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Abstract

Background: The prediction of the genetic disease risk of an individual is a powerful public health tool. While predicting risk
has been successful in diseases which follow simple Mendelian inheritance, it has proven challenging in complex diseases
for which a large number of loci contribute to the genetic variance. The large numbers of single nucleotide polymorphisms
now available provide new opportunities for predicting genetic risk of complex diseases with high accuracy.

Methodology/Principal Findings: We have derived simple deterministic formulae to predict the accuracy of predicted
genetic risk from population or case control studies using a genome-wide approach and assuming a dichotomous disease
phenotype with an underlying continuous liability. We show that the prediction equations are special cases of the more
general problem of predicting the accuracy of estimates of genetic values of a continuous phenotype. Our predictive
equations are responsive to all parameters that affect accuracy and they are independent of allele frequency and effect
distributions. Deterministic prediction errors when tested by simulation were generally small. The common link among the
expressions for accuracy is that they are best summarized as the product of the ratio of number of phenotypic records per
number of risk loci and the observed heritability.

Conclusions/Significance: This study advances the understanding of the relative power of case control and population
studies of disease. The predictions represent an upper bound of accuracy which may be achievable with improved effect
estimation methods. The formulae derived will help researchers determine an appropriate sample size to attain a certain
accuracy when predicting genetic risk.
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Introduction

Genetic risk of disease is an important component of overall risk of

disease in addition to environmental, socio-economic, and behav-

ioral risk factors. Therefore, predicting the genetic risk of disease for

an individual is a powerful tool in taking preventative measures

against the onset of the disease. Such predictions from genetic testing

are relatively straightforward when a disease is caused by one or few

genes. However, when a disease is of complex inheritance, the

genetic risk of the disease may be associated with many loci, each

explaining only a small portion of the genetic variance [1,2]. In this

case, the prediction of genetic risk of disease of a particular individual

becomes more challenging. Currently, prediction of risk for complex

diseases is based mainly on pedigree analysis but this approach yields

predictions of risk that are of low precision; for example predictions

would be identical for full siblings without offspring, yet the genetic

variation among them accounts for half or more of the genetic

variance [3,4].

The identification of very large numbers of single nucleotide

polymorphisms (SNP) has enabled the use of genome-wide

association studies (GWA) to detect alleles that are associated with

risk for complex diseases [5], such as Type II Diabetes and Crohn’s

disease [6]. In tandem with this substantive increase of SNP data,

several methods for quantifying and/or predicting genetic risk of

disease from multiple genes have been put forward [7,8]. Wray et

al.[9] extended these methods by using an GWA approach to

estimate the individual genetic risk of disease. Unlike the risk

estimates obtained using only pedigree, the estimates resulting from

such a GWA approach are more precise by allowing for

differentiation among full-siblings. In addition, no pedigree or

family history is needed either for estimating risk in one genotyped

sample from the population or for predicting risk in a fresh sample.

Similar genome-wide methodology has been proposed in animal and

plant breeding to estimate additive genetic values for quantitative

traits [10,11]. One critical difference between the two genome-wide

approaches is that Wray et al. [9] set a significance threshold for the

loci selected for disease prediction, whereas Meuwissen et al. [10] use

all loci regardless of whether they affect or not the trait considered.

The approach of Meuwissen et al. [10] therefore attempts to achieve

the maximum estimate precision of the complete genetic value for a
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given dataset by including loci that may have too small of an effect to

achieve statistical significance, and, thus, reduces the overestimation

of allele effects [12].

Wray et al. [9] computed the precision of the individual genetic

risk estimates by simulation. While simulation studies are useful in

getting initial results on the number of phenotypic records needed to

achieve a desired level of accuracy, they are computer intensive and

time consuming with large numbers of markers. Most importantly,

they do not provide a deep insight on how all variables that affect

accuracy interact. Therefore, it is desirable to develop deterministic

equations that are responsive to all variables that influence accuracy.

Here we present simple expressions for the genome-wide

accuracy of prediction of genetic disease risk. We derive general

expressions for continuous traits and the necessary extensions for

dichotomous disease traits with data obtained either from

population studies or case control studies. The predictions are

tested by computer simulation under a variety of parameters

influencing accuracy, such as, for example, disease prevalence,

heritability and distributions of allele effects and frequencies

Materials and Methods

Derivation of Equations
The predicted accuracy that is derived below represents the

upper bound that can be achieved when estimating effects in one

population sample and then predicting individual genetic risk in

another sample from the same population. Throughout this article

the accuracy of predicted genetic risk (rgĝ) is defined as the

correlation between true and predicted genetic values. One

advantage of using rgĝ is that the factors influencing it can be

clearly derived using the principles of population genetics, as we

show below. We will first derive equations that are predictive of rgĝ
for a genome-wide approach with a continuous phenotype, such as

height, assuming a population study where individuals are sampled

at random. These will then be adapted to predict disease risk for a

dichotomous phenotype (‘affected’ or ‘unaffected’) with an

underlying continuous liability. The equations are then further

adapted to the situation of case control data.

