cdk2 is an integral component in 

the ErbB2-dependent SMRT degradation pathway. Notably, 

knockdown of Cdk2 abolishes ErbB2-activated gene expression 

( Fig. 7 E ) and cell proliferation ( Fig. 7 F ). Our data favor an 

oncogenic role for Cdk2 in SMRT destabilization and suggest 

that decreases in SMRT protein levels correlate with relief in 

gene repression and increases in proliferation, both indicators of 

tamoxifen resistance, whereas increases in SMRT levels correlate 

with tamoxifen sensitivity. 

to coactivators, thereby elucidating part of the potential mecha-

nism underlying tamoxifen resistance and aberrant transcrip-

tional regulation in breast cancers. 

 Our studies clearly demonstrate that SMRT has distinct 

functions from N-CoR, as knockdown of SMRT is suffi cient to 

desensitize cells to tamoxifen-mediated inhibition of PR and 

c-Myc expression and cell growth. Furthermore, overexpression 

of Pin1 in MCF-7 cells decreases SMRT protein levels but not 

N-CoR. Indeed, recent studies show that these two corepressors 

can be targets of different cellular pathways ( Jepsen et al., 2000, 

2007 ;  Jonas and Privalsky, 2004 ;  Yu et al., 2006 ), including 

growth factor signaling, DNA damage response, and normal 

mammalian development, and likely regulate some nonoverlap-

ping genes. As mentioned previously, knockdown of both SMRT 

and N-CoR is required to overcome the antiproliferative effects 

of tamoxifen in MCF-7 cells ( Keeton and Brown, 2005 ). Further-

more, N-CoR protein levels are decreased in tamoxifen-resistant 

tumors from a mouse model ( Lavinsky et al., 1998 ). This indi-

cates that a global decrease in corepressor expression is required 

for breast cancer progression and that there is an analogous path-

way leading to the accelerated degradation of N-CoR in ErbB2-

positive/tamoxifen-resistant breast cancers. It is probable that 

ErbB2-positive/tamoxifen-resistant breast cancers exploit a nor-

mal cellular pathway leading to the degradation of SMRT. 

 Pin1 has been shown to collaborate with several kinases to 

modulate protein stability, including MAPK, GSK3 � , Cdk1, and 

Cdk2 ( Ryo et al., 2001 ;  Yeh et al., 2004, 2006 ;  Pastorino et al., 

2006 ). Our observation that Cdk2 phosphorylates SMRT to regu-

late its abundance supports the idea that Pin1 exerts diverse 

functions in different signaling pathways. We hypothesize that 

compartmental and temporal regulation of the association be-

tween Pin1 and its targets fi ne tunes Pin1 activity. For example, 

several Pin1-mediated degradation pathways are likely to be 

cell cycle dependent, as multiple cell cycle regulatory proteins 

are involved ( Yeh and Means, 2007 ). It will be highly informa-

tive to explore whether SMRT protein levels are regulated in a 

cell cycle – dependent manner, as has been suggested previously 

( Park et al., 1999 ). Like SMRT, N-CoR also contains seven con-

sensus Cdk phosphorylation sites. However, of the three sites 

identifi ed here, only serine 1469 (S1469) is not conserved be-

tween SMRT and N-CoR. Intriguingly, S1469 is the phosphoryl-

ation site that does not change in response to Cdk2 overexpression. 

Therefore, it is likely that there are other kinases that may play 

a role in this complex regulatory pathway. 

