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Abstract
Randomized field trials provide unique opportunities to examine the effectiveness of an intervention
in real world settings and to test and extend both theory of etiology and theory of intervention. These
trials are designed not only to test for overall intervention impact but also to examine how impact
varies as a function of individual level characteristics, context, and across time. Examination of such
variation in impact requires analytical methods that take into account the trial’s multiple nested
structure and the evolving changes in outcomes over time. The models that we describe here merge
multilevel modeling with growth modeling, allowing for variation in impact to be represented through
discrete mixtures—growth mixture models—and nonparametric smooth functions—generalized
additive mixed models. These methods are part of an emerging class of multilevel growth mixture
models, and we illustrate these with models that examine overall impact and variation in impact. In
this paper, we define intent-to-treat analyses in group-randomized multilevel field trials and discuss
appropriate ways to identify, examine, and test for variation in impact without inflating the Type I
error rate. We describe how to make causal inferences more robust to misspecification of covariates
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in such analyses and how to summarize and present these interactive intervention effects clearly.
Practical strategies for reducing model complexity, checking model fit, and handling missing data
are discussed using six randomized field trials to show how these methods may be used across trials
randomized at different levels.
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1. Introduction
Randomized field trials (RFTs) provide a powerful means of testing a defined intervention
under realistic conditions. Just as important as the empirical evidence of overall impact that a
trial provides (Flay et al., 2005), an RFT can also refine and extend both etiologic theory and
intervention theory. Etiologic theory examines the role of risk and protective factors in
prevention, and an RFT formally tests whether changes in these hypothesized factors lead to
the prevention of targeted outcomes. Theories of intervention characterize how change in risk
or protective factors impact immediate and distal targets and how specific theory driven
mediators produce such changes (Kellam and Rebok, 1992; Kellam et al., 1999). The
elaborations in theory that can come from an RFT draw on understanding the interactive effects
of individual level variation in response over time to different environmental influences. An
adolescent drug abuse prevention program that addresses perceived norms, for example, may
differentially affect those already using substances compared to nonusers. This intervention’s
effect may also differ in schools that have norms favoring use compared to schools with norms
favoring nonuse. Finally, the impact may differ in middle and high school as early benefits
may wane or become stronger over time.

This paper presents a general analytic framework and a range of analytic methods that
characterize intervention impact in RFTs that may vary across individuals, contexts, and time.
The framework begins by distinguishing the types of research questions that RFTs address,
then continues by introducing a general three-level description of RFT designs. Six different
RFTs are described briefly in terms of these three levels, and illustrations are used to show
how to test theoretically driven hypotheses of impact variation across persons, place, and time.
In this paper, we focus on intent-to-treat (ITT) analyses that examine the influence of baseline
factors on impact, and leave all post-assignment analyses, such as mediation analysis, for
discussions elsewhere. This separation into two parts is for pragmatic and space considerations
only, as post-assignment analyses provide valuable insights into ITT results and are generally
included in major evaluations of impact. For these intent-to-treat analyses, we present standards
for determining which subjects should be included in analyses, how missing data and
differences in intervention exposure should be handled, and what causal interpretations can be
legitimately drawn from the statistical summaries. We present the full range of different
modeling strategies available for examining variation in impact, and we emphasize those
statistical models that are the most flexible in addressing individual level and contextual factors
across time. Two underutilized methods for examining impact, generalized additive mixed
models (GAMM) and growth mixture models (GMM), are presented in detail and applied to
provide new findings on the impact of the Good Behavior Game (GBG) in the First Generation
Baltimore Prevention Program trial.

We first define a randomized field trial and then describe the research questions it answers. An
RFT uses randomization to test two or more defined psychosocial or education intervention
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conditions against one another in the field or community under realistic training, supervision,
program funding, implementation, and administration conditions. All these conditions are
relevant to evaluating effectiveness or impact within real world settings (Flay, 1986). In
contrast, there are other randomized trials that test the efficacy of preventive interventions in
early phases of development. These efficacy trials are designed to examine the maximal effect
under restricted, highly standardized conditions that often reduce individual or contextual
variation as much as possible. Testing efficacy requires that the intervention be implemented
as intended and delivered with full fidelity. The interventions in efficacy trials are delivered
by intervention agents (Snyder et al., 2006) who are carefully screened and highly trained. In
efficacy trials, they are generally professionals who are brought in by an external research
team. By contrast, the intervention agents of RFTs are often parents, community leaders,
teachers or other practitioners who come from within the indigenous community or institutional
settings (Flay, 1986). The level of fidelity in RFTs is thus likely to vary considerably, and
examining such variation in delivery can be important in evaluating impact (Brown and Liao,
1999). Both types of trials are part of a larger strategy to build new interventions and test their
ultimate effects in target populations (Greenwald and Cullen, 1985).

As a special class of experiments, RFTs have some unique features. Most importantly, they
differ from efficacy trials on the degree of control placed on implementation of the intervention.
They are designed to address questions other than those of pure efficacy, and they often assess
both mediator and moderator effects (Krull and MacKinnon, 1999; MacKinnon and Dwyer,
1993; MacKinnon et al., 1989; Tein et al., 2004). Also, they often differ from many traditional
trials by the level at which randomization occurs as well as the choice of target population.
These differences are discussed below starting with comments on program implementation
first.

Program implementation is quite likely to vary in RFTs due to variation in the skills and other
factors that may make some teachers or parents more able to carry out the intervention than
others even when they receive the same amount of training. These trials are designed to test
an intervention the way it would be implemented within its community, agency, institutional,
or governmental home setting. In such settings, differences in early and continued training,
support for the implementers, and differences in the aptitude of the implementers can lead to
variation in implementation. The intervention implementers, who are typically not under the
control of the research team the way they are in efficacy trials, are likely to deliver the program
with varied fidelity, more adaptation, and less regularity than that which occurs in efficacy
trials (Dane and Schneider, 1998; Domitrovich and Greenberg, 2000; Harachi et al., 1999).
Traditional intent-to-treat analyses which do not adjust for potential variations in
implementation, fidelity, participation, or adherence, are often supplemented with “as-treated”
analyses, mediation analysis, and other post-assignment analyses described elsewhere (Brown
and Liao, 1999; Jo, 2002; MacKinnon, 2006).

A second common difference between RFTs and controlled efficacy trials is that the
intervention often occurs at a group rather than individual level; random assignment in an
efficacy trial is frequently at the level of the individual while that for an RFT generally occurs
at levels other than the individual, such as classroom, school, or community. Individuals
assigned to the same intervention cluster are assessed prior to and after the intervention, and
their characteristics, as well as characteristics of their intervention group may serve in
multilevel analyses of mediation or moderation (Krull and MacKinnon, 1999). In addition,
levels nested above the group level where intervention assignment occurs, such as the school
in a classroom randomized trial, can also be used in assessing variation in intervention impact.
Examples of six recent multilevel designs are presented in Table 1; these are chosen because
random assignment occurs at different levels ranging from the individual level to the classroom,
school, district, and county level. This table describes the different levels in each trial as well
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as the individual level denominators that are used in intent-to-treat analyses, a topic we present
in detail in Section 2.2. We continue to refer to these trials in this paper to illustrate the general
approach to analyzing variation in impact for intent-to-treat, as treated, and other analyses
involving post-assignment outcomes.

Finally, RFTs often target heterogeneous populations, whereas controlled experiments
routinely use tight inclusion/exclusion criteria to test the intervention with a homogenous
group. Because they are population-based, RFTs can be used to examine variation in impact
across the population, for example to understand whether a drug prevention program in middle
school has a different impact on those who are already using substances at baseline compared
to those who have not yet used substances. This naturally offers an opportunity to examine the
impact by baseline level of risk, and thereby examine whether changes in this risk affect
outcomes in accord with etiologic theory.

We are often just as interested in examining variation in impact in RFTs as we are in examining
the main effect. For example, a universal, whole classroom intervention aimed proximally at
reducing early aggressive, disruptive behavior and distally at preventing later drug abuse/
dependence disorders may impact those children who were aggressive, disruptive at baseline
but have little impact on low aggressive, disruptive children. It may work especially well in
classes with high numbers of aggressive, disruptive children but show less impact in either
classrooms with low numbers of aggressive, disruptive children or in classrooms that are
already well managed. Incorporating these contextual factors in multilevel analyses should
also increase our ability to generalize results to broader settings (Cronbach, 1972; Shadish et
al., 2002). Prevention of or delay in later drug abuse/dependence disorders may also depend
on continued reduction in aggressive, disruptive behavior through time. Thus our analytic
modeling of intervention impact or RFTs will often require us to incorporate growth
trajectories, as well as multilevel factors.

RFTs, such as that of the Baltimore Prevention Program (BPP) described in this issue of Drug
and Alcohol Dependence (Kellam et al., 2008), are designed to examine the three fundamental
questions of a prevention program’s impact on a defined population: (1) who benefits; (2) for
how long; (3) and under what conditions or contexts? Answering these three questions allows
us to draw inferences and refine theories of intervention far beyond what we could do if we
only address whether a significant overall program impact was found. The corresponding
analytical approaches we use to answer these questions require greater sophistication and
model checking than would ordinarily be required of analyses limited to addressing overall
program impact. In this paper, we present integrative analytic strategies for addressing these
three general questions from an RFT and illustrate how they test and build theory as well as
lead to increased effectiveness at a population level. Appropriate uses of these methods to
address specific research questions are given and illustrated on data related to the prevention
of drug abuse/dependence disorders from the First Baltimore Prevention Program trial and
other ongoing RFTs.

The prevention science goal in understanding who benefits, for how long, and under what
conditions or contexts draws on similar perspectives from both theories of human behavior
and from methodology that characterize how behaviors change through time and context. In
the developmental sciences, for example, the focus is on examining how individual behavior
is shaped over time or stage of life by individual differences acting in environmental contexts
(Weiss, 1949). In epidemiology, which seeks to identify the causes of a disorder in a population,
we first start descriptively by identifying the person, place, and time factors that link those with
the disorder to those without such a disorder (Lilienfeld and Lilienfeld, 1980).
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From the perspective of prevention methodology, these same person, place, and time
considerations play a fundamental roles in trial design (Brown and Liao, 1999; Brown et al.,
2006, 2007a,b) and analysis (Brown et al., 2008; Bryk and Raudenbush, 1987; Goldstein,
2003; Hedeker and Gibbons, 1994; Muthén, 1997; Muthén and Shedden, 1999; Muthén et al.,
2002; Raudenbush, 1997; Wang et al., 2005; Xu and Hedeker, 2001). Randomized trial designs
have extended beyond those with individual level randomization to those that randomize at the
level of the group or place (Brown and Liao, 1999; Brown et al., 2006; Donner and Klar,
2000; Murray, 1998; Raudenbush, 1997; Raudenbush and Liu, 2000; Seltzer, 2004).
Randomization also can occur simultaneously in time and place as illustrated in dynamic wait-
listed designs where schools are assigned to receive an intervention at randomly determined
times (Brown et al., 2006). Finally, in a number of analytic approaches used by prevention
methodologists that are derived from the fields of biostatistics, psychometrics, and the newly
emerging ecometrics (Raudenbush and Sampson, 1999), there now exist ways to include
characteristics of person and place in examining impact through time.

There has been extensive methodologic work done to develop analytic models that focus on
person, place, and time. For modeling variation across persons, we often use two broad classes
of modeling. Regression modeling is used to assess the impact of observed covariates that are
measured on individuals and contexts that are measured without error. Mixed effects modeling,
random effects, latent variables, or latent classes are used when there is important measurement
error, when there are unobserved variables or groupings, or when clustering in contexts
produces intraclass correlation. For modeling the role of places or context, multilevel modeling
or mixed modeling is commonly used. For models involving time, growth modeling is often
used, although growth can be examined in a multilevel framework as well. While all these
types of models—regression, random effects, latent variable, latent class, multilevel, mixed,
and growth modeling—have been developed somewhat separately from one another, the recent
trend has been to integrate many of these perspectives. There is a growing overlap in the overall
models that are available from these different perspectives (Brown et al., 2008; Gibbons et al.,
1988), and direct correspondences between these approaches can often be made (Wang et al.,
2005). Indeed, the newest versions of many well-known software packages in multilevel
modeling (HLM, MLWin), mixed or random effect modeling (SAS, Splus, R, SuperMix), and
latent variable and growth modeling (Mplus, Amos), provide routines that can replicate models
from several of the other packages.

Out of this new analytic integration come increased opportunities for examining complex
research questions that are now being raised by our trials. In this paper, we provide a framework
for carrying out such analyses with data from RFTs in the pursuit of answers to the three
questions of who benefits, for how long, and under what conditions or contexts. In Section 2,
we describe analytic and modeling issues to examine impact of individual and contextual
effects on a single outcome measure. In this section, we deal with defining intent-to-treat
analyses for multilevel trials, handling missing data, theoretical models of variation in impact,
modeling and interpreting specific estimates as causal effects of the intervention, and methods
for adjusting for different rates of assignment to the intervention. The first model we describe
is a generalized linear mixed model (GLMM), which models a binary outcome using logistic
regression and includes random effects as well. We conclude with a discussion of generalized
additive mixed models, which represent the most integrative model in this class. Some of this
section includes technical discussion of statistical issues; non-technical readers can skip these
sections without losing the meaning by attending to the concluding sentences that describe the
findings in less technical terms, as well as the examples and figures.

In Section 3, we discuss methods to examine intervention impact on growth trajectories. We
discuss representing intervention impact in our models with specific coefficients that can be
tested. Because of their importance to examining the effects of prevention programs, growth
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mixture models are highlighted, and we provide a causal interpretation of these parameters as
well as discuss a number of methods to examine model fit. Again, non-technical readers can
skip the equations and attend to introductory statements that precede the technical discussions.

Section 4 returns to the use of these analyses for testing impact and building theory. We also
describe newer modeling techniques, called General Growth Mixture Models (GGMM), that
are beginning to integrate the models described in Sections 2 and 3.