Continuous phenotype
We will assume that there are nG potential loci affecting a trait

which are independent, biallelic and acting additively, where nG may

be large. These loci may be candidate genes or genetic markers of

which a significant proportion may have zero effects. For locus j,

j = 1…nG, let a randomly chosen reference allele for that locus have

frequency pj and true allelic substitution effect bj. We shall assume

without loss of generality that the distribution of allele frequencies pj

is symmetric about p = K, and likewise that allelic effects bj are

symmetric about b = 0. No further distributional assumptions will be

made here on pj and bj, so for example, many of the allele segregating

may have negligible or zero effect. No assumptions are made

concerning the covariance between pj and bj in the populations

sampled. We intend to derive the accuracy of the prediction of the

additive genetic value (rgĝ) of an individual that can be achieved after

the measurement of nP phenotypes.

An estimate of the effect of each allele may be obtained by

regression of the phenotypic records on the genotypes one locus at

a time because the loci are independently segregating. Assume the

population variance of the phenotypes is 1. The estimated allele

substitution effect will be b̂bj with expectation E b̂bj

h i
~bj , and is

obtained by regressing the phenotypes on the observed number of

reference alleles in the genotype, denoted xij for individual i and

locus j (i.e. xij = 0, 1, or 2). The sampling variance of the allele

estimate is var b̂bj{bj

� �
~s2

e

�
Sxx,j where s2

e is the residual

variance after regression on xij and Sxx,j = nPvar(xij) is the adjusted

sums of squares for xij. Although not assumed here, when the

population is in Hardy-Weinberg equilibrium Sxx,j is given by 2nP

pj(12pj). For the present, we shall conservatively take s2
e~1, which

underestimates the accuracy of the prediction.

Our aim is to predict the accuracy of a new population sample, so

we apply the original estimates to a new sample of the same popu-

lation. Values referring to the second sample will be ‘dashed’, hence

individual i from the second sample has x0ij alleles at locus j. The

additive genetic value of i is given by gi~
P

loci j x0ijbj with estimate

ĝgi~
P

loci j x’ijb̂bj . Then r2
gĝg~ cov gi,ĝgið Þ½ �2

.
var gið Þvar ĝgið Þ½ �. Noting

that ĝi can be re-written as
P

loci j x’ij bjz b̂bj{bj

� �h i
with

cov bj ,b̂bj{bj

� �
~0, it is seen that cov(gi, ĝi) = var(gi) and that

r2
gĝg~var gið Þ=var ĝgið Þ. Of these remaining terms, var gið Þ~h2

o, where

h2
o is the observed heritability for the trait, assuming the phenotypic

variance is 1. Again using the decomposition b̂bj~bjz b̂bj{bj

� �
, it

can be shown that var ĝgið Þ~h2
oz

P
loci j var x’ij

� �
nP var xij

� �� �{1
,

following from (i) the independence of the loci and (ii) the sampling

variance of b̂bj derived earlier. Finally var x’ij
� �

~var xij

� �
, since the

second sample comes from the same population, so

r2
gĝg~h2

o h2
oznG=nP

� �{1
, and substituting l = nP/nG gives

rgĝg~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lh2

o

lh2
oz1

s
: ð1Þ

Therefore accuracy is seen to be a function of the product of the

observed heritability h2
o and the ratio of the number of phenotypes

recorded to the number of loci involved, l. A second order

correction to relax the assumption s2
e~1 is given in Appendix S1,

where it is shown to result in an upward correction to rgĝ of

fractional magnitude &1=2r4
gĝgl{1.

Dichotomous disease phenotype.
We shall now derive the accuracy of predicting individual

genetic risk to disease (rgĝ) in a random population sample by

considering disease prevalence in a liability model [9]. For a

disease with prevalence q, phenotypes are defined as si = 0 for

unaffected, and si = 1 for affected, so E[si] = q and var(si) = q(12q).

Individuals with the highest liability are affected by the disease. Let

liability be yi, scaled so E[yi] = 0 and var(yi) = 1, and bj is the

regression of liability on the number of reference alleles at locus j.