 Pin1 is thought to be an important regulator of tumorigen-

esis and is overexpressed or underexpressed in different tumors 

( Bao et al., 2004 ;  Mantovani et al., 2007 ;  Yeh and Means, 2007 ); 

thus, it can potentially act as either an oncogene or a tumor-

suppressor gene, depending on cellular context. ErbB2 activation 

stimulates Pin1 transcription, and in turn Pin1 stimulates the 

transformative properties of ErbB2-positive cells ( Ryo et al., 

2002 ). Interestingly, although activation of ErbB2 decreases 

SMRT protein levels in BT-474 cells, Pin1 knockdown does not 

affect SMRT levels ( Fig. 7 D ). However, knockdown of Pin1 

sensitizes cells to tamoxifen-mediated repression of c-Myc and 

PR expression without affecting BT-474 cell proliferation ( Fig. 7, 

E and F ). These data suggest that Pin1 may affect tamoxifen 
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 Transient transfection reporter assays 
 CV-1 cells were cotransfected with 16.6 – 66.6 ng pCMX-Gal4 and pCMX-
Gal4-SMRT (1,060 – 1,823) constructs ( Nagy et al., 1997 ), 100 ng 
pMH100 – thymidine kinase – Luc, and 100 ng pCMX-LacZ in DME growth 
medium using Lipofectamine. The amount of DNA in each transfection 
was kept constant by the addition of parachlorometaxylenol. Cells were 
harvested and assayed for luciferase activity 36 – 48 h after transfec-
tion. The luciferase activity was normalized to the  � -galactosidase activity. 
Each transfection was performed in triplicate and repeated at least 
two times. 

 In vitro kinase assays 
 GST-SMRT (1,178 – 1,578 and 1,560 – 1,823) constructs were purifi ed from 
 E. coli  and incubated with purifi ed Cdk2 (New England Biolabs, Inc.) ac-
cording to the manufacturer ’ s protocol. In brief, equal amounts of purifi ed 
GST-tagged proteins were incubated with 100 U of purifi ed Cdk2 – cyclin A 
complexes in the associated buffer (NEB) for 30 min at 30 ° C. For auto-
radiography, [ 32 P]ATP (PerkinElmer) was used. Reactions were stopped with 
SDS-PAGE sample buffer, separated by SDS-PAGE, transferred to polyvinyl-
idene difl uoride membrane, and subjected to autoradiography, immuno-
blotting (anti-GST; Santa Cruz Biotechnology, Inc.), or Coomassie staining. 

 Mass spectrometry 
 HeLa WCEs transfected with FLAG-SMRT (1,178 – 1,823) and treated with 
20 nM calyculin A were subjected to coimmunoprecipitations using anti-
FLAG affi nity beads (Sigma-Aldrich) and separated by SDS-PAGE. The gel 
was Coomassie stained, and protein bands were cut out, washed and de-
stained (50% ethanol and 5% acetic acid), reduced and alkylated (DTT 
and iodoacetamide), dehydrated (acetonitrile), and dried in a speed vac. 
Samples were digested using trypsin (20 ng/ μ L in 50 mM ammonium 
bicarbonate), and peptides were analyzed by liquid chromatography-mass 
spectrometry (linear ion trap; Finnigan LTQ). 

 Pulse-chase labeling 
 Cells were starved 10 min before labeling with DME lacking cysteine and 
methionine. Cells were then pulse labeled for 30 min with DME containing 
[ 35 S]Met/Cys (PerkinElmer), washed twice, and chased in DME with un-
labeled Met/Cys for the indicated times. Before labeling, cells were treated 
with either 100 ng/ml heregulin (R & D Systems) or 0.1  � M AG825 (EMD) for 
30 min. Cells were lysed, and WCEs were subjected to immunoprecipitation 
overnight with either anti-SMRT (our own) or anti-HA antibodies (Sigma-
Aldrich), separated by SDS-PAGE, and analyzed by autoradiography. Bands 
were quantifi ed using an imaging system (VersaDoc; Bio-Rad Laboratories). 

