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Abstract
Background: The question of how to integrate heterogeneous sources of biological information
into a coherent framework that allows the gene regulatory code in eukaryotes to be systematically
investigated is one of the major challenges faced by systems biology. Probability landscapes, which
include as reference set the probabilistic representation of the genomic sequence, have been
proposed as a possible approach to the systematic discovery and analysis of correlations amongst
initially heterogeneous and un-relatable descriptions and genome-wide measurements. Much of the
available experimental sequence and genome activity information is de facto, but not necessarily
obviously, context dependent. Furthermore, the context dependency of the relevant information
is itself dependent on the biological question addressed. It is hence necessary to develop a
systematic way of discovering the context-dependency of functional genomics information in a
flexible, question-dependent manner.

Results: We demonstrate here how feature context-dependency can be systematically
investigated using probability landscapes. Furthermore, we show how different feature probability
profiles can be conditionally collapsed to reduce the computational and formal, mathematical
complexity of probability landscapes. Interestingly, the possibility of complexity reduction can be
linked directly to the analysis of context-dependency.

Conclusion: These two advances in our understanding of the properties of probability landscapes
not only simplify subsequent cross-correlation analysis in hypothesis-driven model building and
testing, but also provide additional insights into the biological gene regulatory problems studied.
Furthermore, insights into the nature of individual features and a classification of features according
to their minimal context-dependency are achieved. The formal structure proposed contributes to
a concrete and tangible basis for attempting to formulate novel mathematical structures for
describing gene regulation in eukaryotes on a genome-wide scale.

Background
The deciphering of the gene regulatory code of eukaryotic
cells and the inference of gene regulatory programs belong
to the computationally "hard" problems that are very

probably insoluble without using very large collections of
experimental genome activity recordings under many dif-
ferent biological conditions in conjunction with empirical
gene structure and function annotations [1-4]. Genomic
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sequence, gene structure and function annotation, as well
as functional genomics experimental data, are of hetero-
geneous nature. In order to conceive computationally effi-
cient algorithms capable of statistical integration of these
different types of information, transformations of the dif-
ferent types of data into a continuous and homogeneous
data structure have to be developed. We have recently pro-
posed such a concept, which we refer to as probability
landscapes [5]. Briefly, we have shown on theoretical
grounds how any type of observable quantity (which we
shall refer to hereafter as "feature") can, without loss of
information, be transformed into a local probability with
nucleotide resolution along the genome (creating what
we define as a probability profile). For any feature, as for
instance the predicted alpha-helicity of an inferred amino-
acid sequence or the transcriptome of a cell recorded
under a particular biological condition, such a local prob-
ability can be calculated for all nucleotides of the genome
under study, resulting in a profile. If this procedure is
repeated for many different features, a stack of probability
profiles ("landscape") is obtained. While it might, on first
sight, seem awkward to calculate a probability for every
nucleotide in a genome to be part of an alpha-helix pro-
vided this nucleotide were part of an expressed codon, the
advantage of translating any type of relevant experimental
information into a homogeneous structure that can be
used directly for statistical correlation analysis by far out-
weighs the apparent absurdity of having executed a sec-
ondary protein structure prediction algorithm on
sequences that a priori are never even transcribed into
RNA, leave alone translated into protein. Furthermore,
our information on transcribed sequences for instance is
still incomplete – just consider the recent discoveries
related to microRNAs – and hence a complete, unbiased
probability annotation is more coherent [5]. Interestingly,
a probabilistic framework also alleviates the problem of
the formally undefined cause and effect relationship in
the case of intrinsic stochasticity in the noisy experimental
data by introducing the notion of fuzziness into the map-
ping; a process referred to as conditioning.

The nature of biological experimentation imposes two
general constraints that need to be taken into account
especially in the field of functional genomics. First, obvi-
ously, experimental information is never complete in that
it is either a snap-shot of a dynamic reality, obtained as a
mean measurement over large numbers of objects, biased
by experimental or conceptual priors, or, most often, a
combination of all the above, leading to context-depend-
ency of the results. Second, the measurement itself intro-
duces a non-negligible, albeit to some extent controllable,
bias leading to further context-dependency of functional
genomics data. Moreover, biological systems themselves
display a strong context-dependency which is notably the
object of study in functional genomics/systems biology: It

is the combination of molecules in a cell that creates a bio-
logical function; hence the activity of a single molecule is
context dependent. Thus, context-dependency of features
is relevant for the comprehension of stimuli-responses
and signals. Finally, context-dependency is itself question
dependent. Consider the following example: Whether or
not a given cell is differentiated to some defined state
requires investigation of the presence of state-specific gene
products and functionalities and the concomitant absence
of molecules and functions specific to other cell-states. It
does not, however, require any knowledge about the time
dependency of the changes in gene expression and cellular
physiology. A time series of experiments conducted on a
differentiating cell, in this case, can therefore be simply
projected, eliminating the time-dimension in addressing
the question. The projection thereby has an important
advantage over a simple end-point comparison, as (i)
intermediate events are not omitted from the analysis,
and (ii) statistical power is improved. However, when one
tries to infer gene regulatory circuits, the time dimension
of the experimental data is of outmost importance,
whereas for instance the estimates of absolute molecular
species quantities are far less important. Furthermore, the
available genomic information can often be analyzed in a
hierarchical manner. For certain biological questions it
will not be important to have a detailed knowledge of fea-
ture probability profiles themselves but rather a more
integrated, coarse-grained, combination of individual fea-
tures. Ideally, by combining different features the set-the-
oretic conditioning can be turned into an unambiguous
and well-defined cause and effect mapping. As studying
different biological questions requires concomitant inves-
tigation of correlation and non-correlation, context-
dependency and independency are similarly important.
In conclusion, the very same set of information displays
different context-dependencies as a function of the bio-
logical problem studied. We shall refer to this phenome-
non from here on as "circumstantial context".

We develop here a mathematical approach to the quanti-
fication and statistical significance testing of context
dependency in functional genomics data using our previ-
ously developed probability landscape framework. As
context-dependency is not an absolute but a relative
quantity, a flexible approach depending on the biological
problem studied has to be realized. We furthermore dem-
onstrate how according to the circumstantial context even
very large numbers of individual landscapes stemming
from experimental recordings can be merged into a single,
collapsed profile with greatly improved statistical proper-
ties. This procedure can therefore be used in a systematic
and controlled manner to reduce the computational and
formal complexity of probability landscapes. Increased
algorithmic efficiency and statistical power result jointly
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with heightened understanding of the biological mecha-
nisms.