The linear predictor of si on yi is given by si = q+qiqyi [13], where iq
equals the mean liability of affected individuals, which we will term

the selection intensity [3] corresponding to the prevalence of the

disease in the population. Let the slope of the regression of si on xij

be p̂pj , then E p̂pj

� �
~qiqbj , with sampling variance, estimated

conservatively using the phenotypic variance q(12q)

var p̂pj

� �
~q 1{qð Þ nP var xij

� �� �{1
: ð2Þ

The coefficients p̂pj may be rescaled to give estimates

b̂bj~p̂pj

�
qiq
� �

, with sampling variance

var b̂bj

� �
~ 1{qð Þ nP var xij

� �
q i2

q

h i{1

: ð3Þ

Repeating the argument outlined above for a continuous pheno-

type with var gið Þ~cov gi,ĝgið Þ~h2
l , and var ĝgið Þ~h2

l z nGq 1{qð Þ½
var x’ij
� �

�: 1{qð Þ
	

nPvar xij

� �
qi2

q

h i{1

, where h2
l is the heritability

Genetic Disease Risk Accuracy
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on the liability scale. Simplifying terms results in:

r2
gĝg~

nPh2
l q i2

q

nPh2
l q i2

qznG 1{qð Þ
ð4Þ

Robertson and Lerner [14] show that the relationship between

additive heritability on the observed scale and the heritability on

the liability scale satisfies

h2
o&h2

l q2i2
q q 1{qð Þ½ �{1: ð5Þ

Substitution then results in Equation (1) with h2
l being replaced by

h2
o:

rgĝg~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lh2

o

lh2
oz1

s
: ð6Þ

Therefore the dichotomous phenotype study of disease results in

an identical formula for rgĝ as the continuous phenotype provided

the heritability used is that for the observed dichotomous scale.

Case Control Disease Study
The formulae will now be extended to derive the accuracy rgĝ of a

genetic risk prediction when applying a case control design to a

dichotomous phenotype. The need for modification of the equations

for a case control design comes from the selection of individuals from

within the population to achieve a prevalence within the sample of

cases and controls of w, and where typically w = 1/2 with equal

numbers of cases and controls. Parameter values post-selection will

be ‘starred’. It is assumed in the following without loss of generality

that cases are less common than controls in the population so

q#w#1/2. Two parameters in particular need to be re-estimated

because of the selection practiced: (i) S
1
xx,j=nP var xij

� �
; and (ii) the

regression of si on xij, E p̂p
1
j

h i
=qiqbj . Both these corrections can be

made as shown in detail in Appendix S2.

Briefly, assuming no covariance between pj and bj,

E var xij

� �� �
~var gið Þ

.
nG E b2

j

h i� �
. S

1
xx,j is nPvar*(xij) and so since

nG and E b2
j

h i
over loci are unaffected by the sampling of cases and

controls, E[var*(xij)] = E[var(xij)]var*(gi)/var(gi). Appendix S2 shows

that using Normal theory var1 gið Þ~var gið Þ 1{h2
l i i{x
� �� �

.

Further E p̂p
1
j

h i
~w iq{i

� �
bj 1{h2

l i i{x
� �� �{1

, where x is the

truncation point of a Normal distribution for upper-tail probability

q, ī = wiq2(12w)i(12q).

Approximating s2
e~0:25 for a binomial trait with probability

K, appropriate for equal numbers of cases and controls, gives

var b̂bj

� �
~ 1{wð Þ 1{h2

l i i{x
� �� �

w nP var xij

� �
iq{i
� �2

� �h i{1

,

and substituting l results in

r2
gĝg~

lwh2
l iq{i
� �2

lwh2
l iq{i
� �2

z 1{wð Þ 1{h2
l i i{x
� �� � : ð7Þ

Changing the heritability from the liability scale for a population

sample to the observed scale for a population sample using

Equation (5) produces

r2
gĝg~

lh2
o

lh2
ozq 1{qð Þ 1{h2

l i i{x
� �� �

w{1 1{wð Þ{1
: ð8Þ

Finally, substituting q 1{qð Þ 1{h2
l i i{x
� �� �

w{1 1{wð Þ{1
~c,

gives

r2
gĝg~

lh2
o

lh2
ozc

: ð9Þ

Thus the form of rgĝ for a case control study shows equivalence to the

rgĝ of continuous and dichotomous phenotypes provided heritability

is on the observed scale and the appropriate changes are made in c to

account for the selection of cases and controls. The value of c is 1 in

population studies (Equation (6)), where w = q (and, hence, ī = 0).

When q,w,1/2, c,1 and there is an increase in rgĝ compared to a

population study with the same l.

