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Abstract
Background: While BMPR2 mutation strongly predisposes to pulmonary arterial hypertension
(PAH), only 20% of mutation carriers develop clinical disease. This finding suggests that modifier
genes contribute to FPAH clinical expression. Since modifiers are likely to be common alleles, this
problem is not tractable by traditional genetic approaches. Furthermore, examination of gene
expression is complicated by confounding effects attributable to drugs and the disease process
itself.

Methods: To resolve these problems, B-cells were isolated, EBV-immortalized, and cultured from
familial PAH patients with BMPR2 mutations, mutation positive but disease-free family members,
and family members without mutation. This allows examination of differences in gene expression
without drug or disease-related effects. These differences were assayed by Affymetrix array, with
follow-up by quantitative RT-PCR and additional statistical analyses.

Results: By gene array, we found consistent alterations in multiple pathways with known
relationship to PAH, including actin organization, immune function, calcium balance, growth, and
apoptosis. Selected genes were verified by quantitative RT-PCR using a larger sample set. One of
these, CYP1B1, had tenfold lower expression than control groups in female but not male PAH
patients. Analysis of overrepresented gene ontology groups suggests that risk of disease correlates
with alterations in pathways more strongly than with any specific gene within those pathways.

Conclusion: Disease status in BMPR2 mutation carriers was correlated with alterations in
proliferation, GTP signaling, and stress response pathway expression. The estrogen metabolizing
gene CYP1B1 is a strong candidate as a modifier gene in female PAH patients.
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Background
Pulmonary arterial hypertension (PAH) is a lethal disor-
der characterized by pulmonary vascular constriction and
remodeling leading to progressively worsening right ven-
tricular hypertrophy, and eventually right heart failure.
The familial form (FPAH) is usually caused by mutations
in the type 2 receptor for the BMP pathway, BMPR2 [1-3].

The lifetime risk of developing PAH in a BMPR2 mutation
carrier is less than 20%[4]. This suggests the need for envi-
ronmental or genetic modifiers for full expression of the
disease. Understanding modifier genes would both clarify
the molecular etiology of the disease, which is obscured
by the myriad of BMPR2 functions, and allow the FPAH
risk to be refined for asymptomatic individuals that carry
BMPR2 mutations. The search for these modifiers, which
has been ongoing for several years, is complicated by
many factors[5,6]. For example, since the modifier alleles
are likely to be common variants, traditional genetic
approaches are problematic, since the same allele could
be associated with more than one line of inheritance
within a family tree[7]. This is further complicated by the
possibility that predisposition to disease within BMPR2
mutation carriers is caused by a confluence of factors
rather than a single modifier gene, even within a single
family.

Attempts to find contributing genes through gene array
approaches have been tried, using lung tissue from trans-
plant patients and circulating cells[8,9]. Interpretation of
those data is made difficult by several factors. First, the
majority of genes dysregulated are likely to be caused by
the presence of end-stage disease. Second, drug effects
cannot properly be controlled, and can be quite large.
Finally, there is a large background in gene expression dif-
ferences caused by the diverse background genetics of the
patients. Finding direct evidence of modifier gene or even
mutation effects within all of these sources of experimen-
tal noise is essentially impossible.

In order to overcome these issues, in this study we have
used patient-derived lymphoblastoid cell lines to hunt for
modifier genes. Lymphoblastoid cell lines, made by EBV-
immortalizing B cells, resolve many of these issues. While
culturing the cells introduces its own alterations in gene
expression, these alterations are uniform across samples.
Lymphoblastoid lines have been used successfully in gene
expression studies for disease processes as diverse as schiz-
ophrenia, drug resistance, autism, and asthma[10-13].
Moreover, culturing the cells removes them from both the
disease milieu and drug effect. While other types of cells
may have changes in differentiation caused by the disease
state, this is not true of B cells, whose lineage commitment
is considered to be unidirectional and irreversible under
physiologic conditions[14,15]. Finally, in order to mini-

mize variation caused by genetic background we derived
all of our lines from within the same extended family. An
additional advantage is that we are directly measuring dif-
ferences in baseline gene expression, without regard for
either the polymorphism that caused them or their hered-
itary origin.