Results
Circumstantial probability profiles
Circumstantial context-dependency of functional genom-
ics information does at the same time create important
constraints, which need to be taken into consideration
during statistical analysis, and simultaneously provides
additional knowledge on the biological question studied.
We have recently proposed probability landscapes as a
means to integrate any relevant type of functional genom-
ics information coherently and systematically into a struc-
turally homogeneous object that can more easily be
analyzed computationally. Here we asked whether or not
the proposed structure of probability landscapes also per-
mits systematic detection, analysis, and utilization of con-
text-dependencies.

Let X be an observable quantity under investigation, tak-
ing either discrete, possibly symbolic, or continuous val-
ues. We have shown how experimental information on X
can be expressed in a homogeneous and universal way as
a genome-wide probability profile [5].

Given the biological nature of the information (see Back-
ground), probability profiles thus de facto involve condi-
tional probabilities: P(Xn = x|B) in case of a discrete-

valued feature X or ρ(Xn = x|B)dx in case of a continuous-

valued feature X. We shall use  to denote the prob-

ability at genome location n and P(X|B) the corresponding
probability profile over the genome (Figure 1). The condi-
tions B correspond to the way of defining a subset of data,
being more or less stringent on the similarity of the con-
ditions (cell population, biological conditions) in which

Pn
X B( | )

Investigating context-dependencyFigure 1
Investigating context-dependency. Point-wise comparison at a given genome location (the box underlines the location 
n+2) of probability profiles of a feature X obtained in condition B and under various additional prescriptions Ci (i = 1, 2, 3) with 

the joint profile constructed from the pooled data. We have denoted in short  and  the 'prob-

abilities of probability', i.e. the functional distributions describing the estimated variability of the distributions . The com-

parison aims at determining whether the conditions Ci provide additional information on X and decrease its indeterminacy or 
whether they can be ignored and the analysis performed on the pooled data. Essential conditions define the 'context' of the 
feature X.
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the data have been obtained. The conditions B could a pri-
ori include the subpopulation, various biological condi-
tions, the timing along the cell cycle or the time lapse
from the stimulus application. We actually adopt a hierar-

chical view: conditions B and sub-conditions B∧C con-
straining the conditioning B (Figure 2). Conditioning the

landscape  with B∧C means that it has been con-

structed with a restricted set of data, i.e. a sub-group taken

from the pool of data used to construct  and satisfy-

ing the additional conditions C. It will appear essential for
statistical inference to consider nested conditions B and

B∧C. It is important to notice that the methodology we
propose here is not intended to check whether conditions
C1 and C2 are independent or not, but whether condition-

ing the feature X further by supplementing conditions B
with additional constraints C, which effectively amounts
to specifying a subgroup among the data recorded in con-

ditions B, adds information on X and decreases its inde-
terminacy (Figure 2).

In all that follows, we shall consider a discrete-valued fea-
ture X for the sake of simplicity, without restricting the
generality. Considering a continuous-valued feature

requires only replacing ∑x ∈ χ by . Note that condi-

tions considered here are those that can be controlled or
selected at the experimental scale, i.e. at the cell popula-
tion level. They are not precise enough to constrain each
cell and its internal processes individually so as to deter-
mine X fully. In other words, whatever the prescribed con-
ditions, the feature X remains a random variable and the
mechanisms ruling its observed value still exhibit some
stochasticity despite the conditioning; hence the probabil-
ity distribution P(X|B) remains non trivial. A description of
how the construction of P(X|B) can be achieved from fea-
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Defining local distance measures between probability profilesFigure 2
Defining local distance measures between probability profiles. For the validity of the methodology and an unambigu-
ous interpretation of its results, it is essential to proceed hierarchically, and to compare distributions obtained from restricted 
groups of data, respectively in conditions B∧C1 and B∧C2, to the distribution obtained in the common biological condition B 

(pooled data). Each comparison is based on the computation of the Kullback-Leibler divergence  between the 

distributions  and . The significance of the comparison result depends on the variability of the distribution 

described by the functional distribution .
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ture probability profiles is found in the methods section
and illustrated in Figure 1. The computation of P(X|B) is
achieved by combining the individual feature probabili-
ties at any genome location n for different sub-conditions
Ci belonging to a biological condition B. This procedure

can either be executed over defined intervals or the entire
genomic sequence.

Eliminating spurious conditioning, detecting essential ones
Considering the set of all the conditions that can be con-
trolled or at least identified during the experiment, each
feature will depend on some of these conditions whereas
it will be independent of others (cf. Background). We thus
want to determine for each biological question and each
feature the subset of factors actually conditioning its prob-
ability landscape, and hence its effective context C(X). If
Ci does not add any information on X, it does not belong
to the context C(X). Conversely, the proposed analysis
allows features to be grouped in different subsets accord-
ing to their circumstantial context.

Finding the effective, thus minimal, context C(X) among
the full conditionings of X ('minimax' entity) is a well-
posed issue only in a hierarchical formulation: we have to
investigate whether an additional condition C decreases
the indeterminacy of X knowing B, and conversely
whether data obtained under different conditions (B∧Cj)j
can be grouped into a single condition B∧C where C is the
reunion of conditions (Cj)j or even into the single condi-
tion B if (Cj)j form a complete family, so that C adds in fact
no additional prescription on B. This dual process can be
iterated in both directions.

The issue is thus to compare P(X|B) and P(X|B∧C) to see
whether the additional prescription C on the experimen-
tal conditions adds constraints and information on X
(knowing B) or not (Figure 2). The issue has a very con-
crete and in practice essential outcome: providing a crite-
rion to appreciate whether it is relevant to pool the data,
or conversely whether some additional condition requires
the set of data to be partitioned into sub-groups for a rel-
evant analysis. Note that only explicitly controlled or
described conditions, of which the experimentalist is
aware, can be mentioned in the probabilities. A wealth of
implicit conditions is also present, and one of the aims of
this work is to develop a coherent way to bring forward
the relevant ones. In confronting two probability land-
scapes P(X|B,1) and P(X|B,2) constructed from data recorded
independently, one might guess that an additional condi-
tion C is present, that explains the discrepancy between

the two landscapes, if any: .