Simulations
Stochastic computer simulations were used to test the determin-

istic predictions of rgĝ for a number of parameters affecting the

continuous and dichotomous phenotypes. We describe the full

simulation method for the continuous trait and then state additional

steps that were needed for the dichotomous phenotypes (random

population sample and case control). In all scenarios (i) individuals

were unrelated; (ii) loci were independent; (iii) all genetic action was

additive; (iv) for simplicity, loci were assumed to be in Hardy-

Weinberg equilibrium; and (v) each scenario was replicated 100

times, except for case control scenarios with l = 0.02 where 500

replicates were run. Furthermore for initial simulations (vi) allele

frequencies were sampled from a uniform distribution corresponding

to a common-disease-common-variant hypothesis (CDCV) [15]; and

(vii) allele effects were drawn from a reflected exponential

distribution which was made symmetric about x = 0. Items (vi) and

(vii) were modified as described below.

For the continuous phenotypes, the phenotypic variance was 1.

True additive genetic values for nP individuals were calculated as

(12pj)bj and 2pjbj for the minor and major alleles, respectively, for

each of nG simulated loci, and summing over loci. The value of nG

used in most scenarios was 1000 and nP varied accordingly,

depending on l. Two exceptions were l = 0.02, where

nG = 20,000, and the scenarios in which l was kept constant with

nG = 100. The scale factor of the exponential distribution was

chosen to obtain the required additive heritability h2
o

� �
. Pheno-

typic records were simulated by adding independent environmen-

tal terms to the true genetic effects drawn from a Normal

distribution with mean zero and variance 1{h2
o. Allele substitu-

tion effects b̂bj

� �
were estimated by regression of nP phenotypic

records on genotypes one locus at a time. A second sample of

individuals was then simulated with genotypes based on the same

allele frequencies and effects as the original population. The

estimated additive genetic values were then computed according

to the following model: ĝgi~
P

loci,j x’ij b̂bj , as described above.

Finally, rgĝ was calculated as the correlation between true and

estimated additive genetic values. Bias was also assessed by the

slope of the regression of gi on ĝi.

The continuous phenotype case was tested for robustness to

different distributions of allele frequency and effects, and their

correlation. The allele frequencies were also drawn from a beta

(U-shape) distribution, consistent with a neutral allele model [16],

with parameters alpha = 0.3, and theta = 0.3. Allele effects were

also sampled from a normal distribution with mean zero. The

effect of having a percentage of loci with zero effects was

investigated by setting a proportion of the effects to zero while

keeping the overall genetic variance constant. In all cases, the scale

factor for the distribution of allele effects was modified to maintain

the desired h2
o.

Genetic Disease Risk Accuracy
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Further testing of the predictions was done by introducing a

correlation between the heterozygosity at a locus and the squared

magnitude of the allele substitution effect at a locus. This was done

for a uniform distribution of allele frequencies and the reflected

exponential distribution of allele effects. This was achieved

empirically: if the randomly drawn frequency had heterozygosity

greater than the median (i.e. 2p(12p).0.375) then the magnitude

of the allele effect was drawn to be less than the median of the

distribution of the magnitudes.

The simulation of a random population sample for the

dichotomous disease phenotype followed the same structure as

above but contained the additional step of treating the underlying

continuous phenotype distribution as a liability for the disease with

heritability h2
l on the liability scale [14]. Therefore, with

prevalence q, the fraction q of the population with the greatest

liability were considered to be affected. Therefore allele effects

were estimated from the dichotomous phenotype and the

accuracy, rgĝ, was calculated as the correlation between the true

and estimated genetic liability for the disease estimated in an

independent population sample.

Case control studies were simulated with an equal number of

cases and controls (i.e. w = 1/2). A dichotomous disease phenotype

with sample size nP was simulated by including an additional

selection step which expanded the population size to nP[2qd]
21.

The liabilities were constructed as for the population study of a

dichotomous disease, the nP/2 individuals with the greatest

phenotypic liability were considered to be affected cases, and a

further nP/2 were randomly chosen from those remaining as

control phenotypes. Allele effects were estimated as for the

population studies, and the accuracy was estimated from a

randomly-drawn independent population sample of size nP.

Results

Population-wide studies of continuous phenotypes
When allele effects were drawn from an exponential distribution

and frequencies were from the uniform, the deterministic formula for

rgĝ was found to predict the simulated data reliably across the wide

range of parameters used (Table 1). The prediction errors across all

parameters studied were in the range of 21.3 to 4.0% (Table 1).