In this study, we use Affymetrix arrays to compare gene
expression in BMPR2 mutation carriers that are either
asymptomatic carriers (unaffected) or who have PAH
(affected). We confirmed selected differentially expressed
genes using quantitative RT-PCR on lines derived from a
larger number of patients as well as from family members
without mutation (non-carriers).

We found several broad pathways with differential expres-
sion between affected and unaffected BMPR2 mutation
carriers, including stress response, actin organization/g-
protein, calcium balance, and cell-cycle related genes.
Analysis of overrepresented gene ontology groups sug-
gests that it is pathway-specific, not gene-specific changes
that are associated with increased risk.

Methods
Subjects
Ethylenediaminetetraacetic acid (EDTA) anticoagulated
blood was collected from twenty individuals within one
heavily affected Tennessee family with a reported muta-
tion in BMPR2 (exon 3 T354G) (Table 1) [16]. Five of
these individuals had hemodynamic evidence of FPAH
(age, 15–39 yr; 3 females, 2 males); seven unaffected indi-
viduals carrying BMPR2 mutations had no evidence of
PAH (age, 48–88 yr; 5 females, 2 males). Blood was also
obtained from eight spouses within the family, but not in
the bloodline, as control subjects (age, 36–67 yr; 5
females, 3 males).

Asymptomatic status was confirmed in each individual by
echocardiography at the time of blood draw. Only unaf-
fected carriers over the age of 60 were used for gene array
experiments, since they had the least probability of later
developing later disease, and would still have substantial
difference in age of onset if they did harbor occult disease.
Unaffected carriers are on average second degree relatives
to each-other; they were on average sixth degree relation
to FPAH patients. FPAH patients were on average eighth
degree relations to each-other (they are 3rd cousins, 3rd

cousins once removed, or 2nd cousins once removed). The
close relation in the unaffected carriers is coincidence;
there are unaffected carriers in many branches of the fam-
ily tree, but not that were currently available for blood
draw and in the correct age range.

An additional 24 blood samples were collected from 3
additional families for confirmatory studies related to
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CYP1B1 expression. These include a family with an exon
4–5 deletion (3 non-carriers, 3 affected and 2 unaffected
mutation carriers), a family with an exon 9 deletion (1
non-carrier, 3 affected and 3 unaffected mutation carri-
ers), and a family with an exon 9 frameshift mutation (2
non-carriers, 2 affected and 5 unaffected mutation carri-
ers).

The study was approved by the institutional review board
at Vanderbilt University Medical Center, and written,
informed consent was obtained from all subjects included
in the study. Unique identifiers to conceal identity were
assigned to the samples before their receipt in the labora-
tory.

Lymphoblastoid Lines
Lymphocytes were isolated from anticoagulated whole
blood within 48 hrs of collection and exposed to Epstein-
Barr Virus (EBV) to induce cell immortalization. Two ml
blood was diluted with 2 ml PBS, layered on top of 3 ml
of Lympho Separation Medium (MP Biomedicals) and
centrifuged for 10 minutes at 1,000 × g at room tempera-
ture. Using a Pasteur pipet, the lymphocytes were
removed from the serum/Lympho Sep Media interface,
washed in 10 ml PBS and then resuspended in 3 ml lym-
phoblast media (RPMI 1640 media containing L-
glutamine, and 20% fetal bovine serum) containing 2 μg/
ml cyclosporine. The lymphocytes were then infected with
3 ml Epstein-Barr virus (EBV) and transferred to a T-25
vent capped flask. The cells were incubated at 37°C/5%

CO2 and fed weekly with lymphoblast media +
cyclosporine until signs of growth occurred.

