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Abstract
Infections with the filamentous fungus Aspergillus fumigatus are among the most devastating of the
systemic mycoses. Unlike most primary pathogens, which possess virulence traits that developed in
association with a host organism, evidence suggests that the virulence of A. fumigatus entails a
collection of ‘street-smart’ attributes that have evolved to resist the adverse selection pressures
encountered in decaying vegetation. These features enhance the overall competitiveness of the
organism in its environmental niche, but are also thought to promote growth and survival in a human
host. Although many of the genes that are responsible for these characteristics do not fit into the
classical definition of a virulence factor, they are nonetheless important to the pathogenesis of
aspergillosis and may therefore provide novel opportunities for antifungal development.

Introduction
Aspergillus fumigatus is a saprophytic filamentous fungus that is the predominant mold
pathogen of the immunosuppressed population [1]. The organism is acquired through the
inhalation of asexual spores called conidia, which are widespread in the environment and small
enough to reach the distal airways. The conidia are of minimal concern to healthy individuals
because they are cleared by pulmonary defenses. However, when the immune system is
compromised, the conidia may germinate into hyphae and establish a focus of infection within
the lung. Although it is likely that conidial germination begins within the surfactant layer, both
conidia and hyphae can be endocytosed by, and grow within, lung epithelial cells [2]. Since
the ability of A. fumigatus to assimilate nutrients from a complex substrate requires the
secretion of extracellular hydrolases [3], the progressive growth of hyphae within the lung
eventually damages the epithelial barrier, providing access to the interalveolar septum where
the fungus can enter the vasculature by penetrating endothelial cells (Fig. 1). Hyphal fragments
are then free to migrate to distal sites, and the prognosis for disseminated infection is very poor
[4,5]. Throughout the infection, A. fumigatus must continually adjust its physiology to survive
in the host environment, and the genes that have been implicated in this adaptability are the
subject of this review. The emphasis is on fungal gene products since the contribution of the
host has been highlighted in several recent articles [6–8].

Sustaining growth at body temperature
A. fumigatus resides in compost, a dynamic environment that undergoes wide fluctuations in
temperature as a consequence of intense microbial activity. The ability of A. fumigatus to thrive
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in this niche requires a substantial level of thermotolerance that has been speculated to
contribute to virulence [9–11]. Although A. fumigatus displays a distinct pattern of gene
expression at 37°C [12], only three genes have been demonstrated to be necessary for
thermotolerant growth: the ribosome biogenesis protein CgrA [13], the O-mannosyltransferase
Pmt1 [14] and a protein of unknown function, ThtA [15]. Disruption of any of these genes
influences thermotolerance to some degree. However, only the ΔcgrA mutant has impaired
growth and virulence at 37°C. The ribosome defect in the ΔcgrA mutant is present at 22°C,
even though the mutant grows normally at this temperature [16]. This suggests that the defect
in ribosome biogenesis caused by loss of CgrA is compatible with the limited physiological
demands at low temperature but not with the heightened metabolic requirements at 37°C. The
challenge for the future will be to determine whether the thermotolerance of A. fumigatus can
be reduced further by disrupting other genes involved in ribosome biogenesis, with the goal of
rendering the organism incapable of growth at 37°C.

Maintaining a rigid yet permeable barrier to the environment
In addition to providing structural integrity, the cell wall represents the major interface between
the internal physiology of the fungus and the hostile environment of either compost or human
tissue. The wall of A. fumigatus is comprised of branched and linear β-(1,3) and β-(1,4) glucan,
α-(1,3) glucan, chitin, chitosan and galactomannan [17]. There are three predicted α-(1,3)
glucan synthase genes in the A. fumigatus genome, but only a disruption of ags1 resulted in a
decrease in cell wall α-(1,3) glucan [18]. The Δags1 mutant retained virulence, despite suffering
a 50% reduction in α-(1,3) glucan content, indicating that the fungus can tolerate a considerable
loss of this polysaccharide and still maintain cell wall homeostasis. Surprisingly, deletion of
ags3 increased virulence without affecting α-(1,3) glucan content [18]. The normal level of α-
(1,3) glucan in this mutant is likely to be a consequence of redundancy between ags1 and
ags3 since ags1 levels were dramatically upregulated in the Δags3 strain. The hypervirulence
of Δags3 was speculated to involve the observed increase in melanin, resistance to oxidative
stress and more rapid germination of the mutant conidia, although the mechanism by which
loss of Ags3 induces this phenotype remains to be elucidated.