The close agreement between the predicted and achieved

accuracies is also seen in Table 2 and was maintained when: (i)

allele frequencies were drawn from a beta-distribution (% error

20.9 to 0.7); (ii) allele effects were drawn from a normal

distribution (% error 20.8 to 5.0); (iii) exponential allele effects

were mixed with varying proportions of alleles with no effects,

ranging from 0 to 95% (% error 0.1 to 26.6, Table 3); (iv) l’s

ranging from 0.02 to 5 were investigated (% error 220.0 to 4.0,

Table 1); and (v) the genetic architecture was varied by keeping l
constant and changing nG (nG = 100, % error 0.1 to 7.6; and

nG = 1000, % error 20.5 to 0.0). It should be noted that the large

percentage errors seen when l = 0.02 are due to low rgĝ, where the

absolute difference between the expected and simulated rgĝ was still

less than 0.02. The introduced correlation between heterozygosity

and squared substitution effect was tested with l = 1 and nG = 1000

using the empirical procedure described in the Materials and

Methods. With an achieved correlation of 20.36 and an observed

h2
o~0:39, the predicted accuracy from Equation (1) was 0.53, with

an error of 1.1% when compared to simulation. In conclusion, it is

clear that the deterministic rgĝ is robust to wide distributional

assumptions on the joint distribution of frequency and effect of

allele substitution, as predicted from the derivation.

Therefore the predictions of genome-wide accuracy shown in

Figure 1 based on Equation (1) for different values of observed h2 and

l have wide applicability. For all l, the accuracy was most sensitive

to h2 when h2 was low and this sensitivity was potentiated by higher

numbers of phenotypes per genotype tested. The accuracies are

functions of lh2, so the required l to achieve a given accuracy is

proportional to 1/h2. Thus, the numbers of phenotypes per genotype

need to be twice as high for half the heritability. To obtain accuracies

of 0.71, corresponding to predicting half the genetic variance, l = 1/

h2, and therefore l must be $1 because h2#1.

Population-wide studies on dichotomous disease
phenotypes

The form of the predicted accuracy (rgĝ) is very similar to that for

a quantitative trait. Again the prediction of rgĝ was very good (%

error 214.1 to 1.6; see Table 1). The validity of the prediction

resulting from Equation (6) was robust to varying disease

Table 1. Predicted accuracy and percentage prediction error
assessed by simulation with disease prevalence = 0.1 (SE
range 0.0004–0.0065).

h2b la = 0.02 l = 0.50 l = 1.00 l = 5.00

Pc %errord P %error P %error P %error

Ce 0.1 0.045 4.0 0.218 3.6 0.301 2.2 0.577 0.4

0.5 0.100 2.1 0.447 20.5 0.577 20.2 0.845 20.1

0.9 0.133 21.3 0.557 0.2 0.688 20.2 0.905 20.1

DP
f 0.1 0.026 214.1 0.130 26.6 0.182 22.2 0.382 21.6

0.5 0.058 21.1 0.281 0.6 0.382 21.1 0.679 0.2

0.9 0.078 29.8 0.365 1.6 0.485 0.8 0.779 0.2

DC
g 0.1 0.043 20.6 0.209 2.4 0.290 3.5 0.560 21.9

0.5 0.089 24.3 0.407 3.0 0.533 0.8 0.816 22.9

0.9 0.112 220.0 0.490 20.4 0.622 20.4 0.872 23.3

al = number of phenotypes per number of loci.
bh2 = heritability (observed scale for C and DP, liability scale for DC).
cP = predicted accuracy of estimated additive genetic value.
d% error = percentage prediction error = 100(P2accuracy from simulation)/P.
eC = continuous phenotype.
fDP = dichotomous phenotype, population study.
gDC = dichotomous phenotype, case control study.
doi:10.1371/journal.pone.0003395.t001

Table 2. The effects of different distributions of allele
frequency and effects on accuracy in a continuous phenotype
with observed heritability = 0.5 (SE range 0.0004–0.0057).

la Predicted Simulated

Betab/Nrmc Beta/Expd Unif/Nrm Uni/Exp

0.02 0.100 0.095 0.093 0.100 0.097

0.50 0.447 0.442 0.436 0.451 0.450

1.00 0.577 0.577 0.579 0.576 0.578

2.00 0.707 0.709 0.714 0.704 0.709

5.00 0.845 0.849 0.848 0.846 0.846

10.00 0.913 0.914 0.914 0.913 0.912

al = number of phenotypes per number of loci.
bBeta = beta distribution (alpha = 0.3, theta = 0.3) of allele frequencies.
cNrm = normal distribution of allele effects.
dExp = exponential distribution of allele effects.
fUni = uniform distribution of allele frequencies.
doi:10.1371/journal.pone.0003395.t002
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prevalence over the range of 0.01 to 0.5 (% error 21.9 to 1.4,

Table 4). The form of the prediction in Equation (6) is a function

of l and the observed additive heritability on a (0,1) scale, but this

can be achieved with varied combinations of disease prevalence

and underlying heritability of liability. This is shown in Table 5,

which also demonstrates that, as predicted from Equation (6), rgĝ is

a function of only h2
o as accuracy remains constant with varied

disease prevalence and h2
l .