 Immunofl uorescent microscopy 
 Immunofl uorescent staining was performed at room temperature as de-
scribed previously ( Reineke et al., 2008 ) using the antibodies anti-SMRT 
(ABR) and anti-FLAG (Santa Cruz Biotechnology, Inc.). N-CoR antibodies 
were purifi ed in our laboratory. Secondary antibodies (conjugated to Alexa 
Fluor 488 or 594) were purchased from Invitrogen. Coverslips were mounted 
using mounting medium with DAPI (Vectashield; Vector Laboratories). Cells 
were analyzed using a fl uorescent microscope (DMLB; Leica) using a 40 ×  
lens (Leica) with a numerical aperture of 506744. Images were captured 
with a camera (7.2 Color Mosaic; Diagnostic Instruments, Inc.) and acquired 
using SPOT Advanced (Diagnostic Instruments, Inc.). 

 RT-PCR 
 BT-474 cells were transfected with siRNA as described in Cell culture and 
transfection. 48 h after transfection, cells were treated with 100 nM 4-hydroxy-
tamoxifen (Sigma-Aldrich) or ethanol vector control. 72 h after treatment, total 
RNA was harvested using PrepEase RNA Spin kits (USB). cDNA was gener-
ated using Superscript II reverse transcription and oligo-dT primers (Invitrogen). 
PCR reactions were performed using the following primers: 36B4 forward 
5 � -TGTTTCATTGTGGGAGCAGAC-3 � , 36B4 reverse 5 � -A A G CA CTT CAG G-
GTTCTAGAT-3 � , c-Myc forward 5 � -ATGAAAAGGCCCCCAAGGTAG TTAT-3 � , 
c-Myc reverse 5 � -GCATTTGATCATGCATTTGAAACAA-3 � , PR forward 5 � -CC A-
TGTGGCAGATCCCACAGGAGTT-3 � , and PR reverse 5 � -T G G AA AT TCA ACA-
CTCAGTGCC-3 � . Quantifi cation was performed in Photoshop (Adobe). 

 Cell proliferation 
 BT-474 cells were transfected with siRNA as described for RT-PCR. 48 h af-
ter transfection, cells were counted, and 1,500 cells were plated into 96-well 
plates. Cells were treated with either 100 nM 4-hydroxytamoxifen or etha-
nol vehicle control. The day 0 time point was taken  � 12 h after plating. 
Cell proliferation was measured every 24 h using the CyQUANT NF Cell 
Proliferation Assay kit (Invitrogen). 

 Materials and methods 
 Yeast methods 
 Yeast two-hybrid screens and assays were performed using standard meth-
ods described previously ( Kao et al., 2000 ). A yeast two-hybrid library 
from mouse 17-d-old embryos (Stratagene) and pGBT9-hSMRT (a region 
encompassing amino acids 1,060 – 1,823 of human SMRT) were cotrans-
formed into the yeast strain Y190. Approximately 5  ×  10 6  yeast transform-
ants were screened and selected on yeast minimal medium Leu-Trp-His 
plates containing 40 mM 3-aminotriazole (Sigma-Aldrich). After 7 d, col-
onies were picked, and the interactions were confi rmed by  � -galactosidase 
assays. Plasmids were recovered from the yeast and retransformed into 
yeast along with the bait construct. Positive clones were subjected to se-
quencing. Liquid  � -galactosidase assays were performed as described by 
the manufacturer (Clontech Laboratories, Inc.), and the data represent the 
mean of duplicate reactions of two colonies. 

 Plasmid construction 
 pGBT9-SMRT yeast two-hybrid plasmids have been previously described 
( Kao et al., 2000 ). Pin1, Cdk2, and cyclin A expression vectors were gen-
erated by PCR from a HeLa library and subcloned into the CMX-1F or -1H 
vector ( Gao et al., 2006 ). HA full-length SMRT and HA-SMRT (1 – 1,178) 
were derived from previously described plasmids ( Park et al., 1999 ); HA-
SMRT (1,012 – 2,507), HA-SMRT (1,823 – 2,507), and HA- and FLAG-SMRT 
(1,178 – 1,823) were derived from previously described plasmids ( Chen 
and Evans, 1995 ). GST – Pin1, GST-SMRT (1,178 – 1,578), and GST-SMRT 
(1,560 – 1,823) were generated from HA-Pin1 and HA-SMRT (1,178 –
 1,823), respectively, and cloned into the pGEX vector (GE Healthcare). 
GST – 14-3-3 � , reporter constructs, and  � -galactosidase expression vectors 
have been previously described ( Kao et al., 2001 ). Site-directed mutagen-
esis was performed using the QuikChange kit (Stratagene). 