Affymetrix Arrays
RNA was isolated from lymphocytes using a Qiagen RNe-
asy mini kit (Valencia, CA). First and second strand com-
plimentary DNA was synthesized using standard
techniques. Biotin-labeled antisense complimentary RNA
was produced by an in vitro transcription reaction.
Human Genome U133 Plus 2.0 microarrays (Affymetrix,
Foster City, CA) were hybridized with 20 μg cRNA. Target
hybridization, washing, staining, and scanning probe
arrays were done following an Affymetrix GeneChip
Expression Analysis Manual. All array results have been
submitted to the NCBI gene expression and hybridization
array data repository (GEO, http://www.ncbi.nlm.nih.gov
/geo/), as series GSE10767.

Array Analysis
Affymetrix Cel files were loaded into dChip array analysis
software[17]. Overall signal strength from arrays was nor-
malized to the median array, and expression levels deter-
mined using the perfect match/mismatch (PM/MM)
algorithm. Differentially expressed genes were deter-
mined using a 95% probability of a minimum 1.4×
change and a minimum absolute difference of 150 (arbi-
trary units). Using random reassignment of group iden-
tity, this produced a median 17.2% false discovery rate, a
reasonable compromise between sensitivity and specifi-
city[18]. These requirements in themselves result in a list

Table 1: Subject Data

Registry # Gender Phenotype Age at Draw Age at Diagnosis

1218 F Non-carrier 41
1217 F Non-carrier 36
1741 F Non-carrier 61
1688 F Non-carrier 56
1729 F Non-carrier 67
1744 M Non-carrier 53
1569 M Non-carrier 65
1227 M Non-carrier 39

1745 F Unaffected Carrier 51
1731 F Unaffected Carrier 57
1746 F Unaffected Carrier 48
176 F Unaffected Carrier 88 *
172 F Unaffected Carrier 65 *
1742 M Unaffected Carrier 59
180 M Unaffected Carrier 66 *

1727 F Affected 15 13
723 F Affected 35 29 *
264 F Affected 17 9 *
266 M Affected 39 26 *
186 M Affected 29 24 *
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of genes in which there is no overlap in expression
between groups. For every gene in the list, every affected
mutation carrier has higher expression than every unaf-
fected mutation carrier, or every affected mutation carrier
has lower expression than every unaffected mutation car-
rier. Every gene thus has a p < .05 for significance by Wil-
coxon rank-sum test.

Gene ontology was determined using the Classify Genes
tool within dChip, with gene ontology files downloaded
from the Gene Ontology Consortium http://www.gene
ontology.org, and were grouped for the purposes of this
study by biological process (rather than molecular func-
tion or cellulcar component) classification[19,20]. Genes
which lacked biological process annotation in the data-
base were assigned to a group through a brief literature
review. Most genes fall into several gene ontology groups.
Thus, the selection of group for each gene was somewhat
arbitrary. However, in the case of the genes dysregulated
in this study, different choice of group would primarily
shift genes between groups rather than create new groups.
For instance, matrix genes can be involved in vascular con-
tractility, stress response, and growth. Actin organization
and G-proteins can be involved in both contractility and
lymphocyte recruitment. Thus, the groups of genes identi-
fied are for the most part tightly interrelated in function,
with functions directly related to the etiology of PAH.

Quantitative RT-PCR
Primers were designed using Primer3 from sequences
downloaded from Genbank, with primers tested for spe-
cificity by BLAST http://blast.ncbi.nlm.nih.gov/Blast.cgi
([21]. Primer sequences are listed in Table 2. Total RNA
was made from lymphoblastoid lines independently of
that used for arrays, also using a Qiagen RNeasy mini kit
(Valencia, CA). First strand cDNA was made from 1 μg
total RNA using a QuantiTect® Reverse Transcription Kit
(Qiagen, Valencia, CA). Quantitative real-time PCR was
performed using a total reaction volume of 25 μl, contain-
ing 5 μl of diluted cDNA, 12.5 μl iTaq SYBR Green Super-
mix with ROX (BioRad Laboratories, Hercules, CA) and
0.03 μl of each oligonucleotide primer (250 μM). PCR
was carried out in a 7300 Real Time PCR System (Applied
Biosystems, Foster City, CA), using 40 cycles of 95°C for

15 seconds followed by 60°C for 1 minute with a ten
minute 95°C initial soak. Each measurement was made in
triplicate and expressed relative to the detection of the
standard β-actin.