2. Using an RFT to determine who benefits from or is harmed by an
intervention on a single outcome measure

This question is centrally concerned with assessing intervention impact across a range of
individual, group, and context level characteristics. We note first that population-based
randomized preventive field trials have the flexibility of addressing this question much more
broadly than do traditional clinicbased randomized trials where selection into the clinic makes
it hard to study variation in impact. With classic pharmaceutical randomized clinical trials (P-
RCT’s), the most common type of controlled experiment in humans, there is a well accepted
methodology for evaluating impact that began with the early pharmacotherapy trials conducted
by A. B. Hill starting in the 1940s (Hill, 1962) and is now routinely used by pharmaceutical
licensing agencies such as the U.S. Food and Drug Administration and similar agencies in
Europe and elsewhere. The most important impact analysis for P-RCTs has been the so-called
“intent-to-treat” (ITT) analysis, a set of rigid rules that determine (1) who is included in the
analyses—the denominator—(2) how to classify subjects into intervention conditions, and (3)
how to handle attrition. ITT is also intended to lead to a conservative estimate of intervention
impact in the presence of partial adherence to a medication and partial dropout from the study
during the follow-up period (Lachin, 2000; Lavori, 1992; Pocock, 1983; Tsiatis, 1990). These
two sources of bias, called treatment dropout and study dropout (Kleinman et al., 1998), have
direct analogues in RFTs as well (Brown and Liao, 1999). Detailed examination of how these
two factors impact statistical inferences in RCTs have been done by others (Kleinman et al.,
1998). In this paper, we use a minimum of technical language to examine first the accepted
characteristics of ITT analyses for P-RCTs and then specify a new standard for multilevel RFTs
directed at our interests in understanding variation of impact among individuals, places, and
time.

2.1. Intent-to-treat analyses for pharmaceutical randomized controlled trials
For standard clinic-based trials, ITT analyses define the denominator to include all those who
have been randomly assigned, regardless of level of treatment received. ITT analyses
specifically include those who agree to be randomized but then refuse to start on their assigned
treatment. The often stated logic of making no exclusions based on post-assignment
information, including treatment adherence, is that the alternative subgroup analyses that are
formed by deleting subjects based on their adherence behavior after randomization could make
the resulting treatment and control subjects unequal. Those who are failing to respond may
leave treatment disproportionately more often compared to those who respond well or like the
treatment (Kleinman et al., 1998; Tsiatis, 1990). Later, we will discuss this same principle in
specifying ITT analysis of RFTs.

Secondly, the denominator in ITT analyses in P-RCTs includes those who complete the study
as well as those who drop out, cannot be located, or refuse to be interviewed at one or more
follow-up times. This decision maintains the comparability of the treatment groups that were
randomized at baseline. Other alternative choices of the denominator, e.g., limiting analyses
to only those who have full follow-up, would lead to unequal treatment groups if, for example,
those who died were excluded from the analysis. Indeed, if survival were higher in the treated
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group than in the control, then a comparison of the health status of survivors alone could easily
lead to an erroneous conclusion that outcomes on a drug that saved lives were worse than those
on placebo.

The inclusion of all subjects in ITT analyses regardless of their follow-up status requires us to
deal with the resulting missing data. For handling missing longitudinal data in ITT analyses,
several approaches are used. The most common approach is the replacement of each subject’s
missing data with his or her last non-missing observation, a method called last observation
carried forward (LOCF). While LOCF is still the preferred method for handling longitudinal
missing data when submitting drug studies to the FDA, this method is not only inefficient from
a statistical point of view but also is known to introduce bias in estimates and their standard
errors and at times to be misleadingly precise as well (Gibbons et al., 1988; Mazumdar et al.,
1999). Most statisticians recommend against the use of LOCF (Little and Rubin, 1987; Little
and Yau, 1996), and our recommendation for handling missing data in RFTs reflects this as
well.

A final specification about ITT analyses in P-RCTs is that treatment assignment is based on
the originally assigned—intended—treatment, rather than the treatment actually received,
regardless of whether the assigned medication or placebo actually was taken. There are both
practical and statistical reasons for using this strict classification rule (Kleinman et al., 1998),
which clearly attenuates the estimate of intervention impact when some subjects take little or
no medication. The conservative nature of the ITT analysis is thought to be more in line with
the effects one would actually see in a population that will not likely maintain perfect
adherence. Alternative “as-treated” (AT) analyses that take into account actual treatment
received, dosage, and selection factors are all subject to assumptions that often are not
verifiable, and are thus used to supplement, not replace an ITT analysis (e.g., Jo, 2002; Jo and
Muthén, 2001; Wyman et al., in press).

2.2. Standards for intent-to-treat analyses for randomized field trials
Intent-to-treat analyses in RFTs serve the same purpose as that for P-RCTs. They provide an
objective method of conducting analyses of impact based on comparable groups of subjects
across intervention condition without regard to post-assignment information such as the dosage
actually received (see Kellam et al., 2008, for example). These ITT analyses are designed to
provide conservative estimates of intervention impact and may be supplemented by other
analyses that examine impact on individuals “as treated” or stratified by intervention adherence
(e.g.,Jo, 2002; Jo and Muthén, 2001; Wyman et al., in press).

In this section, we specify a new set of standards for conducting ITT analyses for multilevel
RFTs. These standards address: (1) the denominator, or which subjects should be included or
excluded in the ITT analysis; (2) how to assign subjects to the appropriate intervention group
when there is mobility across intervention conditions; and (3) how to handle missing
longitudinal data resulting from entrances, exits, and other reasons for missed assessments.
Because an ITT analysis requires care in defining the appropriate individual level denominator,
this has implications for trial design after the conclusion of the intervention period into the
follow-up period (Brown and Liao, 1999; Brown et al., 2000).

2.2.1. Defining denominators for ITT analyses in group-randomized field trials
—In multilevel randomized trial designs, individuals are nested in contexts such as classrooms,
schools, and/or neighborhoods. One or more of these higher levels also serve as units of
assignment of the intervention. For example, the First Generation Baltimore Prevention
Program trial, described in the second row of Table 1, involved 41 first-grade classrooms in
19 elementary schools (Brown et al., 2007a;Kellam et al., 2008). Thus, defining a denominator
for an ITT analysis first requires defining which of these first-grade classrooms should be
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included in the analysis, then which students should be included based on their assignment to
these classrooms.

2.2.1.1. Denominator at the level of randomization for ITT analyses: Because there will
necessarily be a stated protocol for assigning units to intervention based on a randomization
scheme, determining the appropriate denominator for groups where randomization occurs is
relatively straight forward. The inclusion/exclusion criteria that are to be used for selecting
units to be randomized and the procedure for randomization should be similar to the way a P-
RCT would specify inclusion/exclusion criteria for individual subjects. We illustrate this using
the First Generation BPP trial. In this trial, intervention assignment was at the level of the first-
grade classroom, so we first review how classrooms and higher order nested units were selected
prior to the initial randomization. Prior to starting this trial, we selected 19 elementary schools
from five diverse urban areas in Baltimore City with the help of city planners and school
administrators. Our goal was to ensure ethnic and social class diversity across schools, to ensure
that we would have sufficient classrooms to permit balancing the intervention assignments in
these schools, and to ensure that none of these schools would be closed, divided, or otherwise
reorganized during the trial (Brown et al., 2007a; Kellam et al., 2008). Schools were also chosen
so that they had either two or three first-grade classrooms. Inclusion-exclusion criteria for
selecting the classrooms were specified in advance of the study. All classrooms in the selected
schools were to be used unless a classroom was designated as a special education class. This
exclusion was chosen since at most one such special education classroom per school would be
available, and it would not be feasible to compare, say, an active intervention in one such
classroom to a control non-special education classroom within the same school. In our group
of 19 elementary schools, there happened to be no first-grade special education classrooms in
any of these schools, so all of the available classrooms in these schools were used in our trial,
a decision well suited to conducting ITT analyses. Children were assigned to classrooms/
teachers using balanced assignment of first-grade students within school. Within designated
schools, these classrooms/teachers were then randomly assigned to intervention condition or
control condition. The design called for introducing at most one of the two interventions, either
the Good Behavior Game or Mastery Learning (ML) within a school, because two interventions
in the same school would lead to logistics problems. Thus the 19 schools were randomly
assigned to either test the GBG, to test ML, or to serve as a comparison school where neither
of these interventions took place. We designated classrooms in these comparison schools,
where no active intervention was to take place, as external control classrooms. Also, this design
called for control classrooms within schools where each of the interventions was taking place,
termed internal control classrooms. Thus, depending on the school, some classrooms received
either the GBG or served as internal GBG controls, in other schools they either received ML
or served as internal ML controls, and in some schools all first-grade classrooms served as
external controls where no interventions took place (Kellam et al., 2008).

The general ITT definition of denominator at the (classroom) level of intervention assignment
is unequivocal. We include all units based on their intended assignment, regardless of whether
the intervention ever took place in these classes. Thus if a classroom were assigned to the GBG
but the teacher never performed the GBG or performed it poorly then the ITT analysis would
still assign this classroom to the GBG condition. True to this definition, the GBG impact
analyses in Kellam et al. (2008) and Poduska et al. (2008) were based on the combined GBG
classrooms, the internal GBG control classrooms, all external control classrooms, and internal
ML controls classrooms in the ML schools. Only the ML classrooms were excluded because
they provided no information about the GBG impact nor could they be used as controls because
of ML’s own potential impact. In Wilcox et al. (2008), ML classes were included since
hypotheses about this intervention were also tested. In Petras et al. (2008) the GBG analyses
were based on comparisons between the GBG classrooms and the internal GBG controls.
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2.2.1.2. Denominator at the level of the individual in multilevel RFTs: Specifying the
individual level denominator in an ITT analysis is more challenging due to individual level
mobility and transfers. For example, multilevel RFTs often have late entrants to a school or
other intervention setting whose entry occurs after the intervention period begins, and
sometimes after the intervention period has ended. Thus a student who enters a classroom at
the end of the school year will miss most of the intervention. Should all or some of these late
entrants be included in ITT analyses? (This late entrance never occurs in P-RCTs since
treatment regimens all start upon entry.) Deciding which late entrants to include in an analysis
can have an impact on the results of the trial (Mazumdar et al., 1999), as well as on the cost of
the study during follow-up (Brown et al., 2000), so clarifying which individual level
denominator to use is critically important. After classifying types of mobility, we present below
two alternative choices for the individual level denominator in ITT analyses of RFTs, with
different handling of late entrants into the study. The choice between these two methods should
be determined by: (1) the risk that individuals who enter the study after the intervention begins
may be assigned informatively to one of the interventions thereby causing nonequivalent
intervention conditions and (2) consideration of whether to generalize impact to include those
who miss part of the intervention or have no baseline data.

For some designs, the possibility of informative assignment of any participants to different
interventions can be effectively ruled out. Consider, for example, a school-based randomized
trial where public school enrollment is determined by a family’s residence in that school’s
catchment area. Now consider evaluating a typical school-wide intervention for violence
prevention in this district with schools randomly assigned to this intervention or control.
Because school enrollment is determined by residence, there is likely to be minimal chance
that a family would move into or out of a school’s catchment area due to the presence or absence
of such a preventive intervention. Most often the families who migrate in after the school year
begins would also not be aware of the school’s intervention status until they enrolled, therefore
making their decision to enroll the child unrelated to the presence or absence of a particular
intervention. By including in the analysis all students who were there at the beginning or soon
after the intervention period began, we could be assured that random assignment of schools
would lead to comparable student populations. It would not be appropriate, however, to include
a student who enrolled on the last day of the school year, since this person has zero chance of
receiving any useful amount of intervention. Thus a criterion should be established in advance
to determine what minimal exposure period is acceptable.

We note that it would typically not be appropriate to carry out an ITT analysis that excluded
those who left the school or did not attend the intervention once the period of intervention
began. Because these individuals had some exposure to their school’s intervention, it is
conceivable that their non-attendance could be affected by the intervention itself, and therefore
these individuals should be included in ITT analyses. This agrees with the traditional inclusion
in ITT analyses of those who exit P-RCTs. Post-assignment analyses that do take into account
exposure during the intervention period could, however, help understand intervention effects
more fully than that provided by ITT analyses alone.

The example above refers to school-based designs where neither the families’ nor the school
system’s decisions regarding which students should attend which schools are based on what
intervention conditions are available. However, for classroom-based designs, there is a direct
assignment of students into classrooms. Because some of these classrooms receive the
intervention, it is possible that students could be assigned informatively in such designs.
Important distinctions are presented in the general case and illustrated for the more complex
classroom-based design first, and then denominators for all of the six trials are presented in
Section 2.2.2.
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For any multilevel trial, a schematic cross-classification of individuals based on their entrances
and exits up to and during the intervention period, as well as any change in their intervention
status, is provided in Fig. 1. We present five mutually exclusive entrance and exit categories
consisting of completers, program dropouts, late entrants, program dropout/late entrants, and
no shows. Table 2 describes these categories in the context of the First Generation Baltimore
Prevention Program trial, which had a two-year intervention period (Kellam et al., 2008), as
well as that for the ongoing Third Generation BPP trial with a one-year intervention period. In
both of these Baltimore trials, program dropouts consist of those who enter at the beginning
of the year but move out of their school before the end of the intervention period. Late entrants
consist of those who come in to one of the study schools after the intervention period begins.
Program dropouts/late entrants come in to a school after the intervention period has begun and
move out before the end of the intervention period. In the Third BPP trial, no-shows are pre-
registered in the previous summer to attend that school and randomly assigned to one of the
classrooms prior to the start of the intervention but due to mobility never attend that school.
Such children would provide no information about intervention impact. In this trial, it would
be a complete waste of money and statistical efficiency to follow up these no-shows who had
no exposure at all to the intervention. It would be important to check that the rate of no-show
is similar across groups, something that would be quite likely given that this particular design
randomly assigns children to intervention condition within schools. In the First Generation
BPP trial, we have no information about no-shows since these records no longer exist.