The predicted rgĝ of population studies of continuous phenotypes

and dichotomous disease phenotypes with an underlying contin-

uous liability follow the same functional form as seen in

Equation (6). Therefore, Figure 1 can be used to derive predicted

rgĝ for dichotomous phenotypes as well as continuous phenotypes.

However, note that in the liability model, even if liability was fully

determined genetically, the additive heritability on the observed

scale will never exceed 0.64 (i.e. 4h(0)2, where h(x) is the

standardized normal density function) with the remaining genetic

variation appearing non-additive. The corresponding maximum

rgĝ achievable will be reduced and this will be most serious for low

l. Even with the most favorable circumstances of q = 1/2 and

liability h2
l ~1, the accuracy will never exceed 0.71 if l,1.56, and

it should be expected that l needs to be much greater than this to

explain half the genetic variance. This circumstance should not be

expected to change when using other disease models than the

liability, since the loss of rgĝ arises from the loss of quantitative

information when moving from a continuous genetic value

(however defined) to the categorical observation of affected or not.

Case control studies of dichotomous disease phenotypes
The prediction formula for accuracy of case control studies (rgĝ)

is not a simple function of l and the observed h2
o, but also depends

on both the heritability on the liability scale and the disease

prevalence, as seen from Equation (8). Therefore, comparisons

require consideration of how c in Equation (9) varies. The

simulations assumed w = 1/2, with equal numbers of cases and

controls. Although, as seen in Table 1, the predictions are

generally good (% error 220.0 to 3.5), where the large error

Table 3. Accuracy for continuous phenotype when setting
0.95 of nG

a loci to zero (l = 0.02 = 400nP
b/20,000nG, SE range

0.0042–0.0057).

h2
o

c
0.95 of nG zero 0.0 of nG zero Predicted

0.1 0.057 0.043 0.045

0.5 0.101 0.097 0.100

0.9 0.129 0.135 0.133

anG = number of loci.
bnP = number of phenotypes.
ch2

o = observed heritability.
doi:10.1371/journal.pone.0003395.t003

Figure 1. Predicted accuracy of estimated genetic values of a continuous phenotype. Predicted accuracy of estimated additive genetic
values of a continuous phenotype as a function of observed heritability and number of phenotypes per genotype tested, l = 0.02, 0.1, 0.5, 1, 2, 5, 10
and 20 from minimum to maximum accuracy respectively.
doi:10.1371/journal.pone.0003395.g001

Table 4. Accuracy for a dichotomous disease trait as
prevalence varies (ah2

l , bl = 1, SE range 0.0026–0.0048).

Prevalence Study Type DP
c Study Type DC

d

Pe % Errorf P % Error

0.01 0.186 20.8 0.593 211.1

0.03 0.271 21.9 0.568 26.8

0.05 0.317 0.3 0.554 23.5

0.10 0.382 20.6 0.533 0.6

0.20 0.444 1.4 0.511 22.5

0.30 0.473 1.2 0.499 20.2

0.40 0.487 20.6 0.493 1.2

0.50 0.491 0.0 0.491 1.4

ah2
l = heritability on liability scale.

bl = number of phenotypes per number of loci.
cDP = population study of dichotomous phenotypes.
dDC = case control study of dichotomous phenotypes.
eP = predicted accuracy of additive genetic values.
f% error = percentage prediction error = 100(P2accuracy from simulation)/P.
doi:10.1371/journal.pone.0003395.t004
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deviations are again due to low l, there is a trend towards the

underestimation of rgĝ as prevalence becomes low (Table 4).

The value of rgĝ for case control studies is best illustrated by

comparison with population studies of dichotomous disease traits.

Figure 2 integrates this information and shows the relationship of

prevalence and observed heritability in population and case

control studies. Values of rgĝ below the narrowly dashed line

derived from Equation (5) are not possible under the liability

model, for example, an observed additive heritability of 0.5 and a

prevalence of 0.1 could not exist in the same dataset. Each contour

represents an level of constant rgĝ, where the dashed lines represent

a population study and the solid lines denote a case control design

with w = 1/2. As described above the contours are vertical for

population studies as, given h2
o, the accuracy is independent of q,

but for case control studies move towards lower h2
o as prevalence

decreases. Several clear conclusions on case control studies can be

drawn: (i) the overall trend of rgĝ increasing with more phenotypes

per number of genotype holds true for case control studies

(Table 1); (ii) population studies and case control studies are

equivalent when the prevalence is 0.5 (Figure 2); (iii) a case control

study is always more accurate than a population study with the

same number of individuals genotyped (Figure 2); (iv) for a

constant h2
l , rgĝ increases as the disease prevalence increases in

population studies, since this increases h2
o, but in case control

studies rgĝ increases as the disease prevalence decreases because of

the more intense selection induced by the less prevalent disease

(Table 4).