Chitin is a polymer of N-acetyl-glucosamine that confers high tensile strength upon the wall
[19]. Of the three chitin synthase genes that have been examined in A. fumigatus, only the
double ΔchsC/ΔchsG mutant showed a reduction in virulence, a phenotype that was attributed
to chsG because the ΔchsG mutant had the same morphological abnormalities as the ΔchsC/
ΔchsG mutant [20]. At least seven chitin synthase genes can be found in the A. fumigatus,
suggesting that considerable redundancy among these proteins has evolved to ensure that cell
wall homeostasis is maintained when the organism is confronted with adverse conditions that
interfere with wall integrity.

Glycophosphatidyl-inositol (GPI)-linked proteins anchored to the plasma membrane also play
important roles in fungal cell wall organization. The family of GPI-anchored β-1,3-
glucanosyltransferases are thought to participate in the elongation of β(1-3) side chains in the
A. fumigatus cell wall, and at least one of these genes, gel2, is required to support the virulence
of A. fumigatus [21]. By contrast, deletion of the GPI-linked Ecm33 protein increased
virulence, possibly resulting from the increased germination rate of this mutant [22]. A more
global block of GPI-anchored protein function was accomplished by disrupting Afpig-a,
encoding the catalytic subunit of an enzyme involved in GPI anchor biosynthesis [23]. The
absence of this protein was associated with reduced cell wall integrity and attenuated virulence,
demonstrating the importance of this general protein class in both cell wall function and
pathogenesis.
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The wall of A. fumigatus conidia is distinguished by the presence of melanin, a pigment that
is thought to defend the genome from the adverse effects of ionizing radiation in the
environment. Pigment biosynthesis is catalyzed by a polyketide synthase, and mutants lacking
this enzyme have white conidia and attenuated virulence when inoculated intravenously into
mice [24,25]. Pigmentless conidia are more susceptible to phagocytic killing than wild type
conidia, which may explain their lack of virulence in this model.

Despite the considerable redundancy among cell wall synthesis genes in A. fumigatus, the wall
remains an attractive target for therapy because of its fungal specificity and the fact that an
intact cell wall is essential to the organism. The challenge will be to identify new strategies
that can disrupt cell wall synthesis in a more global fashion so that overlapping pathways are
unable to protect the organism.

Secretion of damaging products
A. fumigatus secretes numerous secondary metabolites into its environment [26], which is
thought to provide a chemical shield against competing or predatory species [27,28]. The
secondary metabolite gliotoxin has attracted the most interest in A. fumigatus because of its
potent immunosuppressive and cytocidal properties and the fact that it can be readily detected
during experimental infection and in sera from patients with aspergillosis [29–32]. Two studies
have shown that blocking gliotoxin production by disrupting the gliP gene had no effect on
virulence in neutropenic mice, arguing against a major role for this toxin in the pathogenesis
of aspergillosis [33,34]. However, recent studies have shown that the contribution of gliotoxin
to virulence is host strain-dependent and requires an immunosuppression protocol that does
not cause neutropenia [35,36]. These results imply that gliotoxin augments virulence only when
some neutrophil function is present, raising the possibility that neutrophils are the major target
of this toxin. A more global repression of secondary metabolite production was accomplished
by disrupting laeA, encoding a predicted protein methyltransferase that regulates the expression
of secondary metabolite clusters [37]. Although the ΔlaeA mutant lacked gliotoxin, and was
hypovirulent in mice, the mechanism for the attenuated virulence can not be identified with
certainty because LaeA influences the expression of ~10% of the A. fumigatus genome [38].