Statistics
Confidence intervals for fold changes in array analysis are
determined by algorithms internal to dChip, as previously
described[17]. These functionally result in this case in
genes for which difference between affected and unaf-
fected groups is also p < .05 by Wilcoxon signed-rank test.

Other statistical analyses were performed using the JMP
program (SAS, Cary, NC). Comparisons for quantitative
PCRs comparing three groups (non-carrier, unaffected,
affected) were performed using Kruskal-Wallis, although
results are similar using ANOVA. Analysis for sex-specific
differences in carriers was performed using two-way
ANOVA on log transformed values, with comparisons
between individual values by Tukey's HSD post-hoc.
Analyses of overrepresentation of gene ontology groups
was performed by fisher's exact test, and overrepresenta-
tion of genes within those groups were performed using
the one sample z test. While a substantial body of litera-
ture is arising suggesting alternate and potentially more
powerful methods of determining overrepresentation of
gene ontology groups, the field still seems to be in flux
and so we have continued to rely on Fisher's exact test for
this purpose[22].

Results
BMPR2 mutation carriers with disease show alteration in 
multiple PAH-related pathways compared to unaffected 
carriers
RNA derived from lymphoblastoid lines from four
affected and three unaffected BMPR2 mutation carriers
(marked with * on Table 1) were used to probe Affymetrix
U133 Plus 2.0 gene expression arrays. These included
every lymphoblastoid line from affected carriers within
the family available at the time (one additional line was
derived later), and every line from unaffected carriers over
the age of sixty (who were thus most likely to remain unaf-
fected).

Table 2: Primer Sequences

Gene Forward Reverse Product Size

B-Actin GGA TGC CTC TCT TGC TCT G GTC TTC CCC TCC ATC GTG 106 bp
CYP1B1 AAC GTA CCG GCC ACT ATC AC ACG ACC TGA TCC AAT TCT GC 137 bp
NR2F2 CCA AGA GCA AGT GGA GAA GC AGG CAT CTG AGG TGA ACA GG 92 bp
PRKCH TAT TCG ATG TCA AGC GAA CG ATA TTT CCG GGT TGG AGA CC 96 bp
RHOC GAG AGC TGG CCA AGA TGA AG GCA CTC AAG GTA GCC AAA GG 92 bp
SEPT10 CAT GAG TTC CAT GGT GAA CG GCT CAA ATT TGG CCT GTA GC 124 bp
TWSG1 AAT GTT CAC GCG CCT TAT TC AAC CAG CGA TAT TTG GAT GC 128 bp
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A comparison of unaffected to affected mutation carriers
using moderately strict criteria (false discovery rate of
17%) resulted in a list of 80 genes consistently differen-
tially regulated between groups[18]. These fell into several
broad groups with known relevance to PAH, including
stress response, actin organization, and proliferation (Fig-

ure 1, Additional File 1 – altered genes tabulated by
group).

Quantitative RT-PCR Confirms Gene Expression Data
To confirm relevance of selected specific genes in a larger
number of patients, we performed quantitative RT-PCR

Ontology grouping of genes differentially regulated in BMPR2 mutation carriers with pulmonary hypertension compared to BMPR2 mutation carriers without diseaseFigure 1
Ontology grouping of genes differentially regulated in BMPR2 mutation carriers with pulmonary hypertension 
compared to BMPR2 mutation carriers without disease. Study design aimed to avoid disease and drug effects, meaning 
that these should represent predisposition to disease rather than disease effect.
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using freshly derived RNA from 20 lymphoblastoid lines
derived from non-carriers, unaffected carriers, and PAH
affected carriers from within the same family (using every
patient in Table 1). We found that for most genes tested,
the direction of change found by array was confirmed in
the larger patient sample (Figure 2A). However, the abso-
lute change was somewhat reduced, and for most genes
tested the changes were at best trending towards signifi-
cance. The exception to this was cytochrome P450 1B1
(CYP1B1), which maintained on average greater than a
sixfold difference between unaffected BMPR2 mutation
carriers and carriers with PAH.