Divergence of probability profiles

At each genome location n, the probabilities  and

 are defined on the same space (the state space χ
of the feature X). Various ways of measuring the discrep-
ancy between these probability distributions can be con-

sidered: distance sup on χ, distances associated with the Lp

norm, or distance in the parameter space if the distribu-
tions can be parameterized. We rather choose minus the
relative entropy, known as the Kullback-Leibler divergence
(it is indeed not strictly a distance because of its asymme-
try) [6]. A detailed description of the calculation is found
in the Methods section, where we define the divergence

measure  between  and 

(Methods, Figure 2).

Note that it is meaningless to compare  and

 where C1 and C2 are disjoint conditions. Indeed,

it would be impossible to disentangle the relative contri-
butions of C1 and C2 and the actual origin of a difference

(or a similarity) between  and . Our analy-

sis relies on the hierarchical structure of conditions and
sub-conditions, of which the (ir)relevance is investigated.

In the case that the feature probability profiles 

for the sub-conditions Ci have been recorded with no

memory of the original data, the reference landscape

 cannot be obtained by directly pooling the data,

but should be first computed by pooling the profiles

 using a weighted average, with weights propor-

tional to the rarity of conditions Ci. Then each probability

profile  can be compared to  in order to

assess whether the sub-condition Ci adds significant infor-

mation or not (Figures 2, 3). Please note that the figures
are just a schematic illustration and do not correspond to
concrete values. We give an example of Kullback-Leibler
divergence on real transcriptome data at the end of the
Results section. The black (Figure 2) and blue (Figure 3)
arrows indicate the divergence at a given position n
between the two feature probability profiles and the col-
lapsed profile. This divergence can either be exploited
locally at any position n (as illustrated in Figure 2, and by
the narrow red box to the right of Figure 3), or over an
entire interval of genomic sequence (large red box, inter-

val n..n+Δn, Figure 3).P PX B i X B Ci( | , ) ( | , )=
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Statistical significance testing

The Kullback-Leibler divergence thus provides a tool for
calculating the difference of the individual conditional

feature probability profiles  with the coarser-

conditioned probability profile . The divergence is

neither upper-bound, nor has any absolute bearing. The
question of how to judge a Kullback-Leibler divergence of
sufficient magnitude in order to decide or not to collapse
different feature probability profiles is hence not trivial
(Figure 3). Either a set of arbitrary thresholds has to be
defined, possibly by working with large numbers of actual
datasets from well defined biological conditions, or a sta-
tistical test has to be developed. Obviously, the latter
should be given strong preference. In order to do so, one

has to compute probabilities of neighborhoods of the dis-

tributions  and  using the previously

defined 'probabilities of probabilities' (functional distri-

butions, Lesne & Benecke 2008) . A possible way

would be to compute

where V(Pn, ε) is the ball of radius centered on the distri-
bution Pn (distribution over the space χ); it is thus a neigh-
borhood in a functional space, where the radius bounds
the Kullback-Leibler divergence between an element and
the center of the ball. We have recently investigated for a
more general case how conjoint statistical significance
testing for similarity and distinctness can be achieved on
such a measure. Please refer for a more detailed descrip-
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tion of the methodology to [7]. Briefly, any experimen-
tally obtained signal (such as the fluorescence/
chemiluminescence signal of a spot on a microarray) is
interpreted as a random independent sample of some ran-
dom variable, assumed normally distributed and with
unknown average. The mean and variance estimates can
be used to construct an unbiased maximum likelihood
estimator, which is itself a random variable of Gaussian
form. In order to formulate quantitative statements con-
cerning the relative differences between different biologi-
cal conditions, we introduce a cone Cα over the first
diagonal of a signal estimate under two different biologi-
cal conditions with half-angle α. The rationale for consid-
ering such cones rather than homogeneous error margins
is to control the relative error. Using the so-called ratio
distribution for independent normal distributions, we can
then determine a likelihood of the mean estimates being
within a distance smaller than Cα or not of the actual
mean of the random variable. This distance measure is
symmetric in the sense that we can estimate both similar-
ity and distinctness. Moreover, the measure is also amend-
able to testing for statistical significance using serialized
two-sided T-tests. By defining a single confidence interval
on the above measure the decision on whether or not to
collapse feature probability profiles then becomes
straight-forward. Interestingly, the significance testing of
distinctness and similarity, as we develop it in [7], takes
into account the relative variance over the measure in case
of massive-parallel data such as functional genomics
experimental observations in form of the half-angle α of
the cone Cα. In this case the quality, or better statistically
perceived quality, of the measure on the observable under
different biological conditions is directly taken into con-
sideration when estimating the statistical significance of
the Kullback-Leibler divergence.

Extending the divergence analysis over the genome

So far we have only discussed the context-dependency
analysis locally; that is at any genome position n. As fea-
ture probability profiles extend over the entire genomic
sequence of the organism under study, a generalization is
required, which as shown below is straight-forward in our
approach. Consider the case where a subset of feature
probability profiles is known on biological grounds to
reflect relevant measures on the biological and physical
properties of a stretch I of the genome (e.g. the linear
extension of a gene, possibly with gaps, such as transcrip-

tome data, Figure 3). We compute for each n ∈ I a distance

 between the distributions conditioned

respectively by B and B∧C. Then for instance the average

distance  or cumulative distance

 can be easily defined (Figure 3). Other

possibilities exist such as the sup. Averaging over the

genome locations n over a window Δn of relevance for X
(X-dependent window size), yields an average distance

. Depending on the nature of the fea-

tures, and exploiting the fact that unlike the feature prob-
ability profiles distance profiles can be directly integrated,
a more meaningful index is to integrate the distance

 over the relevant window, yielding the

integrated distance . Averaging or inte-

grating over relevant windows I can be achieved locally or
globally over the entire chromosome or genome (Figure
4). Importantly, and again depending on the biological
question posed, the divergence calculation can also be
performed serially or cumulatively over different Ij inter-

vals. Finally, the measures over the different intervals Ij

can be weighted as well if reasonable (Figure 4). Different
measures for the integrated Kullback-Leibler divergence
can also be defined such as the maximum, minimum,
mean, median, quantile, or combinations thereof,
whether weighted or not. The box-plot in Figure 4 serves
simply to illustrate this fact. Additional measures can cer-
tainly be found. Their significance will have to be defined
according to the biological problem under study, the
nature of the experimental data, and the underlying rea-
soning for the Kullback-Leibler divergence approach in
the concrete example under scrutiny. In the example we
develop on real transcriptome data (see below), we use
the median.