The First and Third BPP trials point out the two alternative definitions of which individuals to
include in ITT analyses. In either case, our first priority with these denominator definitions is
to make sure that there is equivalence across intervention conditions, in the face of potential
treatment dropout as well as later in terms of study dropout (Kleinman et al., 1998). Successful
random assignment of groups generally allows for balance across baseline covariates for those
who are present prior to randomization (when significance testing accounts for intraclass
correlation and group random assignment). However, as we will see below, it is possible with
some designs for late entrants to be placed differentially in the intervention conditions, so their
automatic inclusion in the denominator may lead to nonequivalence. The second priority is to
include the largest number of subjects with baseline data in these definitions, since this
increases power in discriminating both main effects and interactions involving baseline (Brown
and Liao, 1999; Roy et al., 2007). The two alternative denominator definitions are presented
in Table 3.

The first definition consists only of those individuals present at the beginning of the
intervention period, in all those groups where random assignment to intervention is to take
place. This automatically protects against late entrants being differentially placed in
intervention or control conditions. Indeed, the data from the First Generation BPP trial suggest
that principals were more likely to place late entrants in GBG classrooms, possibly because
they felt that the late entrants would be more likely to be aggressive, disruptive and thereby
would receive more intervention. To protect against this, in evaluating the Good Behavior
Game in the First Generation BPP trial, the appropriate individual level denominator consists
of all first graders who were assigned to any of the GBG classrooms and all controls, excluding
late entrants and program dropouts/late entrants. Balance across intervention conditions is
provided by randomization at the classroom level, as demonstrated by nonsignificant
differences in baseline characteristics by intervention condition in multilevel models that
account for the group level of randomization (i.e., Section 2.4 of Kellam et al., 2008). Because
this denominator is formed from the population that is present before the intervention occurs,
it is not subject to treatment dropout. Thus this denominator involving all those present at
baseline is always appropriate for any trial in ITT analyses. In the First Generation BPP trial,
this definition is used.
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The second definition of the individual level denominator, which is appropriate for some but
not all trials, would include those entering the study during the intervention period. There are
some RFT designs that do provide good assurance of no differential treatment drop-in, and
therefore in these cases it would be appropriate to include late entrants and program dropouts/
late entrants as well. We have already pointed out that in school-based designs late entrants
are highly unlikely to be informatively choosing which school to attend. Thus it is possible to
exclude or include late entrants in school-based trials and still maintain balance.

It may be appropriate to include late entrants in some classroom and other designs as well. The
Third Generation BPP trial is a good example of this. Unlike the first generation trial, this trial
randomly allocates every child entering first grade in the 12 study schools to a classroom, using
pre-sealed envelopes. A separate computer generated randomization is used to assign
classrooms and their teacher to intervention condition. Our research protocol had us continue
to assign children randomly to classrooms, even if they were late entrants, to ensure that the
classes were balanced across the entire study. The only departure from this rule occurred if the
classes within a school became too imbalanced due to differential rates of program dropout.
Thus late entrant students were also balanced across intervention conditions, and they should
therefore be included in the denominator, with a potential increase in statistical power.
Comparing this case to the First BPP trial that was begun in 1985, in the earlier trial, we
provided no protocol for incoming students, and therefore they were assigned by the principal
in ways that may have used knowledge of which intervention was taking place in which
classroom.

For the other RFTs we have provided descriptions of denominators for ITT analyses in Table
1, Column 3. In the Rochester Resilience Program (RRP) (Row 1), which used individual level
assignment of at-risk children blocked within schools, the ITT denominators consist of all
children who were eligible, consented, and randomized, just as in a standard P-RCT.

In the Georgia Gatekeeper Trial (GA Gatekeeper) (row 4 in Table 1), the most appropriate
denominator to use consists of those present at the beginning of the school year. As with all
school-based trials, the Georgia Gatekeeper research team had no influence over which
students moved to different schools within the school year, and all these youth were exposed
to that school’s intervention. Also, all schools in this study received the same gatekeeper
training, with only the timing being randomly determined; therefore it was unlikely that any
informative mobility occurred with regard to the intervention status. The denominators we used
in our analyses were based on beginning year cross tabulations of numbers of subjects by
gender, race/ethnicity, grade, and school because they were reported by the schools. Slightly
more accurate denominators would have been based on population counts that had been
averaged over the entire year, but such data were not available.

In the Adolescent Substance Abuse Prevention Study (ASAPS) (row 5 in Table 1), the
intervention was held in both seventh grade (middle school) and ninth grade during high school.
In this design all middle schools that fed into the same high school received the same
intervention as did the high school. High schools were also geographically separated from one
another so there was relatively little chance that those who migrated out of one study school
would enter another study school. Because this study randomized schools, and intervention
status likely had no influence on entrance or exit from the schools, the choice of including or
excluding late entrants would likely not affect the equivalency by intervention condition. The
decision of who to include in ITT analyses was therefore made based on criteria other than
balance. First, because of the importance of the seventh grade component to this intervention,
the investigators’ primary interest was in examining impact on the population who were in
study schools in seventh grade, not those who transferred in to schools by ninth grade.
Secondly, because there was strong interest in understanding whether the intervention effect
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was different among those youth who were initially using or at high risk for using substances
compared to those who were not, a decision was made to limit ITT analyses further to all those
who had baseline data at the beginning of seventh grade. These priorities had the effect of
excluding those late entrants who came in to the school after the start of the first intervention
in seventh grade.

Finally, in the California multidimensional treatment foster care (MTFC) trial (row 6 in Table
1), two different methods are being tested for implementing MTFC in California counties.
Inclusion/exclusion criteria have been specified for determining which counties are to be
randomized these two conditions. The primary outcomes relate to the time it takes for a county
to begin placing families in MTFC. As for units lower in level than the county, system leaders,
agency directors, and practitioners are assessed both prior to and through the intervention
period. Changes in their responses on climate and attitudes are considered outcomes, and the
composite is evaluated formally by intervention condition. These leaders, directors, and
practioners are sampled systematically across the two conditions and across time. For ITT
analyses, the late entrant individuals are included because of the high turnover in these positions
over time, and these new individuals would need to be included to fully assess climate and
culture. We also consider staff turnover as an outcome in its own right. Units in two other levels
lower than county depend heavily on the success of program implementation, and are therefore
evaluated in post-intervention analyses rather than ITT analyses. These include the selection
of mental health agencies within counties to be trained to deliver MTFC, and the recruitment
of new foster parents who are willing to be part of a treatment team to deliver a set of integrated
services to youngsters with severe emotional and behavioral problems. Both of these selections
occur as part of the implementation process. Because the recruitment of foster parents is
different from that involving other types of foster care, and the primary focus is on the county
and the agency, no formal ITT analyses of impact are likely to be done at the level of the foster
care families; instead ITT analyses are being done at the level of the county and agency.

2.2.2. Defining individual level intervention condition and exposure in multilevel
RFTs—In the previous section, we have specified ways to determine whether late entrant
individuals should be included in the denominator of an ITT analysis. This section presents
rules for assigning the intervention condition to subjects whose intervention exposure changes
because of mobility. Along this second dimension of exposure to the intervention condition,
each subject can be assessed on whether he or she received more or less intervention than
planned, and whether the assignment of the child to an intervention adhered to the research
protocol or not. These classifications are provided in Table 4, and we apply them to the Third
Generation Baltimore Prevention Program Trial involving the Whole Day intervention.
Children could have been exposed to less than the intended one year of intervention—which
we have labeled intervention transfers, or more than the intended school year—which occurs
if someone is a repeater, since sequential cohorts of children were given the same intervention
in this study. In addition, we assessed whether the youth attended the intervention condition
that was intended by the group-based randomization schedule or whether he or she received
another condition, in which case we would identify this as a research protocol violation. Also,
we identified the intervention of first exposure based on the first contact that child had with
either of the intervention conditions.

For ITT analyses, individual intervention assignment should be based on the intended
assignment if the assignment of individuals is to the intervention or to a group that itself is
randomly assigned to an intervention. Furthermore, no one should be excluded because they
received less than, or greater than the intended amount of intervention. Therefore, in the
Rochester Resilience Project, the designated random assignment of the intervention condition
should be used even if this particular intervention is not delivered to that individual. For the
two BPP trials, the intended intervention assignment is determined by the assigned first-grade
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classroom. If there is no formal assignment of individuals, the intervention of first exposure is
used to define each individual’s intervention condition. Using this rule, repeaters should be
classified by their first intervention condition, even if they happen to be re-randomized to an
intervention in the following cohort. Another example of this first exposure rule occurs in the
Adolescent Substance Abuse Prevention Study, a school-based intervention trial. Here the
school first attended during seventh grade determines the intervention status, regardless of their
intervention status during the ninth grade intervention. These definitions naturally avoid any
possibilities that a good or bad intervention experience could affect how a subject’s intervention
classification. This rule also corresponds closely to that used in P-RCTs.

The Georgia Gatekeeper trial, which randomizes when schools get trained (Brown et al.,
2006), deliberately changes intervention status at random times. As a consequence, we have
had to adapt our ITT rule for classifying individual level intervention assignment accordingly.
In this trial, the goal is to evaluate how many youths are referred for suicidality from schools
where training has or has not occurred, over the three years when the trial took place. Schools
were randomly assigned to when the training of the staff would occur. Because of
confidentiality issues, we did not obtain any individual level identifiers; instead the referred
youth were only identified by date of referral, school, grade, gender, and race/ethnicity. As we
described above, the school district supplied overall numbers of youth at the beginning of each
of the three years in each school’s grade, gender, and race/ethnicity cross-classification, and
these were used to compute rates of referral for each, school, grade, gender, and race/ethnicity,
and intervention status determined by the times that training of each school began. Without
the ability to identify referred youth, we do not know if a referred youth had recently been in
another school, so from a practical standpoint, all referrals for suicidality were assigned to the
school where that referral took place, and assigned to condition depending on whether that
school had already been trained or not as of that date. It is possible, although unlikely, that a
referred youth in one school had recently moved from a school with a different training
condition, and that a staff member from the former school had belatedly referred this student.
If we had complete data, we would prefer to conduct ITT analyses by classifying where each
child was at the beginning of each new training period, rather than the school attended at the
time of referral. Thus our assignment of intervention status by current school, rather than initial
school, for any mobile youth who was referred for suicidality, goes against our rule for
classifying subjects to intervention condition in ITT analyses. In this way it is not a perfect
ITT analysis, and this should be stated in publications.

In the Georgia Gatekeeper trial, we also followed up a stratified random sample of school staff
from these same schools in Georgia in order to assess how gatekeeper training affected their
knowledge, attitudes, and behaviors related to referring suicidal youth (Wyman et al., in
press). Some of the staff, just like the students, moved during the study from a school in one
training arm to a school in the other training condition. For ITT analyses, we coded these mobile
school staff as belonging to the school where they first worked, a definition that is completely
defensible but ignores whether or not that particular staff member was in fact trained
(approximately three-quarters of staff per school were trained). Results from these ITT analyses
on changes in assessments of staff could then be compared to results from “as-treated” analyses.
In these “as-treated” analyses, the intervention condition for staff was the actual training
condition they received, and in multilevel analyses their assignment to school was based on
the most recent school where they were employed, not the first one. As expected, the ITT
impact analyses showed somewhat smaller training effects than those in the “as-treated”
analyses.

2.2.3. Practical issues in determining individual level denominator—From a
practical point of view, the exact definition of the denominator will need to be based on the
available data; rarely will complete tracking data be available to identify each child’s full
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entrance and exit history. Besides the cost involved in tracking individuals, the cost of obtaining
consent can lead to practical choices affecting the denominator. It is often impractical to
continue obtaining parental informed consent and a minor’s assent to participate in the study
once the intervention has begun, so late entrants may need to be excluded based on this lack
of informed consent. In the First BPP trial, we selected as our denominator those on the up-to-
date class lists at the time of the baseline teacher ratings, 8-10 weeks into first grade just prior
to the start of the intervention. This criterion thus excluded those who came in after the
intervention period began—the late entrants—but potentially could also have included a few
individuals who entered after the baseline data were collected but before the intervention began.
This definition of the denominator based on class lists at baseline also had the practical
advantage of minimizing the amount of missing data at baseline.

In the Third Generation BPP trial, it is illustrative to follow how we handled three students.
Student 1 was enrolled in one of the twelve schools at the beginning of the school year and
randomized to a classroom that would later receive the Whole Day (WD) intervention. The
student transferred to another school before the intervention began, equivalent to a “no-show.”
We thus excluded this individual from analyses. Student 2 enrolled into a study school in the
final month of the school year and was randomly assigned to a treatment condition; however,
she was exposed to that treatment condition for only three weeks. Because this trial continued
to randomly assign children to classrooms, we chose to include this late entrant in our ITT
analyses despite the limited intervention exposure. Finally, also in the final month of the school
year, Student 3 was administratively moved from a standard setting classroom into the WD
classroom in violation of random assignment, but in keeping with the school’s procedures for
addressing student behavioral issues. This would be a research protocol violation even though
it follows school protocol. We would include this subject and continue ITT analyses that assign
this individual to control, the first intervention received.

2.2.4. Handling missing data in ITT analyses in multilevel RFTs—Missing data can
arise at any level of analysis, but it typically occurs at the individual level where the different
entrances and exits, missed assessments in a longitudinal design, and refusals to answer certain
questions create varying patterns of incomplete data. One simple method that has been used
to handle incomplete data is to remove any cases with missing data on any variable used in an
analysis; however, this method uses post-intervention information to define who should be in
the analysis, which is inappropriate for ITT analyses. It can also produce distorted inferences
if subjects are attrited differentially based on the intervention condition.

Two acceptable methods of handling missing data for ITT analyses are the full information
maximum likelihood method (FIML); (Little and Rubin, 1987), and multiple imputation
(Rubin, 1987, 1996; Schafer, 1997; Schafer and Graham, 2002). FIML estimates are computed
by maximizing the likelihood based on the variables observed for each case, assuming that the
data are missing at random (Rubin, 1976), sometimes averaging over covariates that predict
missingness (Baker et al., 2006). Multiple imputation forms a set of complete datasets based
on an imputation model, then uses an analytic model to assess intervention effects on each of
the completed datasets. The imputation model used to replace the missing data should always
be at least as complex as the analytic model used to examine intervention impact (Collins et
al., 2001; Graham et al., 2006, 2007; Schafer, 1997, 1999; Schafer and Graham, 2002).