Signaling and responding to stress
The ability of A. fumigatus to reprogram its physiology in response to the environment requires
an effective communication strategy that is mediated by signal transduction pathways [39].
The cAMP-dependent protein kinase (PKA) is key to this signaling, particularly with respect
to the sensing of carbon source and environmental stress. The central messenger of the pathway
is cAMP, produced by the action of adenylate cyclase, an enzyme that is under the regulation
of the G protein α-subunit GpaB. Accumulating levels of cAMP bind to the regulatory subunit
of PKA, PkaR, thereby liberating the catalytic subunits PkaC1 and PkaC2, which then
phosphorylate downstream targets and trigger the appropriate adaptive responses.
Dysregulation of the PKA pathway, either by disrupting its activity (ΔgpaB, or ΔpkaC1)
[40], or allowing unrestrained PKA activity (ΔpkaR)[41], attenuates virulence in mice. This
suggests that an imbalance in A. fumigatus PKA signaling, in either direction, is deleterious to
the pathogenesis of aspergillosis, presumably by disrupting the ability of the fungus to sense
and adequately respond to host-specific stressors.

Calcineurin is a Ca2+-calmodulin-activated protein phosphatase that is an important mediator
of calcium signaling and stress responses in eukaryotic organisms [42]. Deletion of cnaA,
encoding the catalytic A subunit of calcineurin, profoundly impaired the growth of A.
fumigatus hyphae and rendered the organism almost avirulent in multiple infection models
[43,44]. By contrast, a mutant lacking the calcineurin-dependent transcription factor CrzA
grew normally in vitro, but was still attenuated for virulence [45]. These findings argue that
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the impaired virulence of the ΔcnaA mutant is not simply due to reduced hyphal growth. Since
calcineurin inhibitors are aready in use for the treatment of other diseases, it may be possible
to manipulate this pathway to improve outcome in patients with invasive aspergillosis.

Virulence studies have been reported on one of the four mitogen-activated (MAP) kinases in
the A. fumigatus genome, mpkA [46]. Despite a heightened sensitivity to cell wall stress, and
a considerable growth defect on standard laboratory medium, the ΔmpkA mutant was as virulent
as wild type A. fumigatus. Interestingly, deletion of an upstream regulator of the high osmolarity
glycerol (HOG)-MAPK pathway, sho1, also impaired in vitro grow rate without affecting
virulence [47]. The lack of correlation between in vitro growth rate and virulence in the
ΔmpkA and Δsho1 mutants suggest that using growth rate to predict virulence potential is
perhaps an oversimplification of a complex phenotype.

Oxidative damage generated by host immune responses is one of the major sources of stress
encountered by pathogens. Although infections with A. fumigatus occur primarily in
immunocompromised patients, the severity of the immunosuppression varies widely, so it is
likely that residual host defenses can influence the progression of the disease. Several A.
fumigatus genes have been reported to modify the sensitivity of the organism to oxidative
stress, including catalases (catA, cat1, cat2)[48,49], the PKA regulatory subunit PkaR [41],
the MAPK pathway (mpkA, sho1)[46,47], and two transcription factors that mediate oxidative
stress responses (yap1 and skn7)[50]. However, only the ΔpkaR and Δcat1/Δcat2 mutants
showed a reduction in virulence. These results argue against a major role for these anti-oxidant
responses in an immunocompromised host, although it is conceivable that they could influence
virulence under conditions of less severe host immunosuppression, analogous to the findings
reported for the gliotoxin mutant [35,36].

Meeting nutritional requirements
In order to compete effectively in the environment, A. fumigatus must be able to adjust its
metabolism to ensure that its needs are met during periods of fluctuating nutrient availability.
Accumulating evidence indicates that this metabolic versatility is of particular importance in
the host environment. One of the most striking examples of this is illustrated by iron. A.
fumigatus uses siderophores for both iron acquisition and intracellular iron storage [51], and
disrupting the siderophore biosynthetic pathway at multiple steps has revealed that A.
fumigatus relies heavily on these low-molecular weight chelators for growth in the iron-limited
environment of the host [51–53]. Zinc also has limited bioavailability in vivo, and the zinc-
responsive transcriptional activator ZafA is required to support virulence, presumably by
enhancing zinc uptake mechanisms [54].