Circumstantial and hierarchical complexity reduction
As discussed throughout this work, context-dependency
of features is itself dependent on the biological question
addressed. Given a biological question or context, any set
of context-dependent conditions can be tested against a
cumulative biological condition calculated as an average
measure over the set of sub-conditions for its relative con-
tribution to the overall information. This can be achieved
in parallel for as many different (sub-)conditions as avail-
able. The relevance of any feature probability profile with
respect to the biological question addressed is hereby and
importantly solely defined through a statistical signifi-
cance measure in the information theoretical divergence
from the pooled information when considering larger and
larger joint sets of conditions. This procedure can be hier-
archically repeated (using a single confidence interval) to
conditionally collapse individual profiles further and fur-
ther (Figure 5). The schematic representation of different
conditioned feature probability profiles, their inter-rela-
tionship, and the natural hierarchy of the different proba-
bility profiles with respect to a biological condition B are
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illustrated. Wherever the statistical significance of the dis-
tance measure exceeds a defined threshold the distance is
considered insufficient to warrant the sub-condition
being analyzed separately, and thus the corresponding
profiles are collapsed. This procedure can be performed
recursively. Consider for example the question of what the
transcribed sequences in a given genome are (notably
without any restriction of a particular biological condi-
tion). If one uses the many thousands of available micro-
array transcriptome studies, or in the near future, high
throughput sequencing transcriptome data, which were
all recorded under precise experimental and thus biologi-
cal conditions, no significant context-dependency arises
through the choice of the appropriate biological condi-
tioning. Thus, all existing transcriptome data would suc-
cessively be collapsed to give a single feature probability
profile that could directly be seen as a probability of any
nucleotide in the genome being transcribed (obviously
only provided sufficiently divergent transcriptome data

are available). Such an optimally conditioned profile
could subsequently be used to search for correlations
between the genomic sequence and the occurrences of all
expressed sequences in order to search for sequence ele-
ments statistically significantly associated with tran-
scribed sequences. While this example, as extreme as it is,
might not seem appropriate, just consider that any level of
acceptable divergence can be defined with respect to the
biological question addressed, and that feature probabil-
ity profiles can be regrouped into any number of not nec-
essarily exclusive subsets the experimentator sees fit
(Figure 6). Therefore, a continuum of nested profiles rank-
ing from individual feature profiles to a totally collapsed
landscape exists. This continuum needs to be explored for
every biological question separately, which is why the
complexity of the landscape can not be reduced perma-
nently. Essentially, for every new investigation of the
structure, the feature probability landscape is at first
totally uncompressed, and using the method described

Integration of distance profilesFigure 4

Integration of distance profiles. The local distance measure  is computed over the entire profile length 

(genome). Unlike the individual feature probability profiles, the distance profile can be integrated to give rise to a meaningful 

genome wide distance measure. The proper integrated distance  might involve several genome intervals I = [n1, n1 + Δn1] 

∪ [n2, n2 + Δn2] and/or an "infinite" interval [n3, + ∞[. Obviously, other genome wide measures can be defined for the diver-
gence such as the mean, median, sup, min, etc. Again, the divergence measure need not to be computed over all nucleotides 
but might be restricted to any combination of non-overlapping intervals I or individual positions n. In this way the global diver-
gence measure computation can be restricted to particular sequence features such as coding regions.

5'-AGCTGGACACTGTGCACATGCCCAATATTTAGTAACATAACAGTTGTGGGGACCTAGGAC-3'
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here, is then locally – with respect to the sub-conditions Ci
– collapsed as a function of the biological conditions Bj.
Different biological conditions B will lead to different
combinations of Ci profiles being collapsed (Figure 6).
Genome probability landscapes are therefore a dynamic
structure that can be locally collapsed as a function of the
circumstantial context.

Circumstantial context illustrated with a theoretical 
example
In order to illustrate the applicability of the methodology
developed here let us consider the theoretical example of
an analysis of different T-cell populations from a plausible
human patient study for how context-dependency analy-
sis is performed in a biological question motivated man-
ner (Figure 7).

Let Px (x = 1, 2, 3) be a subject from whom a blood sample
has been drawn. The peripheral blood mononuclear cell
(PBMC) population has subsequently been separated by

fluorescence activated cell sorting (FACS) and the two T-
cell subpopulations CD4+CD25+, CD4+CD25- were
enriched using the corresponding cell surface markers.
Assume furthermore that the CD4+CD25+ (red) and
CD4+CD25- (blue) cells, which are both involved for
instance in the inflammatory response, have undergone
brief exposure to an inflammation inducing agent such as
an interleukin during ex vivo primary cell culture, before
the cells were harvested and total RNA was extracted for
transcriptome analysis using several technical replicates
per subject (Figure 7A). Finally, assume that subject P3
carries an unknown genetic variant with limited but func-
tional implication for the expression of some genes. For
simplicity, consider the technical variability of the experi-
ment to be sufficiently small to warrant the calculation of
mean expression profiles for each T-cell subtype from
each subject.