For both the FIML and multiple imputation methods, the computations are based on an
assumption of missing at random (Rubin, 1976; extensions for each method are, however,
possible but less often used). This technical condition of missing at random holds either when
the data are missing as if someone wiped off some data without regard to any of the values—
or more generally when missingness of a datum is allowed to depend on other variables that
are observed, but not allowed to depend on any of the unobserved variables.
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An illustrative example of this more general case of missing at random is a two-stage follow-
up study. Often used in psychiatric epidemiologic studies to provide cost-effective prevalence
estimates, this type of planned missingness design is also appropriate for evaluating
intervention impact—as well as variation in impact—on a diagnostic measure. Such a two-
stage design was used in the First Generation BPP trial, and here we demonstrate the use of
FIML to assess two aspects of the GBG impact on DSM diagnosis of Conduct Disorder (CD)
by sixth grade using the Diagnostic Interview Schedule for Children (DISC 2.3-C; Fisher et
al., 1992). The entire sample of first graders who remained in Baltimore City schools by sixth
grade was assessed with an inexpensive screening instrument that contained a short list of CD
items. All of those children who said yes to three or more questions were considered screen
positive. All of these screen positives, plus a random sample of screen negative children
irrespective of intervention condition, were then given a full DISC assessment of CD. The
number of screen negative children that were given this second level assessment was somewhat
less than the number of screen positive children. Overall, well over half of children in the
sample were missing on the more expensive DISC assessment, yet accurate estimates of DISC-
CD diagnoses can still be made because the reasons for missingness are completely known.
By dealing with these data that are missing by design, the population proportions of both the
GBG and control exposed subjects meeting diagnostic criteria could be computed using FIML
methods. What follows is a standard FIML analysis that compares the overall rates of DISC
CD diagnoses for the GBG and internal GBG controls for males in the first cohort.

Table 5 collapses the results of a four-way tabulation of individuals by intervention condition,
screen status, status on a DISC-CD diagnosis, and whether or not the youth was selected to
receive the DISC. The whole numbers in the table refer to the numbers of subjects observed
in this cross classification. Thus in the first row of data, one GBG exposed male received a
positive DISC diagnosis after being screened positive, and six received a negative DISC
diagnosis after being screened positive. Also on this same row, there were no GBG screened
positive males who were not assessed on the DISC. This is because all those who were screened
positive are assessed on the DISC so there are no missing DISC data for these individuals.

Note that the first two columns of cell counts correspond to the numbers of males who received
both the screen and the DISC, while the remaining two columns correspond to both observed
and estimated cell counts for those who were not chosen to receive the DISC. There were 44
(=53-1-6-0-2) GBG males who were screened negative who did not receive the DISC, and
similarly there were 18 (=30-5-6-0-1) internal GBG controls who were both screened negative
and not selected for the DISC. We expect the same proportion of these non-assessed, screened
negative males (p0) to be DISC-CD positive for GBG and internal GBG control males, since
the assessment was blind to intervention condition. Our best estimate of p0 based on both
cohorts was 2/27 = 0.069; this is the observed proportion of screened positive males who were
found to be DISC positive. This maximum likelihood value has been used in Table 5 to obtain
the expected number of DISC-CD positive males in each condition by collapsing across the
two tables where the DISC was taken and where it was not taken. Standard errors (in
parentheses in the last column) as well as the correlation among these estimates (not shown)
are computed based on the Delta method.

A formal test of equivalence in CD prevalence by intervention condition using these data above
was rejected. There were significantly lower odds for GBG exposed males compared to the
internal GBG control males (OR = 0.31, 95% CI = 0.10, 0.95). Thus overall reduction in CD
in the GBG condition is evident by grade six, preceding the result we report on reduction in
adult antisocial personality disorder diagnoses (ASPD) among the first grade aggressive,
disruptive males (Petras et al., 2008). This makes sense because conduct disorder during
adolescence is a requirement for an adult ASPD diagnosis. These findings were also similar
to that for adult diagnostic outcomes (Kellam et al., 2008), where GBG exposed children in
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the first cohort had substantially reduced drug abuse/dependence disorder diagnoses. These
findings on CD were not replicated in the second cohort where less impact was generally seen.

Multiple imputation (MI) can also be used to handle missing data by replacing missing
observations based on an imputation model with multiple versions of a complete dataset. These
complete datasets are then analyzed using standard statistical methods, and inferences on such
statistics as the odds ratio for GBG versus internal GBG control DISC diagnoses, are made by
accounting for two sources of variation: the average standard errors of the odds ratios (within
variation) and the variation in these odds ratios across the multiple imputations standard errors
(between variation). Confidence intervals can also be formed according to Rubin (1987,
1996) and Schafer (1997, 1999).MI has some advantages over FIML since it can use this
additional information to impute values from a large number of observed extra variables that
never appear in the final analysis. FIML can also be used with a modest number of extra
variables, collapsing over those not used in the final model as we did in Table 6.

As an example of how MI can be used in ITT analyses, we refer back to the GBG impact
analyses of on adult drug dependence/abuse diagnoses, taking into account the baseline levels
of aggressive, disruptive behavior in first grade on this outcome (Kellam et al., 2008). There
were some missing data on both the first grade aggressive, disruptive behavior measure as well
as the distal outcome; intervention status was available for everyone. FIML analyses of
intervention impact in this particular case would typically ignore any missing data on either
baseline or outcome (Brown, 1993b). However, the imputation model can use additional
information on other variables measured across the study to help assess intervention impact.
In our analyses reported in Kellam et al. (2008), we included self-report measures of depressive
symptoms in the imputation model and concluded that the effect was stronger using multiple
imputation compared to the traditional FIML model.

We also note that a small number of imputations, say three to five, can often provide enough
complete datasets to provide good quality inferences about intervention impact (Rubin,
1987). Recently, there have been recommendations for using an order of magnitude more
imputations in complex, large datasets with many variables used for imputation (Graham et
al., 2007). The larger number of imputations is of direct value when making confidence
intervals for examining variation in impact as well.

As a final point of comparison, some individuals may be measured at baseline but may be
completely lost to follow-up and have no measures taken beyond baseline. With FIML, such
individuals contribute nothing to the likelihood and therefore are effectively excluded from
analyses. With MI, these individuals contribute a small amount of information based on their
baseline data; their effects on the final inferences are generally small.

2.3. Modeling strategies to examine who benefits or is harmed in ITT analyses
With ITT procedures now defined, we can proceed to discuss analytic strategies for examining
impact in such trials. Such methods have evolved from simple comparisons of proportions, as
with the CD analyses above, to adjusted means in analysis of covariance, to methods that
incorporate nonlinear modeling (Brown, 1993b; Hastie and Tibshirani, 1990), growth
modeling (Muthén, 1997, 2003, 2004; Muthén and Curran, 1997; Muthén and Shedden,
1999; Muthén et al., 2002) and multilevel modeling (Gibbons et al., 1988; Goldstein, 2003;
Hedeker and Gibbons, 1994; Raudenbush, 1997; Raudenbush and Bryk, 2002; Raudenbush
and Liu, 2000). Since a recent listing of such methods and their use in the BPP First generation
trial is available elsewhere (Brown et al., 2008), we highlight only a few novel applications
for RFTs in this paper. Our presentation begins with examining impact for a single follow-up
time and initially treats the multiple levels in the design as nuisance factors. We describe the
use of such methods on the First BPP trial where we examine impact on drug abuse/dependence
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disorder diagnoses (Kellam et al., 2008). The five other trials that were described earlier (Table
1) are used to illustrate how generalizable these methods are across a wide set of trials.

2.3.1. Theoretical models of variation in impact by baseline individual level risk
characteristics—In P-RCTs the ITT analysis has traditionally been focused on examining
main effects of the intervention (Friedman et al., 1998; see, however, Kraemer et al., 2002).
Unless there is an a priori reason to hypothesize an intervention that interacts with baseline,
the standard approach in P-RCTs has been to avoid testing for variation. This practice is
conservative because one will never find any real or spurious variations in impact if one does
not look for them. However, theoretically driven hypotheses can be examined through
subgroup analyses in randomized trials. As an example, because of random assignment within
a trial, control males and treated males should be equivalent at baseline, and their responses
can be legitimately compared, as can those for females or other important subgroups.

One reason to search for variation is to personalize or tailor treatments to maximize impact
among different subgroups (Rush et al., 2006), but this is a relatively new development. For
most P-RCTs trials, the sample is deliberately chosen to be homogeneous, leading to limited
variance in baseline characteristics, and consequently there is often little statistical power
available to examine such interactions between baseline and intervention.

In RFTs, particularly those based on universal preventive interventions, there is almost always
an a priori reason to examine interactions involving intervention and baseline level of risk.
Many of these interventions are designed to modify one or more risk factor that is measured
at baseline, and they are expected to be successful only through the modification of these risk
factors. In addition, in group-based randomized trials, statistical power is much more heavily
dependent on the number of groups rather than the individuals, so subgroup analyses and tests
of interactions often do not suffer from poor statistical power the way they do in individually-
based trials (Brown and Liao, 1999; Raudenbush and Liu, 2000).

We take as our first example the variation in impact we would expect to see in the First
Generation BPP trial. The Good Behavior Game was designed to reduce aggressive, disruptive
behavior. Because roughly half the children have minimal levels of aggressive, disruptive
behavior on entry into first grade and also throughout childhood (Muthén et al., 2002), we
predict that the GBG would have little or no effect on these children. For those with aggressive,
disruptive behavior at baseline, many are expected to remain aggressive, disruptive in the
absence of intervention (Moffitt, 1993; Moffitt and Caspi, 2001; Muthén et al., 2002), so for
these high risk aggressive, disruptive children, we would predict that an effective intervention
would show high impact. In terms of ITT analyses, these predictions can be tested by measuring
the significance of interactions involving baseline aggressive, disruptive behavior and
intervention.

There are other reasons for examining interactions between intervention condition and
individual level baseline risk. For some individuals, an intervention may be harmful while it
may be beneficial for others. In the Second Generation BPP trial, we tested a mathematics
curriculum intervention for first graders. Overall it improved math achievement, but when we
examined impact as a function of first grade baseline achievement, we found that it worked
well for those with initially high achievement and was actually harmful for those who began
with low levels of achievement (Ialongo et al., 1999). Videotapes of the intervention pointed
to lower engagement with lower achieving children compared to high achieving children.
Because of this disadvantage to less achieving youth, this intervention was not continued.

Variation by individual level risk is also important in selective and indicated interventions,
especially as this can help determine an optimal cutoff in risk below which an intervention has
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limited effect (Tein et al., 2004). Alternatively, we may decide to modify an intervention so
that its impact is improved over a wider range of risk.

While we have so far emphasized interactions involving risk measured at the individual level,
such interactions can and often do extend to systems or contexts that are unique to the individual
in a trial. That is, in a classroom-based trial, family environments of the subjects will have
minimal overlap, but school and neighborhood environments may be partially or completely
shared. Clearly, our ability to detect variation in impact across family, school, and
neighborhood environments will depend on the degree of overlap. If there is no overlap, or
minimal overlap across subjects, then a contextual level variable can be included in an analysis
as an individual level variable. Thus in the First Generation BPP trial, family poverty status,
measured by reduced or free lunch, acts as an individual level variable. This poverty index was
found to contribute to the course of aggressive, disruptive behavior in the First Generation BPP
trial, but the GBG succeeded equally with children in impoverished families and those with
somewhat higher incomes (Kellam et al., 1998).

2.3.2. Theorizing variation in impact involving levels that are partially or
completely shared—Randomized field trials with multilevel designs provide opportunities
to examine variation not only by individual baseline characteristics, but by characteristics at
higher levels, including those where the intervention assignment occurs and higher levels as
well. Returning to the classroom-based First Generation BPP trial, we would expect impact to
be low if the classroom began the year with an overall low average aggressive, disruptive score.
At the other end, we would expect the impact to be potentially high in classrooms that started
with high classroom average levels of aggressive, disruptive behavior. Only in these classrooms
where a teacher has difficulty managing her class would there be a strong potential for the
intervention to make an impact. All students in the classroom would share these teacher
characteristics, although some children may be affected more than others.

Recall that in the First BPP trial children were balanced across classrooms within a school
based on kindergarten performance. One might expect that this balanced assignment of children
to classes within school that was carried out by this First BPP trial design (Kellam et al.,
2008; Brown et al., 2006) would lead to nearly identical levels of classroom average aggressive,
disruptive behavior within schools, and therefore we would have no ability to examine variation
in impact by classroom average aggressive, disruptive behavior level once we blocked by
school. However, this is not the case. After adjusting for school, we found significant classroom
level variation in the average aggressive, disruptive score within classrooms early on in the
school year before the intervention began, but there were no differences in this contextual level
of aggressive, disruptive behavior by intervention condition (Kellam et al., 2008). In contrast
to this varying level of classroom average aggressive, disruptive behavior, there was no
significant classroom variation in classroom averages of achievement or family poverty; an
additional source of classroom variation was occurring that affected the levels of child
aggressive, disruptive behavior. Our working hypothesis that came out of these baseline
multilevel analyses was that we did successfully balance children into classrooms on
achievement and a poverty index, but the level of aggressive, disruptive behavior seen in
classrooms was heavily influenced by the teacher’s ability to manage his or her classroom.
About half the teachers were successful in managing classroom aggressive, disruptive behavior
at baseline, while the other half were unsuccessful (Kellam et al., 1991, 1998). We would
therefore predict that the GBG would have its highest effect in classrooms where the baseline
level of aggressive, disruptive behavior was high, strongly suggesting that the teacher had
limited ability to manage his or her classroom. The GBG’s effect would be low in well managed
classrooms. Furthermore, we would predict that the GBG’s highest impact would be for the
most aggressive, disruptive children in the most aggressive, disruptive classrooms, a three-way
interaction. We tested for this three-way effect in previous analyses, and found this estimated
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effect was in the expected direction, but was non-significant (Kellam et al., 1998). Not
surprisingly, the power for this three-level interaction was rather modest.