Several studies have shown that mutants of A. fumigatus that are auxotrophic for p-
aminobenzoic acid [55–57], uridine/uracil [58] or lysine [59] are avirulent, suggesting that
these nutrients can not be acquired in sufficient quantities from host tissues, at least during the
initial part of the infection. A nitrogen source is also required for fungal growth, and the
transcription factor AreA and the Ras-related protein RhbA have been implicated as signaling
molecules that respond to nitrogen availability [60–62]. The ΔareA and ΔrhbA mutants are
both hypovirulent in mice, suggesting that the nitrogen that is available in the host environment
may require one or both of these proteins for optimal utilization by the fungus. The CpcA
transcriptional activator of the cross-pathway control (CPC) system of amino acid biosynthesis
is also required for the virulence of A. fumigatus [63]. This suggests that available amino acid
pools in the host may be imbalanced or, alternatively, that CpcA influences the expression of
one or more virulence factors. Surprisingly, deleting the upstream signaling sensor kinase of
the CPC system, CpcC, was dispensable for pathogenicity [64]. Since CpcC is responsible for
upregulating the CPC pathway in response to stress, it appears that basal expression of the CPC
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system, rather than induced expression, supports virulence. It will be of interest to identify the
target genes that are downstream of both CpcA and CpcC signaling.

A. fumigatus must continually extract nutrients from host tissues throughout the infection,
which requires the secretion of degradative enzymes such as proteases. Deletion of several
genes encoding secreted proteases has yet to demonstrate a role for such enzymes in virulence
[65]. However, it is premature to discount the importance of protease secretion since only a
limited number of them have been explored to date, and at least 99 secreted proteases are
predicted in the A. fumigatus genome [12,66]. Nevertheless, the progressive destruction of host
tissues by A. fumigatus is likely to release amino acids that can be used by the fungus to support
growth. An adverse consequence of amino acid metabolism is the toxic accumulation of
propionyl-CoA, a problem that is countered by methylcitrate synthase, McsA, involved in the
methylcitrate cycle [67,68]. The striking reduction in virulence of a ΔmcsA mutant suggests
that A. fumigatus relies upon protein degradation as a food source in vivo, making the fungus
vulnerable to propionyl-coA accumulation [67,68]. Since fungi and mammals handle
propionyl-coA metabolism differently, an important implication of this finding is that it may
be possible to design strategies to selectively interrupt the fungal pathway. Taken together,
each of these metabolic studies has revealed that, although the nutritional environment of the
host is not ideal for A. fumigatus, the fungus is well equipped to optimize its metabolism for
the utilization of host tissues as a food supply. Further understanding of metabolic traits that
are required for virulence may offer exciting new prospects for antifungal development.

Conclusions
It is becoming increasingly clear that the virulence of A. fumigatus is multifactorial, involving
networks of genes that have likely evolved to support the organism in its primary ecological
niche. The functions of these genes are diverse, influencing the integrity of the cell wall, the
signaling pathways that detect and respond to environmental changes, and the adaptive
responses that enhance overall fitness, most notably in the area of nutritional versatility.
Although we have gained important insights into aspects of fungal physiology that support the
growth of A. fumigatus in the host, the virulence determinants identified so far are not unique
to this species and we have yet to determine what makes this fungus a more potent opportunistic
pathogen than other commonly encountered environmental molds. The challenge for future
research will be to obtain a comprehensive understanding of the requirements of this fungus
in the host environment so that more effective strategies can be developed to interrupt these
pathways.
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Fig. 1.
Schematic illustration of the pathogenesis of invasive aspergillosis (not drawn to scale). A.
fumigatus conidia are small enough (2-3 µm in diameter) to reach the distal airways when
inhaled (left). A cross section of the alveolar space is enlarged in the center panel, showing the
close proximity of adjacent blood vessels in the interalveolar septum. In a susceptible host, the
conidia are able to germinate and damage the blood-air interface. This barrier is comprised of
a surfactant layer (blue), a type I pulmonary epithelial cell (pink), and an underlying
microvascular endothelial cell (red). Loose interstitial tissue can sometimes be found between
the epithelial and endothelial cells, but when the two cells are closely apposed the basal laminae
fuse (green), making the barrier only 0.1 – 1.5 µm in thickness. The growing hyphae eventually
penetrate this barrier and hyphal fragments are released into the blood, providing access to
other organs by extravascular invasion (right panel).
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