Several biological questions might be addressed using
such a dataset. The first set of questions could relate to the
difference in the transcriptional responses of
CD4+CD25+ and CD4+CD25- T-cells to stimulation
using the interleukin (Figure 7B–D). Depending on the
statistical significance of the Kullback-Leibler divergence
between the different transcriptome probability profiles
of the subjects in either the CD4+CD25+ or the
CD4+CD25- cases (and therefore the heterogeneity
between individuals), the probability profiles might
either need to be considered separately (Figure 7B) or can
be collapsed to a CD4+CD25+ and CD4+CD25- probabil-
ity profile (Figure 7C). Note that any other combination
of the data into subsets is theoretically possible as well. In
the latter case (Figure 7C) one would conclude that the
biological variability between subjects is sufficiently small
with respect to the difference of the two cell-types to be
neglected. Now assume that you restrict your analysis to
genes targeted by the interferon gamma (IFNγ) pathway
which we shall consider equally active in both T-cell pop-
ulations. In this case the Kullback-Leibler divergence cal-
culated exclusively over the IFNγ target gene subset might
indicate that indeed the probability profiles of all six sam-
ples (across subjects and across cell types) might be col-
lapsed to give rise to a single profile (Figure 7D). This total
collapse of the data however and importantly has been
only calculated on, and therefore is only valid for, the
IFNγ regulated subset of genes. These two examples justify
the fact that feature probability profile complexity reduc-
tion is dependent of the biological phenomenon under
study and the specific context. The example can be
extended to the analysis of inter-subject variation (Figure
7E–H) independent of T-cell subpopulation. Again, the
Kullback-Leibler divergence analysis will provide a statis-
tically sound argument to either analyze the probability
profiles individually (Figure 7E), collapse the two proba-
bility profiles available for each subject (Figure 7F), or

Feature probability quality profile construction for experi-mental dataFigure 5
Feature probability quality profile construction for 
experimental data. The set of conditions that are essential 
for feature X are determined hierarchically, either by consid-
ering more detailed prescriptions (additional disjoint condi-
tions (Ci)i) corresponding to a partition of the data in 
constructing the conditional profiles, or in aggregating the 
conditions if the conditions (Ci)i have no impact on the fea-
ture. This procedure can be performed recursively. Once 
sub-conditions have been collapsed to a biological condition, 
the biological condition can be compared using the same 
logic to the next higher level biological condition. Please note 
that for reasons of simplicity we only consider the two 
immediately concerned levels explicitly in the notation. Imag-
ine for instance data pertaining to the transcriptome of dif-
ferent types of blood cells (Ci)i. One might want to consider 
every cell type individually, or the red and white blood cells 
(B1, B2) jointly or the entire compartment (B0).
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i
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Flexible, question-driven profile collapseFigure 6
Flexible, question-driven profile collapse. The context-dependency analysis is question dependent, and hence needs to be 
performed for each question individually. Thereby, individual sub-conditions can be combined in a non-exclusive manner as a 
function of their circumstantial context.
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A theoretical example of circumstantial contextFigure 7
A theoretical example of circumstantial context. (A) Let Px be a subject from whom a blood sample has been drawn. 
CD4+CD25+, CD4+CD25- indicate the T-cell subpopulations for which transcriptome profiles have been recorded. Subject 
P3 carries an unknown genetic variant with limited but functional implication for the expression of some genes. The technical 
variability of the experiments is sufficiently small to warrant calculation of mean expression profiles. Depending on the circum-
stantial context either inter-cell type comparisons can be performed in a context-dependent manner (B-D) or subject hetero-
geneities can be studied (E-H). In either case the divergence between features, and therefore the context-dependency, will 
determine to what degree the probability profiles can be collapsed upon one another. (Please refer to the discussion section 
for a detailed description).
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combine all profiles into one (Figure 7G), or any combi-
nation thereof. Note that although the result of the oper-
ation shown in Figure 7D and 7G might appear to be
identical, this is not the case as the statistical analysis lead-
ing to these similar results is based on distinct quantities:
in the former case the similarity between gene expression
responses between different cell types; in the latter the
similarity between different individuals. Finally, assume
that the genetic variation in subject P3 affects IFNγ signal-
ing (which could be the case in some auto-immune disor-
ders like allergy). It is reasonable to believe that if you
were to restrict your analysis to the IFNγ pathway as above
(Figure 7D) you might find the analysis based on the Kull-
back-Leibler divergence to exceed the statistical signifi-
cance threshold and hence to warrant separate analysis of
the regrouped profiles from subjects P1 and P2 versus sub-
ject P3 (Figure 7H). Again, context-dependency and cir-
cumstantial context will require different analysis
strategies.

Circumstantial context analysis on actual transcriptome 
data
To demonstrate practical applicability of our approach we
present here an analysis of circumstantial context at a con-
crete example of transcriptome data. The dataset we used
was recently generated in our laboratory and has been
published [8]. All microarray experiments discussed here-
after are available from the GEO database using accession
number GSE10795 (see also Methods). In [8] we present
a transcriptome analysis of the apoptotic transcription
program downstream of the delta splice-isoform of the
TFIID associated factor TAF6δ in two human isogenic cell
lines inactivated or not for the p53 gene. Briefly, we dem-
onstrate that TAF6δ acts downstream and independently
of p53 to control gene expression at the onset of apoptosis
[8]. For the following demonstration we selected six
experiments: GSM272658-60 (TAF6δ induction in the
p53-/- background, hereafter referred to as biological con-
dition B-, using three independent biological replicates
referred to as C1-, C2-, and C3-), and GSM272664-6
(TAF6δ induction in the p53+/+ background, hereafter
referred to as biological condition B+, using three inde-
pendent biological replicates referred to as C1+, C2+, and
C3+). The data were processed as described in the Meth-
ods section and in [5] in order to obtain probability pro-
files, and subsequently we calculated the Kullback-Leibler
divergence at probe resolution for different contexts (Fig-
ures 8 &9). Note that certain simplifications were intro-
duced into the calculation of the probability profiles.
Those modifications are described and justified in the
Methods section, and reflect the limited scope of the anal-
ysis presented here (focusing on the circumstantial con-
text only), and the very limited amount of data used,
sufficient for the demonstration but very far from fully
exploiting the wider concept of probability landscapes.

The corresponding data for the analysis discussed below
are to be found as additional files SupDataFile01.txt,
SupDataFile02.txt, and SupDataFile03.txt.