To determine whether decreased CYP1B1 expression was
associated with disease status in other FPAH, lymphoblas-
toid cells were derived from 24 individuals from three dis-
tinct patient families, each with too few patients for
individual analysis. We found that log-transformed
CYP1B1 expression values were significantly decreased (p
< .05 by Kruskal-Wallis) in disease-affected mutation car-
riers compared with unaffected carriers or non-carriers,
with a trend towards a sex-specific effect (not shown).
When combined with the data from our original family,
numbers became sufficient to show a clear sex-specific
effect (p < .01 by two-way ANOVA), with CYP1B1 expres-
sion levels almost tenfold decreased in female, but not
male, affected mutation carriers compared with unaf-
fected carriers or non carriers (Figure 2B).

Analysis of Overrepresented Gene Ontology Groups 
Suggests Pathways, not Genes, as Significant Modifiers
There are two explanations for decreasing statistical signif-
icance of specific genes with increased samples; the first is
that the results are spurious, the second, our hypothesis,
was that they are representative of a group, rather than
important in themselves.

To test this hypothesis, we focused on the group of
GTPases and GTP-binding genes, as defined by the Gene
Ontology consortium[20]. These comprise 2179 of the
54613 probes on the U133 Plus 2.0 microarray; when
only those genes with sufficient expression to be statisti-
cally analyzed are included, they comprise 675 of 12661
probes, or 4.9%. Each of the affected mutation carriers for
which we had arrays was compared individually to the
arrays from unaffected family member carriers, using the
same criteria as before. As expected, given the lower
number of comparisons, the number of genes changed in
each sample was higher in each sample individually than
when they were considered as a group (Table 3, top line),
and the false discovery rate increased to a median and
average of 38% (determined by mixing group identifiers).
This false discovery rate is high; this is why we neither nor-
mally attempt statistics on one patient sample nor do we
list specific genes found by this method. However, it does

not impact subsequent analyses, and keeping the criteria
the same for this analysis simplifies comparisons to earlier
results.

We found that the number of genes that fell into the GTP-
related ontology group was highly significantly overrepre-
sented in each case. If the genes were randomly distrib-
uted across ontology groups, we would expect 4.9% of
those with altered expression to fall into the GTP-related
group (Table 3, second line). Instead, in each case, more
than twice as many fell into this group (Table 3, third
line), which was highly significant by one-sample z-statis-
tics, with a p < .001 in each case[23].

Next, we considered the significance of the overlap
between specific GTP-related genes differentially
expressed in each sample. With 625 probe sets changed
above the noise and 88 GTP-related genes changed in
patient 723, one would expect that 14%(88/625) of the
genes changed in each of the other samples would overlap
those changed in patient 723. Instead, overlap ranges
from 28% to 46% (Table 4 shows numbers of overlapping
GTP-related genes between samples), for highly signifi-
cant overrepresentation of overlap. This shows that it is
not all GTP-related genes that are altered in affected
BMPR2 mutation carriers, but a specific subset (Addi-
tional File 2 lists all GTP-related genes altered in at least
two patients).

Every patient tested has altered regulation of a large
number of GTP-related genes, but the number of genes
altered in every patient decreases with the number of
patients (Figure 3; only three patients are shown for clar-
ity). This analysis suggests that while the significance of
specific genes decreases with increased samples, the signif-
icance of the group itself increases with increased samples.

Discussion
The purpose of this study was to identify genes which
might predispose BMPR2 mutation carriers to FPAH by
comparing carriers unaffected by disease to carriers who
developed FPAH. We used cultured B-cell lines in order to
remove both disease and drug effects, so that we could
examine underlying differences in gene expression.

