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Abstract
Monitoring the sodium concentration in vivo using 23Na MRI can be an important tool for assessing
the onset of tissue disorders. Practical clinical 23Na MRI methods furthermore often do not allow
one to use sufficiently small voxel sizes such that only the tissue of interest is seen, but a large signal
contamination can arise from sodium in synovial fluid. Here we demonstrate that applying an
inversion recovery (IR) technique allows one to distinctly select either the cartilage-bound or the free
sodium for visualization in an image. The results are validated both ex vivo and in vivo.
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1 Introduction
A large amount of sodium exists in living tissues, such as cartilage and the brain, which
makes 23Na MRI a very promising tool for the diagnosis of cartilage pathologies, as well as,
brain tumors [1] . Notably, the cartilage tissue sodium concentration has been shown to
correlate directly with the decrease of the proteoglycan content, which is frequently identified
with the onset of degenerative joint disease [2–8].

Normally, the signals from free sodium and the cartilage-bound or ordered sodium overlap
with each other, and several methods have been developed for their separation. A number of
techniques are based on the evolution under residual quadrupolar interactions. For example,
in the double-quantum filter experiment [9,10], the transverse magnetization operators 
evolve into second rank tensors under the action of the quadrupolar interaction. These second-
rank tensors can then be converted into double-quantum coherences ( , which can be filtered
out using phase cycling. Alternatively, in the Jeener-Broeckaert experiment the rotational
properties of different rank tensors [9] are exploited to perform this selection. Both techniques
were adapted to detect the filtered signal through the central transition to obtain higher signal-
to-noise ratio and higher resolution [9], however they require a large phase cycle and are
difficult to implement on MRI scanners since they use a large number of pulses. More recently,
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methods based on frequency-sweep pulses [11,12] and quadrupolar nutation [13] were
demonstrated, which exploit coherence transfer properties that depend on the quadrupolar
interaction. The quadrupolar coupling itself was shown to correlate with the onset of cartilage
degeneration [14,15].

Another form of signal separation is performed by the triple quantum filtered experiments, in
which the selected signal arises from quadrupolar nuclei in slow motion [16]. Slow-motion
gives rise to third-rank tensors, which, upon conversion to triple-quantum coherences, can be
filtered out by phase cycling.

In the current study, we demonstrate the feasibility of employing the inversion recovery (IR)
sequence to selectively detect the cartilage-bound sodium signal or the free sodium signal. The
study shown here depends on the significant difference between the spin-lattice relaxation rates
between the two pools. In the particular case of cartilage tissue, the difference is especially
large due to immobilization and larger induced quadrupolar interactions of the bound sodium.
It is possible that cartilage-tissue also contains free sodium, as one could expect in analogy to
experiments performed with 2H [17,18], but we have not seen a significant fraction thereof in
bulk measurements [15].

A large fraction of the signal is typically lost in 23Na MRI due to lengthy rf-pulses. The
simplicity of the inversion recovery sequence makes it hence particularly attractive for 23Na
MRI.

2 Results and Discussion
A hard pulse normal IR sequence yielded the T1 values for sodium in the saline solution and
for sodium in cartilage as 64.4 and 18.2 ms, respectively at 11.7 T. The zero-crossing points
in the relaxation curves were at 39.2 ms and 12.3 ms, respectively. The zero-crossings are
slightly different if low power pulses are employed (34.5 and 6.5 ms, respectively).

A sample containing both cartilage and saline solution was imaged using a two-dimensional
projection-reconstruction image (Figure 2). By adjusting the inversion-recovery delays
accordingly, one can either select the cartilage-bound sodium region, or the saline sodium in
the images. In Figure 2b, the signal of cartilage-bound sodium is essentially not reduced, largely
due to the big difference in T1 values between the two sodium pools. By contrast, Figure 2c
shows, that the free sodium signal is reduced by approximately 30 % due to a partial saturation
at the 6.5 ms inversion-recovery delay.

The rf power was chosen to reflect the typical power attainable on MRI scanners (on the order
of 500 Hz). The pulse durations ( 0.5 and 1ms, respectively) are still sufficiently short such
that relaxation losses during the pulses are mild [19]. The sodium T1 relaxation is biexponential
[16] and the signal integral after the inversion recovery sequence is modulated by

(1)

where , Cq is the quadrupolar coupling constant, and
η the asymmetry. This biexponential relaxation mechanism will not interfere with the selection
of cartilage-bound sodium, in general, since in this case, both the short and the fast components
will have decayed to an appreciable extent already. In the experiment that selects the free
sodium, incomplete cancellation of the bound sodium may occur, as is also seen in Figure 2c.
The ratio of the rates J2/J1 approaches a maximum of four as τc → ∞. In general, however, one
can minimize this effect by simply choosing the delay τ of the inversion-recovery experiment
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to be the zero-crossing point of Eq. [1] when selecting the free sodium signal. Some
contamination of the free sodium signal may occur, however, in the presence of quadrupolar
coupling. While one can adjust the optimum delay τ to compensate for such effects, a
distribution of a sizable quadrupolar interaction will lead to signal contamination due to
quadrupolar nutation-related effects, especially if the ratio ωrf/ωQ is small [13]. Nonetheless,
In the case demonstrated here, the average quadrupoalar coupling was ωQ/2π = 370 Hz for the
cartilage tissue, and a relatively clean nulling of the cartilage-bound sodium is possible in
Figure 2c. Alternatively, one could adjust the pulse flip angles to partially compensate for
nutation effects. In practice, however, it is expected that selecting the bound sodium over the
free sodium signals will find more frequent use. In this case, quadrupolar nutation effects will
be negligible.