As shown in Figure 8A and 8B, we have first calculated the
Kullback-Leibler divergence for the individual biological
replicates versus a collapsed probability profile for the
entire biological condition. As very few datasets were
used, neither the calculation of statistical significance of
individual divergences between the different biological
replicates and the collapsed probability, nor the statistical
significance of differences between the Kullback-Leibler
divergence distributions was exploited, and we simply use
the median of the divergences as well as its mean over a
set of comparisons as comparative measures (Figure 8B).
Having compared the individual biological replicates to
the corresponding integrated probability profile of the
biological condition, we also investigated the respective
divergence distributions obtained when comparing the
Ci+ of B+ to B- and vice versa the Ci- of B- to B+ (Figure
8C &8D). As can be easily appreciated, in all cases the
divergence increases as would be expected for data from
different biological conditions. The increase in the means
for instance might appear relatively modest, but given the
distribution of the Kullback-Leibler divergences (see for
instance the histogram in Figure 9C), such differences are
probably indeed significant. As mentioned above, a statis-
tical analysis would, however, require a much larger data-
set. We then decided to do two experiments in order to
substantiate the claims made above using the theoretical
example (Figure 7). First, we swapped the probabilities
associated with 899 probes that we had previously found
to detect statistically significant changes in gene expres-
sion when comparing the B+ (p53+/+) and B- (p53-/-)
biological conditions [8]. In order to do so the probabili-
ties calculated for the corresponding probes from Ci+
were assigned to the same probe in Ci- and vice versa (Fig-
ure 8E, indicated by the addition of "s" to the biological
condition identifier). We thus exchanged 2.8% of the
entire probability profile with its counterpart from the
other biological condition. The corresponding divergence
measures are shown in Figure 8F. As can be seen by com-
parison with the values in Figure 8B, we observe a modest
increase of the Kullback-Leibler divergences, which, how-
ever, should – at least given the sample size – not be con-
sidered significant. Therefore, and unlike swapping the
entire profiles (Figure 8C &8D), such a restricted modifi-
cation of the profiles is not necessarily detectable (com-
pare also our discussion of Figure 7G in the preceding
section). If, however, one restricts the analysis of the Kull-
back-Leibler divergence to the 899 probes only (cf. our
discussion of extending the analysis over the genome, Fig-
ures 3 &4), measurable differences between the normal
and swapped situations again occur (Figure 9A &9B).
These differences are the more striking if one compares
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Figure 8 (see legend on next page)
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the histograms over the entire divergence distribution for
the first experiment (Figure 8E) and the second (Figure
9A) with their non-modified counterparts, as shown in
Figure 9C and 9D. Whereas, in the first case where the 899
swapped probabilities have an almost undetectable effect
on the median as well as the entire distribution (Figure
9D), the case where only the 899 probes are considered in
isolation not only shows an increase in the median, but
also a starkly modified overall distribution (Figure 9C).
Note that both histograms are on a log scale and that the
last bin encompasses all values greater than unity. There-
fore, and as we had pointed out in our theoretical discus-
sion of the properties of the Kullback-Leibler divergence
and circumstantial context above, the biological question
will condition the decision whether or not to collapse sev-
eral profiles into one. Concretely, if one were exclusively
interested in studying the p53 responsive genes in above
dataset, as the latter swapping case demonstrates, a com-
plexity reduction would not be advisable, whereas on the
other hand, when studying the entire genomic response to
the stimulus, the divergence over the swapped p53 target
gene responses would not significantly affect the outcome
of the analysis. This illustrates the applicability and feasi-
bility of the methodology we develop here.

Discussion
We have introduced probability landscapes as a homoge-
neous and formally consistent representation of any type
of functional genomics information in order to achieve a
unique structure that can statistically be systematically
interrogated using correlation measures [5]. To reduce
unnecessary formal, mathematical and computational
complexity we propose here to use the existing de facto
context-dependency of features as a question-dependent
measure for collapsing subsets of the landscapes. Con-
sider the case where Ci refer to sub-conditions of the cir-

cumstantial context of the biological condition B in which
the feature X has been recorded (Figure 1). We want to
know whether it is necessary to consider them as distinct
populations or whether it is meaningful to pool them. We

pool the local measures  to  into a

combined measure  (Methods) using a weighted

average accounting for the presumed frequency of these
sub-populations and possibly of the quality (weighting by
the inverse standard deviation) of the measurements (Fig-
ure 2). This is repeated over the entire genome sequence
to give a global profile P(X|B) using the Kullback-Leibler
divergence (Figure 3) and either any – possibly weighted
– combination of subsequences or the entire genome (red
boxes in Figure 3). Thereby, not only can the subse-
quences over which the divergence is determined be freely
chosen, but also the feature divergence profile of a biolog-
ical condition B can be analyzed in a continuous way over
the entire genome or defined intervals (such as gene
sequences) by integrating over the corresponding (sub-
)sequences (Figure 4). This genome-wide distance meas-
ure is meaningful, unlike the individual feature profiles.
Using a statistical significance test, for any individual fea-

ture probability profile  the relative contribution
of Ci to conditioning can be calculated. If the conditioning

by any Ci leads to a statistically significant divergence

(suggesting that the associated sub-population is well
delineated and has a specific signature as regards the fea-
ture X) the profile is kept as separate entity. In contrast, if
statistical significance is not reached, the condition Ci is

considered inappropriate with respect to the biological
question posed as it does not provide a measurable con-
straint on the value of the feature X and can be combined
with any other statistically insignificant Cj ≠ i into a biolog-

ical condition B feature probability profile, thereby col-
lapsing part of the landscape (Methods). Two advantages
arise in this case: (i) the complexity of the structure is
reduced in a controlled and with respect to the biological
question asked irrelevant manner, and (ii) the statistical
power of the feature probability profile P(X|B) is increased

with respect to individual . This procedure can

Pn
X B C( | )∧ 1 Pn

X B C j( | )∧

Pn
X B( | )

P X B Ci( | )∧

P X B Ci( | )∧

A concrete example of circumstantial context analysis using transcriptome dataFigure 8 (see previous page)
A concrete example of circumstantial context analysis using transcriptome data. (A) Schematic representation of 
the two biological conditions (B+ p53+/+, B- p53-/-), and the three biological replicates (C1, C2, C3) from the published study 
[8]. The small squares inside the rectangles for the biological replicates represent the 899 probes that are statistically signifi-
cantly regulated between the two biological conditions and should be considered p53 regulated genes. (B) Median of the Kull-
back-Leibler divergence measures for the indicated comparisons. The mean of the median of the divergence for the three 
comparisons is also indicated. (C) Schematic illustration of the subsequent divergence analysis, where the biological replicates 
of one biological condition are analyzed with respect to the other biological condition. (D) The data for the experiment illus-
trated in (C) are shown in a similar manner to (B). (E) The probability profiles for the 899 p53 statistically significantly regulated 
probes were swapped between the two biological conditions. (Compare the small squares inside the rectangles of the biologi-
cal replicates). (F) Results for the experiment illustrated in (E) as in (B, D). The data should be compared to the data in (B).
Page 14 of 19
(page number not for citation purposes)