The strongest individual gene identified by our methodol-
ogy was Cytochrome P450 1B1 (CYP1B1), in which low
expression was associated with disease, but only in
women. This gene qualifies as a plausible modifier gene
for several reasons. Although we assayed B-cells, CYP1B1
is highly expressed in lung, likely in endothelial cells, and
is recognized as a modifier gene for cancers [24-27].
CYP1B1 metabolizes environmental toxins, so it would
suggest a plausible mechanism of a gene-environment
interaction as a modifier[27]. CYP1B1 also breaks down
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(A) Expression of selected genes in a larger sample set trends in the same direction as in arrays by quantitative RT-PCR, but both fold-changes and significance are reduced compared to the more limited sample setFigure 2
(A) Expression of selected genes in a larger sample set trends in the same direction as in arrays by quantitative 
RT-PCR, but both fold-changes and significance are reduced compared to the more limited sample set. The 
exception is CYP1B1, in which both fold change and significance are maintained. Expression is normalized to that of beta-actin 
and then to expression level in non-carriers; p-values are by Kruskal-Wallis. (B) Expression of CYP1B1 is lower in female, but 
not male, mutation carriers with PAH compared to unaffected carriers and non-carriers. n = number of individuals in category; 
* = p < .01 for sex-specific effect in disease by two-way ANOVA on log-transformed values.
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estrogen, reducing local concentration (systemic estrogen
is regulated by other systems) and environmental estro-
gens are present in modern diets and medications[28].
Since women have a 3:1 overrepresentation in PAH
patients, starting at puberty, estrogen is the strongest
modifier known for penetrance[29]. Thus, lowered levels
of CYP1B1 might result in increased local concentrations
of estrogen, further increasing the risk of PAH; that this
appears to be a sex-specific modifier gene supports this
hypothesis. Follow-up to demonstrate correlation with
genetic polymorphisms, thus confirming that this is cause
not effect, and a finding of functional consequences in
patients are necessary to fully interpret the meaning of this
finding.

Our broader finding was that there were consistent differ-
ences in regulation of PAH-related pathways between
BMPR2 mutation carriers affected and unaffected by dis-
ease. These changes are likely related to genetically deter-
mined differences in expression, rather than adaptive to
disease state or drug effect, because the cells have been
cultured to remove them from the immediate environ-
ment. Further, B-cells are not believed to unalterably
change differentiation state in response to environmental
effects. A previous study which examined B-cells freshly
derived from patient blood in controls vs IPAH had sub-
stantially different findings consisting purely of upregula-
tion of stress-response, suggesting that they were looking
at disease and drug effects, and bolstering our belief that
disease effects are not a feature of the current study[30].

Pathways changed included stress-response, actin organi-
zation, ras-related, g-protein, calcium balance, and prolif-
eration-related pathways (Figure 2). All of these pathways

have been previously seen as altered in PAH, but the cur-
rent study is one of the first to present data suggesting that
they are cause rather than effect in human
patients[9,31,32]. A detailed analysis of the GTP-related
gene ontology group suggested that the important change
was in the pathway itself, which could be mediated
through different subsets of the genes in the pathway (Fig-
ure 3, Tables 3, 4, Additional File 2). This implies that the
search for modifier genes may involve either activities or
pathways, rather than specific genes. We have seen this
effect before; different strains of mice subjected to chronic
hypoxia use different genes in the same pathway to
achieve similar phenotypic ends[33].

These data are in agreement with our earlier examination
of lymphoblastoid cells, in which our strongest candidate
was the Ras pathway gene GRB2[34]. Some of the other
alterations found in our earlier examination of protein
changes in lymphoblastoid cells are also present in this
study, but were below the cutoff threshold we selected.