Discussion

We have derived simple deterministic predictions of rgĝ in

continuous and dichotomous phenotypes using either a population

or a case control study and we have shown them to be

appropriately responsive to changes in disease prevalence,

heritability, and the number of phenotypic records per number

of risk loci to be estimated. In addition, the equations have proven

robust to changes in allele effect distributions, including different

fractions of loci with zero effect and differing allele frequency

Table 5. Simulated accuracy of a population study for a
dichotomous phenotype as prevalence and h2

l
a varies and h2

o
b

stays constant (lc = 10, h2
o~0:2, predicted accuracy = 0.816,

Equation (4), SE range 0.0025–0.0038).

Prevalence h2
l Accuracy

0.05 0.893 0.810

0.10 0.584 0.814

0.20 0.408 0.814

0.30 0.347 0.813

0.40 0.322 0.813

0.50 0.314 0.813

ah2
l = heritability on liability scale.

bh2
o = heritability on observed scale.

cl = number of phenotypes per number of loci.
doi:10.1371/journal.pone.0003395.t005

Figure 2. Predicted accuracy of estimated genetic risk from population and case control designs of a dichotomous phenotype.
Contour plot of predicted accuracy for varied prevalence and additive heritability on the observed scale, in population studies (dashed vertical line)
and case control studies (solid line) of dichotomous phenotypes. Each contour represents a line of constant accuracy, starting from the right 0.9, 0.8,
0.7, and 0.6. The narrowly dashed line is derived from Equation (5) with h2

l ~1, so values below this line are not possible under the liability model.
doi:10.1371/journal.pone.0003395.g002
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distributions. Population studies are also robust to covariances

between the magnitude of allele effects and heterozygosity,

although, in principle, this robustness does not hold for case

control studies. This advance in understanding has been used to

summarize the influence of critical parameters such as heritability

and numbers of phenotypes and risk loci on accuracy of

prediction, and also to show the degree to which case control

designs can add power to studies.

The approach taken here has been to assume the potential loci

affecting the trait are known, and this has an impact that is double

edged. First, it allows for a clear quantification of the limitations

imposed on rgĝ by the number of phenotypes obtained, irrespective

of marker densities. The information gained by doing so is of equal

importance to knowing the number of markers needed for a

certain rgĝ but seems to have received less attention recently.

Second, it implies that the predicted rgĝ are upper bounds for the

data obtained, since some loss of rgĝ will occur through the use of

markers which are potentially in imperfect linkage disequilibrium

(LD) with loci with effect [17], and the inclusion of candidate loci

that may have no effect within the population.

The impact of including these loci with no true effect may be

explained by two applications of our formulae. The first

application assumed the loci affecting a disease trait are known

and thus rgĝ demonstrates an upper bound on the accuracy; for

example, consider nG = 1000 loci with effects greater than 0,

nP = 10,000 phenotypes and h2
o~0:1, then the predicted accuracy

is obtained with l = 10, and will be 0.71. Now consider if those

1000 loci are contained with a set of nG = 100,000 marker loci,

with 99% having zero effect so that now the accuracy is obtained

with l = 0.1; our predictive equations remain valid and predict an

accuracy of 0.10. From these applications of our formulae it is

clear that the approach of estimating loci effects one at a time will

inevitably result in low accuracies, and further, adding more

marker loci with zero effects while using the same approach will

reduce the expected accuracy. The low accuracies predicted

accord with the empirical findings from large scale studies of

human data that have recently been reported [18]. It is clear that

alternative approaches to prediction will be needed to bridge the

gap and raise accuracies towards the potential placed by the

phenotype collection.

Nevertheless, potential alternative approaches are available and

evidence already exists that these approaches may significantly

increase predictive accuracy. One approach is to implement model

selection approaches. Similarly, improvements in rgĝ can be

achieved by implementing model selection least squares proce-

dures to identify a subset of SNP from which to predict effects

[10,19], or by using more complex procedures to identify a subset

to set to zero [20]. Some of these studies [10,19,20] also

incorporate the use of prior information within Bayesian

procedures and demonstrate significant increases in accuracy over

least squares. Increasing the number of markers when using priors

can increase accuracy because the size of the marker subset chosen

stays the same due to the prior but the portion of the genetic

variance captured by the markers subset increases [21]. However

the use of Bayesian approaches will demand reliable distributions

for incorporation into models. Literature estimates informing

priors on nG and the distributions of the effects will become more

widely available as GWA studies become more powerful [1,22].