Theoretical Biology and Medical Modelling 2008, 5:21 http://www.tbiomed.com/content/5/1/21

Page 15 of 19
(page number not for citation purposes)

Selective versus global circumstantial context analysis at the example of actual dataFigure 9
Selective versus global circumstantial context analysis at the example of actual data. (A) The Kullback-Leibler 
divergence measures were once calculated for the 899 p53 sensitive probes in the B+ case, and once using the B- probability 
profiles compared to the B+ biological condition. (B) Data for (A) as in (Figure 8B, D, F). Both tables can be directly compared. 
(C) Histogram of the Kullback-Leibler divergence distribution over the entire set of 31710 probes analyzed in the two indi-
cated cases. Note that "C1mix" refers to the swapping experiment as illustrated in (Figure 8E). Note also that the final bin 
encompasses the interval]1..+∞[. (D) Similar histogram as in (C) for the 899 probes showing significant p53 regulation (com-
pare (A)).
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be performed at any interesting scale or functional level as
feature probability profiles can be organized into a hierar-
chical structure with respect to the biological question,
and thus the probability landscape over the genomic
sequence can be reduced in complexity until all remaining
context-dependencies reach statistical significance at
which an optimum for computational complexity and sta-
tistical power is reached (Figure 5). Different biological
conditions can thereby be defined with maximum flexi-
bility using separate or overlapping subsets of sub-condi-
tions (Figure 6).

Note that since we are comparing the distributions of the
same random variable under different conditions, it is
only the distance (or divergence) between the two distri-
butions that is meaningful. A joint probability, such as
mutual information, can not be envisioned. This also
holds for the case of two different variables because the
joint probability distribution is inaccessible. Eventually,
one could envision considering mutual information in
the context of the comparison of two probability distribu-
tions (rather than individual variables), thereby rejoining
the concept of probabilities of probabilities we have pre-
viously developed [5]. However, this seems impractical in
concrete terms.

The methodology developed here represents a systematic
and simple way of testing the statistical limits of complex-
ity-reduction and hence explanatory power of the integra-
tive genomics data in their respective contexts (see for
instance Figures 7 &8). We note that our method repre-
sents an application of concepts related to context-trees to
the probability landscape idea. Circumstantial context
analysis and landscape collapse thereby operate in similar
manners to Markov chains with variable length for the
analysis of time-series from t0 to -∞ (which can be consid-
ered the historic context) [9]. Markov chains and Hidden
Markov Models (HMMs) have found wide-spread applica-
tion in the analysis of genomic and gene sequences ([10]
and references therein). In contrast to our approach, how-
ever, the probabilities assigned to individual nucleotides
here reflect the linear sequence context ("horizontal"
analysis of sequence statistics) whereas the probability
landscape concept we advocate uses the nucleotide based
probabilities to integrate "vertically" sequence-dependent
features such as activity. Both approaches share common
ideas such as the use of probabilities and a single nucle-
otide resolution, but they differ significantly in their scope
and methodology. HMMs are for instance quite con-
strained in that they require sequentiality (making them
particularly interesting in the studies of sequences) and
restricted in the number of sequential objects/variables
under study. It does not at all seem feasible to develop
HMM approaches for entire genomes. Probability land-

scapes, in contrast, neither require sequential organiza-
tion per se, nor are limited in the number of objects under
study as they can be decomposed. The complexity-reduc-
tion procedure for probability landscapes developed here
can also be seen as an illustration of both of these features.
It is therefore quite obvious that HMMs and probability
landscapes are independent though complementary con-
cepts that should acquire synergistic roles in genome anal-
ysis.

We also note that the Kullback-Leibler divergence calcula-
tion provides measures that can be used directly for clus-
tering of probability profiles. Clustering of probability
profiles might help to establish and analyze relatedness
among data otherwise not compared directly.

Conclusion
Feature context-dependency can be systematically investi-
gated using probability landscapes. Furthermore, differ-
ent, independent feature probability profiles can be
collapsed as a function of circumstantial context to reduce
the computational and formal complexity of probability
landscapes. Interestingly, the possibility of complexity
reduction can be linked directly to the analysis of context-
dependency. Furthermore, as the criteria for circumstan-
tial complexity reduction are statistically controlled, an
optimal probability landscape is created in a biological
question dependent manner. These two advances in our
understanding of the properties of probability landscapes
not only simplify subsequent cross-correlation analysis in
hypothesis-driven model building and testing, but also
provide additional insights into the biological gene regu-
latory problems studied. The nature of individual features
can be probed with respect to posed problems and a clas-
sification of features according to their respective contexts
can be achieved. Therefore, increased algorithmic effi-
ciency and statistical power result jointly with heightened
understanding of the biological mechanisms. Obviously,
other features of circumstantial context and probability
landscapes in general still remain to be fully exploited.

Methods
Constructing 

In cases where the feature X takes discrete values, the con-

struction of  has been detailed in [5]. For continu-

ously valued X, hence where the probability  is

defined as a density, the probability of probability  is

a functional probability distribution, the construction of
which will basically follow the same steps as for the
Wiener measure and defines a mathematical object of the
same nature.
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Another option is to discretize the feature X, using e.g.
thresholds or any biologically meaningful partition of the

range of values of X so that  becomes a finite array of

probabilities (summing up to 1) and the distribution of

the probability distribution  describes the experi-

mental and statistical variabilities on the estimate of this
array.

Still another option to construct  is to discretize the

probability profile itself, using e.g. statistically meaningful
threshold to partition the range of values of the density

and replace  at each nucleotide position n by an array

of numbers. At this point, it might be more relevant to
consider the cumulative distribution (i.e. defining quan-
tiles) and the probability of probability now describes the
distribution of errors on these quantiles.