In order to demonstrate this experiment in vivo, we calibrated the optimal free-sodium
suppression condition using first an ex vivo bovine knee sample together with a saline bag on
a 7T scanner. Optimal suppression was found at a 40 ms inversion-recovery delay (Figures 3a
and 3b). In addition, since the strong signals from the saline compartment are minimized, fewer
projection-reconstruction artifacts arise in the image. This aspect can be particularly important
when working with undersampled data, since the sodium images become sparser. The same
images were then also performed to compare the signal suppression between a regular pulsed
image, and an inversion-recovery image of a human knee (Figures 3c and 3d). The inversion-
recovery sequence makes the demarcation of cartilage tissue more evident in vivo. Cross-
sections showed that the signal in the cartilage region was lower by approximately 30 % in the
inversion-recovery sequence. A part of this reduction comes from the fact that non-cartilage
compartments no longer contribute as strongly to the signals, hence the interpretability of
the 23Na signals in terms of measuring the fixed charge density in cartilage is enhanced.

3 Conclusions
We present here a simple method based on inversion recovery for separating the signals from
the free and cartilage-bound sodium pools. Either pool can be selected in an image. The
advantages of this method lie in (1) its simplicity, (2) its sensitivity, (3) its ability to selectively
detect either the ordered or free sodium signal, (4) the relative robustness against flip angle
errors, (5) its small phase cycle, (6) the detection of the central transition, and (7) its high
sensitivity, which should make it more attractive than mutliple-quantum filtering in 23Na MRI.
The presented method is especially suitable for imaging cartilage. The strength of binding and
the large electric field gradients that sodium experiences near the highly-negatively charged
proteoglycans lead to a particularly large difference of the relaxation rates between cartilage
and synovial sodium.

4 Experimental
The experiments of Figure 2 were carried out on a Bruker Avance 500 MHz spectrometer (11.7
T) with a BBO probe tuned to sodium frequency. The pulse sequence used is shown in Fig. 1
We optimized the relaxation delay τ between these two pulses in order to achieve selective
detection of the ordered sodium or the free sodium signal. All pulse durations were calibrated
based on the free sodium signal. The rf strengths were 487 Hz for all the pulses (513.5 µs π/2
pulse duration). 2D images were obtained from 30 1D projections using projection
reconstruction. The sample consists of two capillaries aligned vertically in an NMR tube. One
of the tubes contains cartilage and the other a saline solution at a concentration(The saline
solution was made by diluting a phosphate-buffered saline stock solution (Aldrich, pH 7.4, 137
mMNaCl) to 2/5 of original concentration). A gradient of 2 G/cm strength was applied in the
transverse direction and 2048 data points were acquired to cover a spectral window of 10 kHz,
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with 128 transients coadded. The repetition delay was 1 s for all measurements. The first pulse
was cycled between 0 and 180°.

The experiments of Figure 3 were performed on a 7.0 T clinical MR scanner (Magnetom Tim
Trio, Siemens Medical Solutions, Erlangen, Germany). A 18 cm diameter quadrature 23Na
knee coil was used for all the imaging measurements, and rf irradiation with 800 Hz power
was used. The image was performed with a 2D-radial sequence with a spatial resolution of 4.7
mm × 4.7 mm × 20 mm, TR/TE=500ms/3.2ms, acquisition time= 1minute. A single slice was
used. The ex vivo image was performed using a bovine knee joint in axial orientation together
with a 500 mL saline bag (155 mM [Na+]) to load the coil. The in vivo images were taken from
a 42-year-old male volunteer (right knee) in saggital orientation. A 40 ms inversion-recovery
delay yielded an optimal suppression of the saline signal and was hence used for both
experiments.

The bovine cartilage and knee samples were obtained within five hours of animal sacrifice ( 4–
6 months old cows) from a USDA approved slaughter house (Bierig Bros, Vineland, NJ) and
then frozen at −20°C until used.
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Figure 1.
Pulse sequence of the inversion recovery sequence performed in combination with a gradient
spin echo.
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Figure 2.
2D images obtained from 30 1D projections using projection reconstruction. The sample
consists of two capillaries aligned vertically in an NMR tube. One of the tubes contains cartilage
and the other a saline solution. In (a) the single-pulse response is shown, in (b) inversion-
recovery with a 34.5 ms delay was used, and in (c) an inversion-recovery delay of 6.5 ms was
used. 1D projections are displayed at the top to allow one to estimate the level of suppression
in these experiments.
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Figure 3.
Axial ex vivo images of a bovine knee joint with a saline bag at 7T (a) without inversion-
recovery, and (b) with an inversion-recovery delay of 40 ms. In vivo images of a human knee
at 7T (a) without inversion-recovery, and (b) with an inversion-recovery delay of 40 ms.
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