Table 3: GTP-related genes are overrepresented in genes 
changed in affected BMPR2 Mutation Carriers

# 723 # 266 # 264 # 186

Genes Changed: 757 386 569 628
Expected GTP-related: 37 19 28 31
Actual GTP-related: 88 54 67 71
z-score 5.4 4.8 4.8 4.7

Table 4: Overlap between GTP-related genes changed in 
different patients

# 723 # 266 # 264 # 186

# 723 88
# 266 25 54
# 264 19 29 67
# 186 28 28 22 71

p < .001 for overrepresentation for all overlap except #723 vs #264 p 
= .02

GTP-related genes have large numbers of differentially regu-lated genes in all patient samples (registry # is outside of each circle)Figure 3
GTP-related genes have large numbers of differen-
tially regulated genes in all patient samples (registry 
# is outside of each circle). Increasing numbers of patients 
increases the significance of the ontology group, but pro-
duces decreasing numbers of genes changed in all patients. 
For instance, patient #723 and #266 have 25 GTP-related 
genes in common; this drops to 14 when overlap with patient 
#264 is added.
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For instance, PCMT1, which was increased 1.2× by protein
array, was also increased 1.2× by Affymetrix array. Other
genes did not have matching changes, likely representing
issues of sensitivity and post-transcriptional regulation.

We found more than 80 genes consistently altered
between affected and unaffected BMPR2 mutation carri-
ers. It is not probable that there are this many modifier
genes; rather, this implies that these genes are down-
stream of a much smaller number of modifier genes that
are having consistent downstream effects. We have
already published serotonin transporter(5HTT) and TGF-
β promoter polymorphisms as modifier genes contribut-
ing to clinical expression in familial PAH, and the types of
changes seen are plausible effects for either of
these[35,36]. However, we determined that these could
not be upstream of the changes seen here, as two of the
affected patients had the LL 5HTT promoter and two had
the SL promoter. Correlation in gene expression even
among altered genes between the two with the LL allele
was no stronger than between the LL allele and SL allele
(0.82 vs 0.88; correlation between these and unaffecteds
averages 0.65 for comparison). Further, these cells do not
appear to have a functional TGF-β pathway. Levels of both
type 1 and type 2 receptors were below the threshold of
detection on the arrays, and both canonical TGF-β target
Pai1[37] expression levels and TGF-β luciferase-reporter
response were very low (not shown). These data imply
that there is a modifier gene upstream of the pathway
changes seen, but that it is not a gene currently under con-
sideration.

Our study design carried several inherent limitations. In
order to obtain the strongest possible level of discrimina-
tion for modifier genes, we compared mutation carriers
who developed disease early to mutation carriers still
unaffected in old age (Table 1). This necessarily results in
a mismatch of age between groups as part of the study
design. However, we have previously shown that differ-
ence in age does not appear to create a difference in B-cell
protein expression[34]. Further, there was a difference in
the degree of relation between unaffected and affected car-
riers; this could result in an underestimate of the false dis-
covery rate. Another limitation lies in differences between
B-cells and disease effector cells, including pulmonary
smooth muscle and endothelium. For instance, in B-cells,
excision/repair (Additional File 1, Figure 1) is tightly
linked to proliferation, and so alterations in these genes
are probably not meaningful to other cells[15]. Con-
versely, B-cells do not express some genes likely of interest
in disease, and so these cannot be studied in this system.
For instance, the TGF-beta system does not appear to be
functional in B-cells. However, the ideal tissue compari-
son, between lung tissue from BMPR2 mutation carriers
that will never develop disease and those that will develop

disease but have not yet, is inherently impossible; neither
the information nor the tissue to conduct this study could
be obtained. Finally, the act of EBV-transforming these
cells is likely to have produced some changes. However,
these changes should be consistent across samples; at
worst, they could mask some effects. Concern about this
issue explains our focus on GTP-related genes, rather than
either stress-response or proliferation, although there is
no particular reason to believe that these changes are not
also valid.

Conclusion
The work presented here provides evidence that predispo-
sition to disease in BMPR2 mutation carriers lies in alter-
ations of pathways related to actin organization, stress
response, and proliferation, likely achievable through
alterations in any of several upstream modifiers, rather
than primarily to specific individual genes within those
pathways. The strongest single candidate modifier gene
identified was CYP1B1, with tenfold lower expression on
average in female BMPR2 mutation carriers than in unaf-
fected carriers or non-carriers.
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