Note that discretization procedures involve extra knowl-
edge that is at the same time a flaw (introducing some
subjectivity if not arbitrariness in the description and
analysis) and an advantage (it reduces a wealth of infor-
mation in an intractable high-dimensional space to a
finite number of clear-cut and discrete, e.g. binary, prop-
erties, and takes benefit of all the additional knowledge
available, e.g. on biological grounds, on the system). To
enhance the beneficial aspect while minimizing the draw-
back, it is then essential to perform a discretization for
each specific question and setting, extracting the minimal
information that is relevant for that question.

Collapse of conditional profiles

When the comparison of the profile  with P(X|B)

shows that the condition Ci has no statistically significant

impact as measured using the Kullback-Leibler divergence
(see below) on the feature X (at least in conditioning B),
for each element of a set of complementary conditions
(Ci)i, the complexity of the probability landscape can be

reduced by collapsing the profiles  into P(X|B) by

computing a weighted average . The

weights ωi (with ) are chosen either according to

the sizes of the data pools in conditions B∧Ci respectively,

or to the variability of the profile (ωi being inverse propor-

tional to the standard deviation). The procedure can be
executed recursively.

Proof of the absolute continuity of P(X|B∧C) with respect to 
P(X|B)

In cases where the feature X takes discrete values

P(X|B∧C)(x).Prob(B∧C) = Prob([X = x]∧B∧C) = Prob(C|[X = 
x]∧B).Prob([X = x]∧B)

and Prob([X = x]∧B) = Prob([X = x]|B).Prob (B) which we
denoted Prob([X = x]|B) = P(X|B)(x) in the main text. It
shows that P(X|B∧C)(x) is proportional to P(X|B)(x) provided
Prob(B∧C) does not vanish, which is obviously true since
such a condition B∧C has been observed experimentally
and data recorded that underlie the estimation of P(X|B∧C).

Accordingly, P(X|B∧C)(x) vanishes as soon as P(X|B)(x) van-
ishes, demonstrating the claimed absolute continuity. The
proof straightforwardly extends to the case where X takes
continuous values in a metric space and P(X|B∧C)(x),
P(X|B)(x) are distribution functions (i.e. densities).

Kullback-Leibler divergence

At each genome location n, the probabilities  and

 are defined on the same space (the state space χ
of the feature X). The Kullback-Leibler distance (which is
rather termed a divergence because of its asymmetry) then
can be defined as a relative entropy:

in the discrete case, where ∑x ∈ χ should be replaced by

 in case of a continuous-valued feature. Considering

the symmetrized counterpart D(B∧C|B) + D(B|B∧C) of
the Kullback-Leibler divergence would yield a bona fide
distance, but it could take infinite values (if for some
value x of the feature X the probability P(X|B∧C)(x) vanishes
whereas P(X|B)(x) does not). When it is well-defined, it sat-
isfies:

where the latter approximation holds when  and

 are close enough, and amounts to a weighted L2

distance. We favor the use of the plain Kullback-Leibler
divergence since it is always well-defined, i.e. it takes only
finite values because of the absolute continuity (see
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above) of the probability distribution  with

respect to ; moreover, its asymmetry parallels the

intrinsic asymmetry of the comparison it intends to quan-
tify, owing to the hierarchical relationship between the

conditionings B∧C and B involved respectively in

 and .

The rationale for considering the Kullback-Leibler diver-
gence rather than a Lp distance is to weight the elementary
contributions of each value x of X to the distance between
the probability distributions by the probability of this
value x; the distributions could differ significantly in x
without having a significant divergence provided the
probability of observing this value is in any case negligi-
ble. In the same spirit, Renyi generalizations can also be
considered, replacing z ln z by (q-1)-1zq, which will allow
the contribution of the rare events in the distance to be
weighted differentially. Let us denote

Its minimal value 0 is observed if C adds no new informa-
tion. It has no a priori maximum: there is no other solu-
tion of the constrained variational equation than the case
of equality of the two distributions. A maximal value is

reached when B∧C fully conditions X, namely

, and moreover  reaches its max-

imal value in x0; in this case,

, which is

equivalent to considering the ratio of the divergence to the
entropy of the distribution Pn

(X|B). We thus consider the

ratio . It is close to 0 when C is

spurious, and it is larger than unity in the above-men-

tioned example  where C adds an

essential condition turning X into a deterministic variable.

Transcriptome data
The transcriptome data used in this study to illustrate the
concept of circumstantial context are part of a study inves-
tigating the effect of the delta isoform of the general tran-
scription factor TAF6 in apoptosis induction and its
relationship to the transcription factor p53 [8]. The micro-
array data are accessible from the Gene Expression Omni-
bus database http://www.ncbi.nlm.nih.gov/geo/ under
accession number: GSE10795.

Transcriptome data preprocessing
The median normalized relative signal intensities from
the indicated transcriptome experiments, representing
three biological replicates for either the B+ (p53+/+) or
the B- (p53-/-) biological conditions [8], were trans-
formed into probability landscapes as described in [5].
Here, as the scope of the demonstration is restricted, and
also the number of the analyzed samples is very moderate,
the following simplifications were introduced in the cal-
culation of the probability landscapes:

(1) The resolution of the p-annotation is at probe- and
not nucleotide-level, as this is the smallest common
denominator between the different samples and higher
resolution therefore has no bearing.

(2) As the data originate from the same transcriptome
technology, and belong to a single series, we have omitted

the calculation of the quality estimating . Anyhow

 has no effect on the circumstantial context.

(3) Both biological conditions were treated independ-
ently and no global rescaling of the probability landscapes
between the two biological conditions (B+, B-) was per-
formed for reasons similar to those above. Rescaling in
this particular case would have marginally impacted the
Kullback-Leibler divergence by a constant.

(4) The estimated coefficient of variance associated with
each signal was not taken into account as it affects only

.

It should be kept in mind that the analysis presented here
serves only as a proof-of-principle for the circumstantial
context analysis developed, and does not aspire to inves-
tigate the features of the analyzed data systematically to
the full extent using the probability landscape concept.
Furthermore, the analysis presented here is probe-cen-
tered and hence only approximately comparable to the
data analysis in [8] which is gene-centered, and where the
probe-to-gene correspondence has been established [11].

The initial raw signal values, the P-values, and the differ-
ent divergence measures are all provided as additional
files 1, 2, 3. Those are equally accessible through our web-
site (http://seg.ihes.fr/ (follow ->"web sources" ->"supple-
mentary materials").
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