Intervention effects may vary as a function of neighborhood of residence and other contexts
that are partly shared across these classrooms. While there have been several examinations of
neighborhood effects on child development (Aber et al., 1997; Brooks-Gunn et al., 1993;
Pickett and Pearl, 2001; Plybon and Kliewer, 2001), to date little attention has been placed on
its moderating effect on a preventive intervention. The methodology is available, however, to
address such questions.

Interactions between baseline and intervention conditions have been hypothesized for the other
trials that we have included in Table 1 as well. For the Rochester Resilience Project (Row 1),
we hypothesized that the intervention effect would vary as a function of classroom context,
with higher impact when the proportion of children in the classroom were maladapting. In the
Third Generation BPP trial (Row 3), we elaborated on the model developed for the First
Generation trial. The prediction is that intervention impact would be expected to be greatest
on children who were aggressive, disruptive or poor learners at baseline in classrooms where
the teacher had low management skills and had limited effectiveness in teaching reading. In
the Georgia Gatekeeper Project (row 4), we hypothesized that QPR training would be more
effective in referring suicidal youth in middle school compared to high school, both because
of elevated suicidality in middle school but also closer contact with school staff for these
younger children. In the ASAPS school-based trial to prevent drug use (row 5), we anticipated
variation in impact by individual level of risk regarding attitudes and usage of drugs as well
as low bonding to school in seventh grade. We also predicted that in schools where the school-
level norms regarding use of drugs were high at baseline, the intervention effect would be larger
since that was one of the targets of the intervention. Finally, in the California MTFC trial (row
6), we anticipate there may be differences in impact for rural versus urban counties, as well as
those counties that have a history of interagency collaboration.

We have specified important baseline by intervention interactions in each of these trials based
on theory. In the next section we examine how inferences about overall intervention impact as
well as variation in impact can be drawn from analytic models that may be imperfectly
specified.

2.4. Causal inferences regarding overall impact and variation in impact for RFTs
All ITT analyses of intervention impact involve a comparison of responses among those
assigned to the intervention compared to those assigned to another (control) condition. This
comparison may be simple, for example, a difference in observed means for each group. The
comparison could also involve complex, sophisticated models with random effects, covariates,
and interaction terms that are linearly or nonparametrically related to outcomes, whose
outcomes themselves may have normal, binomial, count, or time to event distributions (Brown
et al., 2007d; Kellam et al., 2008). Statistical inferences derived from these models are then
used to infer causal effects due to the intervention. Random assignment helps considerably in
strengthening these causal inferences about the intervention, but most trials use random
assignment at only one level. It is not immediately clear whether statistical inferences about
parameters measuring variation in impact across different levels of a trial have causal
interpretations, nor is it clear whether our causal inferences remain valid if we fail to specify
all the appropriate covariates in our model. Such fundamental questions of causal inference
have been partially answered through advances in causal modeling. These advances include
the Neyman, Rubin, Holland (NRH) approach involving potential outcomes or counterfactuals
of the primary outcome (Holland, 1986; Neyman, 1923; Rubin, 1974, 1978) and a principal
stratification approach involving intermediary outcomes, such as participation or adherence as
well (Angrist et al., 1996; Frangakis and Rubin, 1999, 2002; Jo, 2002; Jo and Muthén, 2001).
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In this paper involving ITT analyses, the NRH approach allows us to obtain some general rules
on when the statistical models provide valid causal inferences. For post-assignment analyses
that we have not included in this ITT paper, we would need to rely on principal stratification
as well.

2.5. Assignment adjusted analyses to improve inferences of intervention impact
Making correct inferences about intervention impact requires us to include in our model the
right covariate terms involving the intervention. Thus if the intervention effect varies by
baseline levels of risk, the model should include an intervention by baseline covariate along
with intervention itself. Without these terms in the model, we cannot expect to make correct
inferences about the intervention’s full impact. A more troubling issue, however, is whether
our conclusions about an intervention’s variation in impact depend on whether we build a
model that includes all important covariates, even ones at the individual level that do not include
intervention condition. If our inferences about intervention impact did require us to include all
important individual level covariates in our analysis, then our inferences from a best-fitting
model could be suspect. This section describes a general procedure called assignment adjusted
analysis that automatically protects our inferences in RFTs against some missing covariates.

For trials that randomize at the individual level, it is well known that randomization protects
inferences of overall intervention impact in case we have an incomplete model. We may be
missing an important individual level covariate, but randomization provides balance across
this missing covariate. The situation is not exactly the same in trials that are randomized at the
group rather than individual level, but there is a relatively simple method that can provide this
additional stability in these estimates of intervention impact even if we ignore or do not have
available some important predictors.

In this section we provide a method that produces accurate estimates of intervention impact
even if the underlying model is not specified completely. To study the properties of these
estimates, we distinguish between a NRH causal model involving possible outcomes that
describes how each subject’s outcome, if assigned to the control condition, would depend on
individual level and higher level covariates (Brown et al., 2007b). The causal model would
further specify how each individual’s outcome, if assigned to the active intervention condition,
would depend on additional individual level and higher level covariates as well. The causal
effect for each individual is then defined as the difference in the outcome under active
intervention and control conditions. These causal effects contain the true parameters that
represent intervention impact. If the causal effect is just a simple constant difference between
intervention and control, then the only intervention effect is a main effect. If the causal effects
vary as a function of a covariate, then the intervention effect interacts with that covariate.

Because we can never know the true causal model for the data, we can only evaluate
intervention impact on a hypothesized multilevel model that specifies how each subject’s
outcome depends on their intervention status, covariates, and interactions, as well as error terms
accounting for individual and shared variances. There are three important possibilities to study;
this hypothesized model, evaluated for those who are included in the study and under the
random assignment mechanisms, may be: (1) exactly correct; (2) it may be overly inclusive
by containing more covariates than the true model; or (3) it may be under inclusive of the true
covariates or interactions affecting outcomes. Theoretical developments have shown that under
mild assumptions about the models and the ways that individuals and higher level units are
selected and assigned to the intervention conditions, hypothesized models that are exactly
correct or over specified will yield unbiased estimates of all the intervention effects. If the
hypothesized model is underspecified, inferences about intervention effect can be erroneous.
Some estimates of intervention effect perform well when subjects are weighted inversely in
proportion to the probability of intervention assignment (Rosenbaum, 1987), but this is not
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necessarily the best approach when examining variation in impact. It is always possible,
however, to add some simple covariates in an underspecified model and thereby produce an
asymptotically unbiased estimation of intervention impact, even when some of the covariate
predictors are not in the hypothesized model. We call this procedure assignment adjusted
analyses (Brown et al., 2007b).

Specifically, we first calculate the proportion of groups in each block that are randomly chosen
to receive the intervention. If this block level “propensity” measure is constant, that is, the
proportion of groups in each block receiving the intervention is the same, then the model is
robust against under specifying the covariates. That is, even when important covariates at any
level that do not involve the intervention condition are not included in the analysis, the overall
impact estimates remain unbiased. Only in the case where these propensities are not constant
is there any benefit to making an adjustment. The adjustment is straightforward (Brown et al.,
2007b): simply add new covariates to the model corresponding to the propensity score variable
itself and the product of any covariate that interacts with intervention assignment. Thus if only
a main effect of intervention is being examined (Tx = 1 if active intervention, Tx = 0 for control)
for its effect on a continuous outcome, one would include in a linear mixed model (LMM)
analysis a new covariate π, corresponding to the proportion of the groups assigned to active
intervention within each block. For example, in a classroom-based randomized trial, if two of
the three classes in a school (that is, the blocking factor) were assigned to active intervention,
then π = 2/3 for every individual subject in this school. This covariate π is a true propensity
score, but unlike traditional propensity score analyses (Rosenbaum, 1987), it need not be
estimated from a model but rather it is obtained from the numbers of units that are actually
assigned to the active intervention within each block.

We now describe the assignment adjusted model that is necessary when more complex baseline
by intervention interactions are added to the model. If a main effect of intervention Tx is
included as well as an interaction of this intervention condition times a covariate X, Tx × X,
then we would add into our analysis both the propensity score covariate π and the interaction
term π × X. Two examples from the First Generation BPP trial are presented below followed
by a more general rule for incorporating model robustness. In this RFT trial, level one
corresponds to individuals, level two corresponds to classrooms, and level three corresponds
to schools (which were further nested into geographic areas of the city). Furthermore, the two
outcomes we examine are binary, so generalized linear mixed models, which is logistic
regression with random effects, is used instead of LMM.

First, we present the impact of the Good Behavior Game on lifetime drug abuse/dependence
disorders by age 19-21 as described in Kellam et al. (2008). In the generalized linear mixed
effects model analysis presented in Table 7 for males, which adjusts for classroom variation
and baseline aggressive, disruptive behavior ratings from first-grade teachers, the reduction in
lifetime drug abuse/dependence disorders for GBG compared with internal GBG controls was
large and significant, with a log odds ratio (OR) of 0.999 (p = 0.035) as shown in the third row
of Table 7. This magnitude corresponds to an approximately 2.7 times greater risk of drug
abuse/dependence disorders in the internal GBG controls compared with the GBG. In contrast
to this significant difference between the GBG and internal GBG controls, there was no
indication of differences in rates of disorders among the three control groups (internal GBG,
internal ML, and external controls); see contrasts in rows 4 and 5 of this table. In this best fit
model, there were no significant interactions between intervention and baseline aggressive,
disruptive behavior. To further ensure the unbiasedness of the estimated treatment effect, we
added assignment adjustment by including the probability of GBG assignment (π) as a main
effect. For all individuals in the same school, the value of this covariate π was the same, simply
the proportion of the classes that were assigned to the GBG. These propensities varied from
1/2 in schools that had two classrooms to 2/3 for schools that had three classrooms with two
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assigned to the intervention. In the assignment adjusted GLMM analysis summarized in Table
8, we have carried out the same analysis by now adding the propensity covariate to the analysis
(row 3). The reduction in lifetime drug abuse/dependence disorders for the GBG compared
with internal GBG controls was still large and significant (log OR of 1.068, p = 0.028 in row
4 of Table 8). Note that the intercept term (row 1) is the only one to change from Table 7; this
is because the mean of π is far from zero. Note also that the two contrasts in rows 5 and 6 lose
precision; this is because π is strongly correlated with these two dummy variables (π = 0 for
all children in external control and ML schools). These differences do not change the
conclusion that the GBG was effective.

We now examine assignment adjusted analyses in the same trial but for an outcome that exhibits
important variation in impact by baseline. For lifetime regular smoking of males, we reported
a significant treatment impact as well as interaction with baseline aggressive, disruptive
behavior (Kellam et al., 2008). We investigated how to perform assignment adjusted analyses
for both of these intervention impact covariates. To determine those factors contributing to
males smoking 10 or more cigarettes per day as young adults, we obtained a bestfitting GLMM
model that included main effects for baseline aggressive, disruptive behavior plus interactive
effects of baseline by intervention condition. A likelihood ratio test confirmed a highly
significant effect of the GBG when compared with the internal GBG control (p = 0.003, with
2 d.f.). Overall, the GBG is associated with a reduction in the probability of males smoking 10
or more cigarettes per day, and the effect of the GBG was greater for boys with higher levels
of aggressive, disruptive behavior in first grade compared with lower levels where the rates of
regular smoking are similar (see row 6 of Table 9). This finding could also be verified by the
assignment adjusted model, which is summarized in Table 10. We added two terms in the
model. They are the probability of GBG assignment (row 3) and the interaction between the
GBG assignment and the baseline aggressive, disruptive behavior rating (row 7). The overall
significance of the GBG impact when tested with a likelihood ratio test had a p-value of less
than 0.001 (on 2 d.f.). Compared to the unadjusted analysis, the treatment effect again showed
very significant and higher benefit for the higher risk boys (row 8).

2.6. Analytic considerations and strategies in examining variation in intervention impact
One of the major concerns voiced about the inclusion of interaction terms in the analysis of
randomized trials is that these additional terms provide multiple opportunities to find
significant intervention impact, thereby inflating the Type I error rate. Without taking some
precautions, this inflation will be important because model complexity increases exponentially
with additional covariates; these analytic complexities include the use of polynomial, nonlinear
baseline terms and interactions or subgroup analyses. One systematic way to protect against
inflating the alpha level is to: (1) start with the more complex models that include interactions
and nonlinear covariate effects; (2) identify the best-fitting model by removing interactions
and replacing nonlinear effects with linear effects; and (3) evaluate intervention impact in this
best-fitting model. The key to limiting the alpha level is to ignore any examination of the
coefficients of the intervention terms when deciding on the best-fitting model; only examine
these intervention effects in a best-fitting model. This general approach was used in our ITT
analyses of the GBG in the first BPP trial (Kellam et al., 2008).

Besides making assessments about whether to include nonlinear or linear effects or interactions
in examining intervention impact, there are additional complexities that ITT analyses of
variation in impact in RFTs often require: multiple levels of nesting in trials, random effects
on the intercept and slopes, and non-normal models. Few analytical approaches can handle all
these levels of complexity at the same time. Below we describe how a broad set of these models,
as well as testing for variation in impact, can be handled with generalized additive mixed
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models, and then discuss analytical strategies that build on each component to form a completed
set of analyses.

2.6.1. Generalized additive mixed effects model—GAMM is an extension of the
Generalized Linear Mixed Effects Model, which itself is an extension of Generalized Linear
Models (GLM; McCullagh and Nelder, 1989) as well as an extension of linear models such as
regression, analysis of variance, and analysis of covariance. These linear models assume that
the outcome distribution is continuous and nearly normally distributed. The GLM class of
models contains all standard regression models with a normally distributed outcome, as well
as logistic regression, Poisson regression, and log-linear models that include contingency table
analyses (McCullagh and Nelder, 1989). GLMM adds random effects to all of these models
so that multiple levels of clustering and longitudinal, repeated measures on the same subjects
can be handled. Such models with both random and fixed effects are called mixed effects.
Finally, GAMM allows the fixed effects in these mixed effects models to be related in
nonlinear, smooth nonparametric relationships with the outcome measure. While GLMM does
provide a form of nonlinear relationship to hold, this relationship is parametric and rigid in
nature. GAMM’s added flexibility of using nonlinear, smooth relationships compared to linear
relationships provides a valuable tool in assessing whether intervention impact is the same
across all levels of a baseline characteristic or whether it varies by this characteristic.