 Cell culture and transfection 
 HeLa, MCF-7, and CV-1 cells were grown in standard DME (Sigma-
Aldrich) supplemented with 10% FBS, 50 U/ml penicillin G, and 50  � g/ml 
streptomycin sulfate at 37 ° C in 5% CO 2 . MEF cells were grown in DME 
(Invitrogen) supplemented with 10% heat-inactivated FBS. BT-474 cells 
were grown in DME (American Type Culture Collection) supplemented with 
10% FBS. Transfections were performed using either Lipofectamine (CV-1) 
or Lipofectamine 2000 (HeLa, MCF-7, MEFs, and BT-474; Invitrogen) and 
harvested 48 h after transfection. Transfections with siRNA (Thermo Fisher 
Scientifi c) were performed using Lipofectamine 2000, and cells were har-
vested 72 h after transfection. Cells were treated with 20 nM calyculin A 
(BIOMOL International, L.P.) to inhibit phosphatase activity for 1 h before 
harvest where noted. Cells were treated with 100  μ g/ml CHX (Sigma-
Aldrich) for the indicated times before harvest where noted. 

 In vitro protein – protein interaction assays 
 GST fusion proteins, GST, GST – Pin1 (WT or mutant), and GST – 14-3-3 �  
were expressed in an  Escherichia coli  DH5 �  strain and affi nity purifi ed on 
glutathione – Sepharose 4B beads. In vitro pull-down assays were per-
formed by incubating GST – Pin1 with nuclear extracts ( Dignam et al., 
1983 ) or whole cell lysates from HeLa cells according to our published 
protocol ( Kao et al., 2000 ) for 1 h at 4 ° C. After extensive washes, SDS-
PAGE sample buffer was added to the beads, boiled, and separated by 
SDS-PAGE. For phosphatase treatments, extracts prepared from HA-SMRT –  
expressing cells were treated with increasing concentrations of calf intesti-
nal phosphatase (Roche) for 30 min at 30 ° C before GST pull-down assays. 
His6-SMRT (1,178 – 1,823) was purifi ed from  E. coli  BL-21 cells using 
nickel – nitrilotriacetic acid agarose beads (QIAGEN). 

 Coimmunoprecipitations 
 Transiently transfected HeLa whole cell extracts (WCEs) were prepared ac-
cording to our published protocol ( Kao et al., 2000 ). Immunoprecipitations 
for transfected samples were performed using anti-Flag or anti-HA M2 beads 
(Sigma-Aldrich). Endogenous coimmunoprecipitations were performed using 
the indicated antibodies (anti-Cdk2, cyclin A, cyclin E, and 14-3-3 [Santa Cruz 
Biotechnology, Inc.]; anti-Pin1 [Millipore]) with HeLa nuclear extracts. Extracts 
were incubated with antibodies and protein A beads (RepliGen Corp.) for 
3 h at 4 ° C. Immunopellets were washed extensively and subjected to SDS-
PAGE followed by immunoblot analyses with the antibodies anti-Flag (Sigma-
Aldrich), anti-HA (Roche), and anti-Pin1 (Millipore) and anti-Cdk2, anti – cyclin A, 
anti – 14-3-3, and anti-HDAC3 (Santa Cruz Biotechnology, Inc.). SMRT and 
N-CoR antibodies were purifi ed in our laboratory; phosphospecifi c SMRT 
antibodies were generated and purifi ed by Affi nity BioReagents. 
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