Table 2.
Article filtering performance with different features and classifiers
| Model | Precision | Recall | F1 score | AUC |
| Mean | 0.6642 | 0.7636 | 0.6868 | 0.7351 |
| Standard deviation | 0.0810 | 0.1926 | 0.1035 | 0.0741 |
| Best reported in terms of AUC [8] | 0.7080 | 0.8609 | 0.7770 | 0.8554 |
| Our results in BioCreative 2006 | 0.7507 | 0.8107 | 0.7795 | 0.8471 |
| Term (baseline) | 0.7016 | 0.8213 | 0.7568 | 0.8037 |
| String | 0.7044 | 0.8960 | 0.7887 | 0.8416 |
| Named entity (NE) | 0.5815 | 0.9600 | 0.7243 | 0.7570 |
| Template | 0.7841 | 0.7653 | 0.7746 | 0.8239 |
| String + NE | 0.7360 | 0.8773 | 0.8005 | 0.8479 |
| String + template | 0.7416 | 0.8880 | 0.8082 | 0.8372 |
| String + NE + template | 0.7585 | 0.8373 | 0.7959 | 0.8507 |
| String + term + NE + template | 0.7432 | 0.8720 | 0.8025 | 0.8608 |
| Naïve Bayes classifier | 0.6321 | 0.8613 | 0.7291 | 0.7884 |
| Multinomial classifier | 0.6264 | 0.8720 | 0.7290 | 0.7770 |
| Linear kernel SVM | 0.7016 | 0.8213 | 0.7568 | 0.8037 |
| p-spectrum kernel SVM (p = 7) | 0.7352 | 0.8293 | 0.7794 | 0.8376 |
| Integration of the above four classifiers (AdaBoost) | 0.7995 | 0.8933 | 0.8438 | 0.8746 |
This table shows the experimental results from article filtering. AUC, area under the receiving operator characteristic curve; SVM, support vector machine.