2.6.1.1. Generalized additive model for binary outcomes: Diagnoses, as well as many other
binary outcomes of interest, are poorly modeled using normal based models; the logistic model
is traditional for binary outcomes. This logistic regression model posits a linear relationship
between the logit of the conditional probability of the jth subject’s binary outcome Yj being
one (diagnosis) and covariates (Xj), e.g., baseline characteristics and intervention condition.
The linear part of this model has the form of logit ((Pr(Yj = 1/Xj)Σxjβj), where the βj are
regression parameters.

From the linear logistic model and its regression estimates, one can interpret the intervention
impact. In a model that includes intervention condition as an indicator of active intervention
(one) compared to control (zero), the coefficient for intervention estimates the log odds of
active intervention on outcome, adjusted for the other covariates. A value of zero implies that
there is no intervention impact, and a negative value indicates that the outcome is less likely
under active intervention compared to control. When the logistic model includes the
intervention condition, a baseline covariate, and the product interaction of intervention by
baseline, then the last coefficient can be used to measure the linear change in the log odds of
intervention effect with a unit change in baseline.

The generalized additive model replaces Σxjβj with Σfj(xj) where fj is an unspecified smooth
function; examples of these smooth nonparametric functions, which differ from linear fits, can
be found in Fig. 2 discussed later. Under a conventional least square approach, fj could be
estimated by minimizing Σ(yj - fj(xj))2. In the generalized additive model approach, we
maximize the log likelihood after adding a term that measures the “smoothness” of the function
fj to the target quantity being minimized. This means we do not just minimize the log likelihood
but also take into account the smoothness of the regression curve. The function is often
estimated in a flexible manner using cubic splines with variable nodes. This estimated function
Σf̂j(xj) can reveal possible nonlinearities in the effect of the Xj. When one of the xj corresponds
to the product of intervention by baseline, this nonparametric function maps out how change
in the log odds between intervention versus control changes as the baseline value is moved.

2.6.1.2. Generalized additive mixed model for binary outcomes: The generalized additive
model can be extended to incorporate random effects for the mean/intercept. In the computation
stage, the model fitting procedure is separated into two steps, the generalized additive modeling
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part and the linear mixed effects modeling part. These two steps are implemented iteratively
to find the best solution. For computations, we have used R with the contributed package
MGCV (R Project, 2007).

In RFTs, clustering at different levels can be incorporated in the model by adding random
covariate effects (Gibbons and Hedeker, 1997; Gibbons et al., 1988; Hedeker and Gibbons,
1994). To test if inclusion of random effects helps with the model fitting, we can perform a
likelihood ratio test. If the final candidate model is a generalized linear model, we can compare
the fit using a generalized linear fixed-effects model with the same model that also includes
random effects. Under the null distribution of no random effect, the test statistic follows a
weighted Chi-square distribution; see Kellam et al. (2008) for examples of its use.

Once we have identified a best-fitting candidate model, we can add random effects from the
next level (e.g. classroom, school, and geographical regions). If the variance of the classroom-
level random effect is large, then we can investigate whether inclusion of fixed contextual
variables provide additional explanatory value. Formal testing of whether the random effects
are required in a model will depend on whether the best-fitting model is a generalized linear
model, or a generalized additive model. For the former, we compared the fit using a generalized
linear mixed-effects model (Breslow and Clayton, 1993; Wolfinger and O’Connell, 1993)
while the latter, when there are significant nonlinear predictors, should be compared using a
generalized additive mixed mode (Wang, 1998; Wood, 2004).

3. Analytical strategies for examining variation in intervention impact over
time

In this section, we summarize how growth modeling can characterize the patterns of change
in repeated measures over time due to an intervention compared to control. We consider many
of these models as intent-to-treat analyses, and for some trials a growth model analysis may
provide the primary analysis of impact, just as in P-RCT’s the primary analysis can be based
on the rates of change in a repeated measure for intervention versus control (Muthén, 1997,
2003, 2004, in press; Muthén and Muthén, 1998-2007; Muthén et al., 2002). These growth
models are quite flexible, incorporating linear or nonlinear growth patterns, interactions with
baseline variables, intervention changes that affect the variance or covariance as well as the
mean pattern of growth, and varying intervention impact across different patterns of growth,
rather than an effect that is homogeneous across the entire population. These methods also
have flexible ways of dealing with non-normal distributions, including the use of Two-Part
(Olsen and Schafer, 2001), and related censoring models (Nagin, 2005) for drug use and other
data where zero use is its own special category, as well as for binary, ordinal, and time-to-event
data (Muthén and Muthén, 1998-2007). Elsewhere, we have described these different types of
growth models and shown their use on the First BPP trial impact analyses of the GBG (Brown
et al., 2008); therefore in this paper we illustrate the range of the use of these models in RFTs.

3.1. Representing variation in growth trajectories in a population
Growth models can be expressed in a latent variable or latent growth model framework (Muthén
et al., 2002) or a multilevel framework (Raudenbush and Bryk, 2002; Wang et al., 2005). Either
way, they rely on the use of random effects to represent individual level growth patterns. For
example, a model that assumes that individual patterns of growth are linear over time can be
represented in technical terms as follows. Let Yit represent the ith subject’s observed outcome
at follow-up time t, where the index i=1, ..., N stands for the individual, t = 0, and 1, ..., T
correspond to the time point. The point t = 0 represents baseline and all other times are after
the start of the intervention. Also N represents the total number of subjects, and T is the number
of follow-up times. We suppose for the moment that all individuals are measured at every time
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point; missing data methods described earlier can handle the more general case. Then the
observed values can be related to the individual level growth parameters of random intercept
αi and random slope βi by the first-level model,

(1)

In this equation the error terms εit are deviations from the individual growth trajectory and the
observed data at each time point. Often, they are taken to have normal distributions, although
methods for ordinal, count, and binary variable growth models also exist (Muthén and Muthén,
1998-2007). From a non-technical point of view, these equations characterize each individual
as having data points that vary about their own unique linear growth pattern.

3.2. Modeling intervention impact on growth trajectories
Random effects, represented in this linear growth model by the unobserved or latent αi and
βi, provide a highly flexible way to characterize differences in individual level growth patterns
(Gibbons et al., 1988), and are the building block for examining overall impact as well as its
variation in impact as a function of baseline characteristics (Muthén and Curran, 1997). The
impact of the intervention on the rate of change in growth, for example, can be represented by
a second level model,

(2)

where Txi is the intervention condition for the ith subject (coded one for intervention and zero
for control), and the coefficient b is the population mean difference in rate of change for
intervention versus controls. If this coefficient is less than zero, then the overall rate of growth
for active intervention is less than that for controls. Marginal maximum likelihood solutions
to these types of growth models can be fit using Mplus (Muthén and Muthén, 1998-2007),
which deals with missing data using FIML; similar models can be fit using SAS, STATA,
SPSS, HLM, MLWin, and SuperMix.

There is no necessity to restrict the time effect to linear growth in these models. Modeling can
include piecewise continuous growth, for example, with different overall trajectories during
the intervention period and post intervention (Muthén et al., 2002), quadratic growth (Muthén
et al., 2002), or the use of nonlinear transformation of either the outcome measure or the time
scale so that growth patterns are more linear. One can also use latent growth modeling to
transform the time scale (Muthén and Muthén, 1998-2007).

Extensions of this basic growth model can address variation in impact as a function of baseline
characteristics. For example, to form a model of how the intervention effect on growth
trajectories varies as a function of baseline characteristics, one can modify the second level
model to include a baseline condition (X) and its interaction with treatment (Tx × X), which
represents a type of variation in intervention impact,

(2a)

In this alternative intervention by baseline growth model, the coefficient d represents the
change in intervention versus control difference in slopes with varying levels of the covariate.
If this coefficient is negative, then the interpretation would be that the difference in the slopes
between intervention and control grows more negative with higher levels of baseline scores.
Note that a significant intervention difference on the random intercepts would be an unexpected
result; because these random intercepts represent baseline values, they should be equal across
intervention groups if random assignment was successful. Alternatively, significant
intervention differences in these intercepts could point to model misspecification as well.

A closely related set of intervention by baseline growth models has been introduced by Muthén
and Curran (1997). When the baseline variable itself is the same measure as the outcome
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variables used in the growth model, it makes sense to incorporate this measure directly into
the growth model, rather than to make a covariate adjustment for it. Because the intercept αi
in Eq. (1) corresponds to the time zero, error-free measure for the ith individual, we can
investigate how this intercept affects the random slope differently across intervention
conditions. Formally, the second level model becomes,

(2b)

with similar interpretations of the interactive effect of intervention by baseline as in Eq. (2a)
above. In this model the error for the slope should be independent of that for the intercept, and
it represents an alternative formulation that explicitly allows the slopes to have different
regressions on the intercept across intervention conditions. Analyses of the GBG impact on
the course of aggressive, disruptive behavior using this method identified a significantly
negative interaction coefficient, suggesting that the GBG impact grew stronger with increasing
levels of baseline aggressive, disruptive behavior (Muthén and Curran, 1997).

3.3. Growth mixture models
Growth mixture models were first introduced to understand variation in growth patterns that
occurred in a population (Muthén and Shedden, 1999; Nagin, 2005; Nagin and Tremblay,
2001; Pearson et al., 1994; Verbeke and Lesaffre, 1996). The use of these methods to detect
variation in intervention impact across subgroups of individuals was applied a few years later
(Muthén et al., 2002). One of their most important uses is to assess variation in impact without
requiring linear interactions with baseline, as described in the Muthén-Curran method above.
In our description of GMM, we limit our discussion to this central use. Examples of their use
in the First BPP trial are found in Muthén et al. (2002), Wang et al. (2005), and in this issue
(Petras et al., 2008), as well as for evaluating other interventions as well (Li et al., 2002; Segawa
et al., 2005).

GMM presumes that the underlying population can be divided into distinct subsets, each set
having a distinct pattern of growth trajectory. In trials aimed at entire populations, there are
often developmentally meaningful categorical distinctions in growth trajectories. As examples,
one may see a large proportion of the population following a normative pattern of growth while
other patterns may characterize abnormal or deviant growth leading to more severe outcomes,
e.g., early and continuing aggressive behavior leading to crime and delinquency (Moffitt,
1993; Moffitt and Caspi, 2001; Muthén et al., 2002). One may also find a pattern of growth
indicative of early problems but then returning to normal levels over time (Muthén and Muthén,
2000). There may be a group with elevated outcomes during specific times, such a subset of
college-age youth who engage in alcohol binging during vacations (Greenbaum et al., 2005).
For aggressive behavior, Moffitt (1993) suggested that youth followed one of three growth
patterns, a normative, low aggressive class, an early starter class that had high aggressive
behavior early in life and remained high, and a late starter class whose aggression increased
only during the adolescent period. Patterns similar to this have been identified in the control
group of males in the First BPP trial (Muthén et al., 2002; Kellam et al., 2008; Petras et al.,
2008). A critical question is how the intervention affects these different patterns of growth.
The following models provide one formulation to examine this question of variation in impact.
In non-technical language, we posit that individuals will follow one of several growth trajectory
classes, and that the intervention can have a different effect on each one.

As before, let Yit represent the ith subject’s observed outcome at follow-up time t, where time
zero is the time just preceding intervention. Assume that each individual’s own growth can be
represented by a random intercept and slope as in Eq. (1) above. We suppose, however, that
there are K distinct, unobserved classes, k=1, 2, ..., K, each corresponding to a different pattern
of growth. Each individual belongs to one of these classes, but these classifications are
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unknown, and membership can only be inferred from that person’s own outcome data, although
there may be other covariates that help identify class membership as well (Wang et al.,
2005). Conditional on class membership, we can represent the impact of the intervention on
this class as,

(2c)

The coefficients b(k) correspond to the strength of the intervention impact on the linear growth
trajectory within the kth class, as indicated by the superscript. With Txi being an indicator of
active intervention versus control, the coefficient b(k) measures the average change in growth
for intervention versus control in class k. The term c(k) αi accounts for the relationship with the
intercept, which may differ across classes, and ε(k)

i are error terms whose variance may also
depend on the class. It is possible for the regression of slope on intercept (c(k)) and the class
specific error variance for the slope (Var(ε(k)

i)) to depend on intervention condition, and these
intervention effects should be tested as well. Inferential testing of these individual regression
coefficients and variance components, as well as the determination of the number of underlying
unobserved latent classes can be based on formal likelihood comparisons or related methods
such as the Bayesian Information Criterion (BIC) that scales the likelihoods through
adjustments for the number of parameters and observations. Missing data can be handled either
by FIML, or multiple imputations; both provide acceptable analyses, but care should be taken
to make certain the imputation model is sufficiently rich that it can approximate the mixture
modeling. Hierarchical clustering, such as classrooms containing children, can be accounted
for through formal inclusion of this higher level in analyses (Raudenbush and Bryk, 2002), or
through adjustments to standard errors using sandwich-type estimators (Asparouhov and
Muthèn, in press; Muthén and Asparouhov, 2006; Zeger et al., 1988).

There has been some debate in the literature about inclusion of random errors at the level of
the individual, represented by nonzero variance for the ε(k)

i in Eq. (2c). If a model specifies
that there is no variance within these classes (Nagin, 2005;Nagin and Land, 1993), one of the
consequences of this formulation is that individuals in this class have measures that are
independent across time. In data such as the First BPP trial, this lack of autocorrelation across
time is strongly rejected by the data. Thus we recommend inclusion of random errors for each
individual’s intercept and slope. We should only take these errors out if there is empirical
support for each subject’s measures over time being independent of one another after
conditioning on class membership.

In the analysis of the First BPP trial’s effect on teacher ratings of aggressive, disruptive
behavior from first through eighth grade, the data for males suggest classifying males into
either three or four patterns of growth (Muthén et al., 2002). The primary patterns correspond
to a consistently low aggressive, disruptive class, a class that begins with low levels of
aggressive, disruptive behavior and then increases over time, and a class with consistently high
levels of aggressive, disruptive behavior. The intervention effect is limited to the highest, stable
aggressive, disruptive class, where the GBG exposed males have lower levels of aggressive,
disruptive behavior through most of elementary and middle school compared to those high
aggressive, disruptive boys in the control group. Thus intervention impact is apparent among
the highest risk males in this population (Muthén et al., 2002; Petras et al., 2008).

We note that GMM relies on fewer assumptions than the earlier method of Muthén and Curran
(1997) that used a linear intercept by intervention effect on growth. First, there is no
requirement that GMM will produce classes that vary systematically by initial baseline, so the
patterns of growth can be more complex than those that stratify by baseline risk. These patterns,
if freely estimated from the data, may or may not correspond to theoretically expected trajectory
classes. Thus models with freely estimated classes that correspond to those that are expected
provide empirical support for these classes. It is also possible to run growth mixture models
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with classes that closely mimic the theoretically expected trajectory classes. These more
confirmatory analyses, however, need careful examination to see that the hypothesized classes
are fully supported by the data.

A second reason why GMM is more flexible than the Muthén-Curran model is that the
intervention impact coefficients for GMM are estimated separately for the different classes.
Thus a possible conclusion from GMM is that for classes that represent the lowest risk as well
as the highest risk, an intervention could show a significant beneficial effect, but for an
intermediate risk class the coefficient may indicate that the intervention is harmful. Intervention
impact would have a curvilinear relationship with risk, showing benefit at the extremes and
harm towards the middle. On the other hand, the Muthén-Curran linear interaction model for
baseline by intervention effects on growth only allow for the intervention effects to be
monotone increasing in risk or monotone decreasing in risk. In this way GMM allows for a
much more flexible way to model intervention impact over time as a function of these different
classes of growth trajectories. When interest focuses on questions of benefit or harm among
the extremes of risk, GMM is generally preferred because it does not force a rigid linear
interaction with baseline.

3.3.1. Causal interpretation of intervention effects in growth mixture models—
The types of growth mixture models that have been discussed above have a full causal
interpretation in randomized field trials. Such a formulation relies on the NRH approach that
involved potential outcomes. If we assume that each person in a population belongs to only
one of the unknown or latent classes, and that being assigned to a particular intervention does
not change this person’s class but rather modifies the growth trajectory, then the coefficients
bk of slope on intervention in Eq. (2c) above do have a causal interpretation. That is, bk is the
average change we would expect to see in slopes when subjects in class k are switched from
control to active intervention.

A key element in this causal interpretation is that class membership does not depend on
intervention condition; indeed it requires that the numbers of classes and the true, population
proportions of subjects in each class be the same across intervention conditions. An empirical
test of this assumption can be obtained by comparing the likelihoods for a GMM with unequal
proportions in each class across intervention conditions to the same GMM where the
proportions in each class are set to be the same for intervention and control conditions.
Rejection of this hypothesis indicates that the underlying mixture model is not supported by
the data, and intervention parameters are therefore highly suspect. Another important test of
the assumptions leading to an appropriate causal inference is that the intercept means and
variances for intervention and control groups should not differ significantly from one another
for any of the classes.

3.4. Strategies for model checking with growth modeling
One of the most challenging problems with GMM is that of verifying that the model fits the
data adequately. Only with an adequate model can the interpretation of coefficients be
meaningful, and checking needs to go beyond the two sets of tests described above. Great care
needs to be used to assess model fit because inferences about the intervention impact can
sometimes be quite sensitive to the detailed model parameterization of the variances and
covariances of unobserved latent variables. A major challenge in assessing the adequacy of
these models is that they involve many unobserved variables, continuous random effects for
each individual that represents their underlying growth patterns, and a discrete latent class that
represents each individual’s pattern of growth. Such models are extremely flexible, but this
makes it all the more difficult to select appropriate growth models for examining impact.
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3.4.1. Checking model constraints—One valuable technique for examining model fit is
to compare what a model would predict against an observable quantity. Thus plotting the
observed means for each time point and each intervention condition against those predicted by
the maximum likelihood solution for a model will show how well the model fits to the data
(Muthén and Muthén, 1998-2007). If some data are missing, then plots that use unrestricted
MAR estimates of these population means may be more appropriate than those using
uncorrected means for nonmissing cases. Other more complex observables based on empirical
Bayes (Wang et al., 2005) and Bayesian modeling (Carlin et al., 2001) can also be used to
check model fit. When there is only a single-class growth curve model that is fit, observed
means (or unrestricted MAR mean estimates) provide an adequate check on the model
predictions. However, for GMMs with multiple classes, we must base these checks on quasi-
observed means for each class using posterior-probability weighted raw data (Wang et al.,
2005),

There are some other general approaches to arriving at models that provide good fit. The
simplest involves a procedure to scan through the fixed and equated parameters to identify
which would improve the fit significantly if freed from the restriction. As an example, we may
question whether the class specific variances in intercepts are the same or different across these
classes. Equality constraints can always be compared by a likelihood ratio test based on fitting
two identical models, except that one enforces the equality constraints, and the other does not.
For example, to test for homogeneity of variances across classes, one model would enforce
each class’ variance of the slopes to be equal, and a second model would be identical except
that it would allow these class variances to vary. This method can be implemented if one wishes
to examine lots of equality constraints using multiple groups (Schaeffer et al., 2006). An
alternative method to test single equality constraints is to use score tests (called modification
indices in Mplus; Muthén and Muthén, 1998-2007). These score tests can quickly screen
through all constraints individually and provide help in detecting model inadequacy and
improving model fit. For example, growth models typically assume that the measurement errors
for different measurement times are uncorrelated with one another. This type of constraint of
zero correlation among two error terms is rarely checked. As we began fitting growth models
to the nine teacher ratings in the First BPP trial, we noted that two modification indices for
testing uncorrelated errors were especially high. A closer look revealed that these two
correlations corresponded to the only two sets of times where there were fall and spring ratings
during the same year (first and second grades). All the other six measures were done in separate
years through eighth grade. The correlations within grade level were due to having the same
teacher rate the children twice in that year. By introducing two correlations among error terms
for ratings done by the same teachers in the fall and spring of the same year (Muthén et al.,
2002; Wang et al., 2005), we made a significant improvement in fit.

3.4.2. Screening of nested and non-nested models—For screening purposes, the
Bayesian Information Criterion can be used to compare a series of models that are non-nested
(as well as nested models, but formal Likelihood Ratio testing is often better for these). BIC
and related methods trade off gains in likelihood with the number of parameters and sample
size (Schwarz, 1978). Heavy reliance on BIC can lead to poor model selection more often than
one would like, particularly in determining the number of classes to use in a GMM (Bauer and
Curran, 2003; Henson et al., 2007; Hipp and Bauer, 2006; Hoeksma and Kelderman, 2006;
Muthén, 2004; Nylund et al., in press). Other methods based on likelihood alone exist that can
come up with several candidate models and remove many models for consideration.

3.4.2.1. Using graphical methods for examining fit: A final method for model checking relies
on graphical diagnostics to detect whether key components of the model are misspecified.
Diagnostics can be valuable in detecting whether the underlying mean structure for growth is
misspecified, i.e., if the model should be quadratic rather than linear; whether variances need
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to be allowed to vary across class, and whether the latent growth parameters correlate
differently across classes. There exists a helpful set of graphical procedures based on empirical
Bayes estimates and pseudoclasses (Bandeen-Roche et al., 1997; Wang et al., 2005).

As one example of a graphical method that helps elucidate patterns in the data, we discuss how
a nonparametric smoother can be used to identify just how an intervention can affect growth
patterns. Since this method is not described elsewhere, and it relates to the additive fits
described above, we provide an example in the context of the First BPP trial. Fig. 2 provides
an example of how this nonparametric smoother can be used to identify the region of baseline
risk where the GBG shows benefit on the slope of aggressive, disruptive behavior. This plot
was derived from a four class growth mixture model for males, and is based on empirical Bayes
estimates of intercepts and slopes for each subject followed by the use of a nonlinear smoother
(Brown, 1993a,b;Hastie and Tibshirani, 1990) to highlighting the differences between the GBG
and control. Estimates of intercepts and slopes for males exposed to the GBG are shown as
dark triangles and those for controls as open circles. The GMM underlying this fit allowed for
different patterns of growth for the mixtures but did not include intervention as a predictor
since this was to be examined diagnostically in this plot. The two smooth curves added to this
plot are best-fitting non-linear lowess fits to assess the relationship between intercepts and
slopes for each intervention condition. The dashed line for controls indicates a linear and
modestly increasing trend for slopes to increase as the initial intercept increases. Thus when
exposed to the control condition, the poorest outcome on the growth of aggressive, disruptive
behavior through middle school is for those who begin first grade exhibiting high aggressive,
disruptive behavior. The solid line represents a very different relationship between slopes and
intercepts for those in the GBG classes. Here the slopes begin to diminish around a baseline
score of three, with continuing benefit at the high end of initial aggressive, disruptive behavior.
As a diagnostic plot, this method helps to highlight the baseline levels where GBG shows
impact.

3.4.3. No causal interpretation for GMM’s that ignore intervention—This example
demonstrates a different use of growth mixture models than the one described earlier that was
used to evaluate intervention impact across trajectory classes. The earlier mixture model only
made sense if there was equivalence across intervention conditions for the mean and variance
of intercepts and the proportions in each trajectory class. The GMM model on which Fig. 2
was based set aside the intervention condition completely and formed four trajectory classes
for males (three trajectory class models fit less well than a four-class model when intervention
was not included in the model). This latter type of GMM has no causal interpretation, since it
violates a key assumption that the classes have the same distribution at baseline and the same
frequency across intervention conditions. If these two conditions do not hold, then the meaning
of the classes may differ dramatically for intervention and control. Causal interpretation of
intervention coefficients is then problematic.

4. Discussion
RFTs are designed to answer research questions that examine interventions delivered in real
world settings. The main question we address in ITT analyses involves assessing an
intervention’s effectiveness, in order to characterize conditions under which outcomes improve
or worsen relative to a community standard. The methods described in this paper address
standards for conducting ITT analyses, analytic tools that incorporate clustering and
nonlinearity in the modeling, methods to handle incomplete data, and modeling strategies that
protect our inferences of variation in impact against incomplete specification of the model.

Regarding standards for conducting ITT analyses in multilevel RFTs, we concluded that design
details would dictate just which individuals should be included in the analyses. By limiting the
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analysis to all those individuals who were there at the beginning, we avoid selection biases by
having comparable groups to compare between intervention and control at baseline. On the
other hand, the handling of late entrants pits two goals of ITT analyses against one another,
the goals of avoiding biases in intervention groups and avoiding complications dealing with
partial exposure to an intervention. The case for their exclusion in ITT analyses is that late
entrance is an event that occurs after the intervention period begins, thus potentially affecting
the inferences in unknown ways. The case for inclusion is that late entrance is a natural,
uncontrolled occurrence that needs to be accounted for in evaluating overall impact. If the
circumstances of the trial allow one to argue convincingly that (1) late entrants are completely
comparable across intervention groups and (2) these late entering subjects are not choosing to
enter because an intervention is being used, then it would be permissible to include these late
entrants in ITT analyses. We also recommend that a rule be established to define late entrants
and that they generally not be included in ITT analyses except under certain circumstances
such as continued random assignment.

Even if late entrants are excluded from formal analyses, their presence in the classroom may
have some effects on the outcomes of the other participants. For example, Kellam et al.
(1998) reported that higher levels of first grade classroom aggressive, disruptive behavior had
a strong interaction with individual level of aggressive, disruptive behavior on middle school
aggressive, disruptive behavior. If aggressive, disruptive, late entrant children are
disproportionally assigned to one intervention, this could introduce bias in evaluating impact.
In the First BPP trial, we saw somewhat higher rates of late entrant children being assigned to
GBG classrooms, so such contextual variation in classroom aggressive, disruptive behavior by
condition should have an attenuating impact of the GBG; nevertheless, we report a number of
significant findings.

In some RFTs, there is no formal enumeration of a denominator for each community under
study. RFTs that test surveillance or case identification strategies, such as testing whether a
gatekeeper training program can increase the identification of suicidal youth in schools (Brown
et al., 2006), directly count the numerators but often must rely on some census or indirect
method for determining denominators in order to calculate the rate of identification for
suicidality. In that trial, which randomized schools to when their staff would receive gatekeeper
training, we do not have available detailed tracking information of youth in the schools;
therefore there is no practical way of removing late entrants from both the numerator that counts
suicidal youth and the denominator of that risk set. In this situation, the late entrants cannot be
dropped from the analysis.

This paper recommends two types of high quality missing data procedures to be used in RFTs:
full information maximum likelihood (FIML) and multiple imputation procedures. Our
experience with longitudinal follow-ups of RFT’s is that these models often do provide similar
inferences to one another but often produce different inferences compared to those based on
lower quality missing data procedures. It is usually worth the effort to use FIML or multiple
imputation procedures in the analyses. We note, however, there is one common situation where
the standard analysis that ignores any missing data is equivalent to a full information maximum
likelihood analysis, e.g.: when there are no missing covariates and only the outcome is missing.
Thus special procedures are not necessary in this case.

One important procedure that we introduce in this paper is the assignment adjusted analysis.
This procedure protects against under inclusion of covariates in an analysis of RFTs. In
classroom-based trials as well as other multilevel designs, the proportion of units assigned to
active intervention within a block (i.e., school) is often not constant; in the case of classroom-
based trials the varying numbers of classrooms per school forces this proportion to vary.
Randomizing at this higher level does not automatically protect against under inclusion of
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covariates in the way it would if randomizing at the individual level. The assignment adjusted
procedure we present above is useful whenever randomization to intervention is imbalanced
across these higher levels of blocking. We suggest that it be used to compare against standard
analyses; if no differences are found, the original analyses can be reported with a note that
assignment adjustment did not result in any different conclusions. If there are differences in
the conclusions about intervention impact in these two analyses, we recommend a closer
examination of the potential effects of additional measured covariates that had not been
included. If these analyses fail to resolve the differences, we believe that there should be greater
reliance placed on the assignment adjusted analyses.

We have presented two broad classes of analytic models that are well equipped to examine
variation in impact. Additive models allow for a very flexible way to examine how baseline
risk may moderate intervention effect, so statements about impact at the low and high ends of
risk, as well as in the middle, are generally more valid than those based on linear models
(Brown, 1993a). Likewise, growth mixture models can separately examine impact across
different trajectory classes. This procedure is also flexible in fitting multiple growth patterns
to data. One of its strengths is that this flexibility allows us to examine whether the intervention
impact is present across all classes, whether the intervention impact on trajectories is the same
or different across classes, and whether the impact changes across time. Simultaneous
examination of impact at each time point is also appropriate to do if one uses Bonferroni or
other methods to correct for the number of comparisons (Petras et al., 2008). It is also possible
to attribute causal inferences about the intervention impact to both of these models. The
flexibility of these models is also a source of weakness; if either of these models is fit poorly
to the data, then the resultant model coefficients can be interpreted erroneously. The methods
we outlined to assess quality of fit are essential to apply before selecting a model or examining
coefficients that address impact.

In presenting these new methods, this paper also provides new evidence of the GBG impact
on males. Specifically, the analyses of the GBG’s impact on DISC conduct disorder
demonstrate substantial benefit on a diagnosable disorder by grade six. These early impact
results on conduct disorder continue through adolescence and young adulthood on aggressive,
disruptive behavior, antisocial personality disorder, and violent and criminal behavior (Petras
et al., 2008), as well as on drug and alcohol abuse/dependence disorders (Kellam et al.,
2008).

Questions of variation in impact are central for theory building and practical implementation
of an effective intervention in community or population settings. Populations have wide
variations in risk and protective factors, so we would expect that an intervention that targets a
particular risk factor, such as aggressive, disruptive behavior, would have differential impact
across this level of risk in the population (Brown et al., 2007c). For interventions that target
multiple risk and protective factors, differential impact is also likely. Thus in population-based
trials, we recommend that one planned analysis be an ITT examination of whether impact varies
based on hypothesized risk factors. Even if no interactive impact with baseline individual level
risk is found, individual level risk may affect outcomes as a main effect. Even when the outcome
is far removed in time from the intervention period, there can be dramatic continuities of these
antecedent risks over time, as we have found in our analyses of the role of aggressive, disruptive
behavior in the long-term effects of the GBG (Kellam et al., 2008; Petras et al., 2008; Poduska
et al., 2008; Wilcox et al., 2008).

When an intervention targets multiple risk and protective factors or when it targets risk
processes, such as coercive interactions in the family, it may be more challenging to identify
a short list of baseline measures that are best suited to examine first. Others have found,
however, that risk factors often tend to co-occur and their presence is often associated with the

Brown et al. Page 32

Drug Alcohol Depend. Author manuscript; available in PMC 2009 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



absence of many protective factors, so it may well be possible to form a one dimensional scale
for risk and a second dimensional scale for protective effects. In the case of risk processes,
such as coercive interaction styles between a parent and a child, there are often simple baseline
measures, such as the child’s assessment of family communication that correlate well with
these more complex patterns that are themselves the targets of the intervention.

An intervention’s effect may vary across different contextual factors as well. Interventions that
aim to change norms about drug use or willingness to prevent suicide, for example, need to
measure these factors at baseline across the appropriate “level of intervention” (Brown and
Liao, 1999), or social environments such as the classroom or the school where such
interventions are expected to operate (Flay and Collins, 2005). The failure to describe the role
of these baseline contextual factors can lead to large-scale implementations in communities
where these interventions may not be effective.

For universal, selective, and indicated interventions, there are some differences in how we
would frame or use information on variation in impact. For universal interventions, it is quite
possible for an intervention aimed at a broad population to be beneficial for some and cause
harm to others. This can occur, for example in drug prevention studies, when some subjects
are already using substances and others are nonusers. The two goals of primary prevention of
delaying initiation for nonusers and secondary prevention to reduce drug use among those
already using, may not be accomplished well by an intervention, and it may be that one group
benefits while the other is harmed. Such questions of positive and negative impact have been
raised in the prevention of outcomes that have not received the same level of attention as that
for drug abuse. In suicide prevention, concerns have been raised that even discussing suicide
may direct non-affected youth towards these outcomes (some evidence now refutes this; see
Gould et al., 2005), but poorly conceived programs that memorialize peers who have recently
committed suicide may have a contagion effect. In delinquency and drug prevention, there is
clear evidence of learning that is transmitted from more deviant to less deviant youth (Dishion
et al., 1996, 1999, 2001). Only by studying the impact among these different subgroups in
carefully designed randomized trials will we be able to determine whether a program is having
a harmful effect on a vulnerable population.

Continuing with variation in impact in universal preventive interventions, the work that our
group and others (Hawkins et al., 2005; Reid et al., 1999) have done in early prevention of
aggression, conduct disorder, delinquency and other externalizing behaviors, strongly suggests
that prevention programs aimed at integrating and socializing children who exhibit
externalizing behaviors into successful roles in the classroom, school, and family, can have
major impacts on this high risk group and have beneficial or at least no harmful effects on those
at much lower risk. Compared to programs that isolate and concentrate poorly behaving youth
(Dishion et al., 1996, 1999, 2001), such approaches provide benefit by shaping behaviors within
the most relevant social fields in their lives, thereby avoiding issues of labeling children as
different and requiring a different intervention to adjust for reentry. These early, universal
preventive interventions are likely to be cost effective strategies for preventing the life-
persistent conduct disorder and antisocial behavior.

For selective preventive interventions, such as those directed at children going through a major
transition in family composition due to foster parenting (Chamberlain, 2003), divorce
(Forgatch and DeGarmo, in press; Wolchik et al., 2002, in press), or bereavement (Sandler et
al., 2003), an examination of variation in impact can help differentiate those who may benefit
from an existing intervention from those who would be better served by another intervention
or none at all. As an example of a selective intervention, the multidimensional treatment foster
care provides ongoing support for foster parents in handling the needs of individual children.
A parent daily report (PDR) is used as a daily tool to assess how the child is behaving, and
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repeated high scores on this scale are highly predictive of disruptions from their foster care
placements and other poor outcomes for the child (Chamberlain et al., 2006). We would predict
that the MTFC intervention would be more impactful for those youth who score high on PDR
soon after placement. Thus an outcome-effective as well as cost-effective way of implementing
this program in a community may be to direct higher resources to those foster families taking
care of children with high levels of PDRs.

Indicated interventions directed at those who are already exhibiting signs or symptoms related
to a disorder, or treatments themselves can use an understanding of variation in impact to better
predict those who are adequately served by an intervention from those who are not likely to
utilize or benefit from a particular intervention. In the MTA Multimodal Treatment Study of
Children with attention deficit hyperactivity disorder (ADHD), for example, children were
randomized to a medication-management, a behavioral intervention, their combination, or
community treatment model with less management. The course of attention problems and
social functioning varies dramatically in these children, and can be represented by a growth
mixture model with one group improving quickly and having good outcomes while a second
group is more likely to have less favorable outcomes (MTA Cooperative Group, 1999; Swanson
et al., in press). The benefit of well managed medication over behavioral therapy alone or
community controls on social skills and peer relations appears clearly for both classes of
children. However, many families deviate from their original assigned intervention condition
by initiating medication use or discontinuing use over time. By modeling both impact and
continued use as outcomes, we can predict who is more likely to benefit from long-term
medication use and who is not as likely, thus helping inform families whether their child is
likely to benefit from continued use.

Unified intervention strategies provide a population or public health approach to prevention
that integrates universal, selective, and indicated interventions (Brown and Liao, 1999). These
approaches begin with a broad-based intervention, and then apply more intensive interventions
to non-responders. Thus in a first stage of this unified intervention, a universal first-grade
intervention that focuses on managing classroom behavior, improving reading, and linking
families and classrooms may be applied to everyone. For those youth who continue having
problems with achievement and behavior in the classroom, a more intensive intervention that
involves work outside the classroom or with the parents can serve to enhance supports. Finally,
for those who still need more assistance, a treatment oriented program can be provided. At
each stage in this model, one can test interventions through an additional randomization of
atrisk youth. Cutoff values based on baseline risk can be assessed using additive models,
described here (Petras et al., 2004, 2005), or tree-based models (Breiman et al., 1984) that
specifically identify cutoffs empirically.

One implication of this perspective on examining variation in impact based on theoretically
hypothesized moderators is that such findings are more difficult to describe in terms of effect
sizes, overall odds ratios and the like that are now in use (Brown et al., 2007c). These one-
dimensional summaries are often used in meta-analyses to combine inferences across similar
studies to examine intervention impact, and variation in impact is one reason why some
programs or prevention approaches may show low effect sizes. For example, media campaigns
focusing on preventing marijuana use appear to have quite limited success in the general
population, yet the campaigns are directed to target audiences, such as sensation seekers, who
are the only ones likely to be affected (Palmgreen et al., 2007). In these cases, there is no single
summary, like an overall effect size that will satisfactorily summarize this interactive effect.
It is very valuable, however, to present analyses in scientific papers that are based on subgroups
thought to be most at risk, or thought likely to benefit the most from an intervention directed
at them (Pillow et al., 1991; Brown, 1991), as well as the nonlinear and linear interaction effects
described in this paper. Only by doing so will one be able to examine in meta-analyses how
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interventions may differ across risk levels (Brown et al., 2007c). Furthermore, the power that
one has to look at interaction effects in a single RFT is likely to be modest (Brown et al.,
2007d). However, by reporting impact across risk subgroups in each single trial, a meta-
analysis can use the accumulation of these results to examine more fully the impact as a function
of risk level.

Finally, we caution that indiscriminant or overuse of the methods for examining variation in
impact that are described in this paper will result in spurious findings. We provided a strategy
that maintains an overall Type I error rate for each analysis (Kellam et al., 2008). If one does
not place limits on the number of tests or correct for multiple comparisons, it will always be
possible to find a significant impact on a subset of subjects if one looks long enough. The
methods described here need to be applied formally to test hypothesized variations in impact,
i.e., by variation in individual level or contextual level of baseline risk. They should not be
used repeatedly in purely exploratory fashion without being guided by theory. Similarly, the
strength of these methods in this paper relies on maintaining the quality of the research design
throughout the study. No amount of analytic sophistication can correct for severe deviations
from the design protocol. If groups are randomized to intervention conditions but then
significant numbers of individuals do not receive the intended intervention, or if there is
assessment or attrition bias, these ITT analyses could have little relevance to the causal effect
of the intervention. It is necessary for researchers to conduct RFT’s so that the design integrity
is maintained throughout the study.
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Fig. 1.
Classification of individuals based on entrances and exits.
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Fig. 2.
Nonlinear smooth fits of empirical Bayes slopes to intercepts for males in good behavior game
(▲) and control (○) classes.
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Table 2
Classification of individuals based on entrances and exits for the first and third Baltimore Prevention Program trials

Type 1st Generation BPP Trial (intervention through 1st and
2nd Grades)

3rd Generation BPP Whole Day
(WD) Trial (intervention
through 1st Grade)

1 Completer Any child who began attending first grade in one
intervention condition and remained in one of the study
classrooms to the end of second grade.

Same definition through 1st
Grade.

2 Program dropout Any child who began first grade in one intervention
condition, was exposed to a portion of the intervention and
moved outside the study’s classrooms prior to the end of
the second year.

Same definition through 1st
Grade.

3 Late entrant Any child who transferred into one of the study’s first grade
classrooms after intervention began and remained in one
of the study classrooms through the end of the second year.

Same definition through 1st
Grade.

4 Late entrant/program dropout A child who entered one of the study classrooms after the
intervention began and moved outside the study’s
classrooms prior to the end of the second year.

Same definition through 1st
Grade.

5 No show No data available. Any child who was registered to
attend a study school during the
summer before first grade, was
assigned to a first-grade
classroom but never attended the
school.
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Table 3
Comparison of two definitions of individual level denominators for ITT analyses in multilevel randomized field trials

Equivalent intervention arms Include in denominator Strength Weakness When to use

Prior to start of intervention period All subjects except those
who are late entrants

Protects against
subjects
withdrawing
differentially after
being exposed to
intervention

Limits sample
size to those who
enter at
beginning of
intervention
period

When we do nothing
in the design to
assure late entrants
will not be selected
differently across
intervention
conditions

All subjects throughout
intervention period

All subjects Larger sample
size; generalizes to
all subjects,
including those
who after
intervention period
begins

Impact likely
attenuated by less
intervention
exposure of late
entrants

When there is
assurance that late
entrants are not being
selected differently
across intervention
conditions
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Table 4
Characteristics based on intervention exposure with examples from the third Baltimore Prevention Program whole day
(WD) trial

Type Description Research protocol violation

A Intervention transfer Any child who began first grade in one
classroom and then moved or was otherwise
assigned to another classroom. With a
different intervention. It may be
advantageous for some analyses to calculate
the timing and length of exposure to each of
the interventions.

No protocol violation if done for school
administrative purposes.

B. Repeater Any child who began first grade in one of the
study classrooms, then was held back or
otherwise repeated first grade in one of the
study schools—and therefore repeated
exposure to the intervention. For repeaters,
the intervention should be the same as in the
previous year.

No protocol violation if done
administratively by the school and the
intervention condition is maintained.

C. Intended intervention assignment The classroom assignment designed by the
research staff. In this WD trial, all classroom
assignments were to be based on a sealed,
sequential list of classroom assignments
within school as children entered first grade
throughout the year.

Any child who is placed in or removed from
an intervention condition that was not
intended by the planned research design
results in an assignment protocol violation,
and these should be reported as part of the
CONSORT report.

D. Intervention of first exposure This is the intervention condition to which the
child is initially exposed upon entry to the
study.
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