Full genome-wide methods [10,11], where genetic risk or additive

genetic values are estimated in one step, using all loci

simultaneously particularly if they are correlated, might be

expected to approach the upper bound of rgĝ faster than methods

which impose significance thresholds and, thus, do not capture all

the genetic variation. From the results presented here it may be

argued that priors on the numbers of loci positively contributing to

the genetic variance will be more critical than those describing the

distribution of gene effects.

In this paper we have used a liability model for disease instead

of the commonly used log genetic risk model and the impact of

doing so is likely to be small for large datasets. For a set of h2
o and q,

an underlying log-risk can be approximated well by a liability

[9,23] and the distribution of effects on the log-risk scale will be

transformed to a distribution on the liability scale, and the

predictions developed here are not dependent on the distribution

of effects. However there is evidence that distinctions may be

larger when q is very close to zero or one [24].

A critical assumption of the genetic models studied was that the

loci acted independently. In humans, most LD stretches for 10 to

30 kb, while some linkage disequilibrium blocks may be .100 kb

[25]. The human genome contains 3.1 billion bases [26] and,

assuming 2000 known loci contribute to the additive genetic

variance, each genomic segment between them would be 1550 kb.

This confirms that this model is viable in human. One could apply

our formulae by interpreting nG as the number of independent

chromosome segments (i.e. haplotype blocks). The length and,

thus, the number of these segments would depend on the amount

of LD present in the genome. The number of such segments have

been estimated directly from pair-wise LD between markers [27]

and closely related measures, such as the number of independent

tests on the genome, have been estimated using principle

component analysis [28] and have been derived analytically for

specific experimental designs [29]. When LD exists, either

between markers and risk loci or between risk loci, the predictive

efficiency of our equations will be reduced. Modeling the pattern

of LD by extension of our formulae would thus be important when

many loci are used, as with dense SNP marker maps, or when

predicting additive genetic values in other species, such as some

livestock populations where the extent of LD is large compared to

human [30,31].

An attraction of molecular predictors of genetic risk compared

to pedigree predictors is the potential to apply the predictions

more widely within populations and across populations. Obtaining

sufficient accuracy within populations can be achieved by the

quality and size of sampling, but there are additional factors in

play when transfer across populations is being considered. For

example, one benefit of genome-wide prediction is that individual

allele effects are estimated with a precision that is related to the

molecular variation observed at the locus, var(xij), which deter-

mines the contribution of genetic variance when combined with

the squared magnitude of effect. This benefit may break down

when predictions are transferred across populations. As an

illustration, consider a rare allele of large effect which will be

relatively imprecisely estimated in the estimation sample, but

because the contribution of the locus to total variance is small

there is only a small impact upon the accuracy of further

predictions within the same population. In a different population,

such an allele may have a greater frequency and contribute a

greater part of the genetic variance, and, consequently, the

predictive accuracy will suffer. Specifically, the ability to transfer

predictions will depend on var(xij) in each of the two populations

used for estimation and application, and this in turn depends on

both the allele frequency (pj) and the degree of admixture present

in the population. Furthermore, an additional risk of transferabil-

ity across populations is the presence of epistasis which may

differentially influence bj.

Any directional selection present in the population is likely to

introduce a covariance between the magnitude of allelic effect and

heterozygosity, since selection promotes the movement of alleles of
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large effect quickly through intermediate frequencies, where they

create large genetic variance, towards extreme frequencies. The

predictions of rgĝ developed make no assumption of the covariance,

and hence are robust to such selection in the population prior to

estimation in population studies. In contrast, the derivation for the

case control study does assume independence of heterozygosity

and magnitude (as described in Appendix S2). However, in the

limited simulations carried out with such covariances in case

control studies, the impact of the breaking this assumption

appeared small (results not shown).

Our derivations show that rgĝ can be reduced to very similar

forms for population and case-control studies of continuous and

dichotomous phenotypes (c.f. Equations (1), (6) and (9)). The

common element affecting rgĝ for all three equations is the term

lh2
o, describing the joint effect of l, the number of phenotypic

records per locus associated with the trait, and the observed

heritability. Increasing either of these improves rgĝ, but the study

shows that the major determinant of the trade-off between these

two factors is their product. For a population study lh2
o is

completely sufficient to determine accuracy, independent of

prevalence (q) and heritability h2
l

� �
of liability for a dichotomous

trait, but for a case control study both q and h2
l retain some

influence on rgĝ over and above their impact upon h2
o. This is

because, in a case control study, the term c in Equation (9) is

adjusting for the selection of the cases and controls, and the

strength of selection will depend upon q, and its impact on genetic

variance will depend on h2
l .

The predictive equations are a good fit to the simulated values

and we have demonstrated, by theory and simulation, that they

are independent of allele frequency and effect distributions. The

formulae have increased the understanding of the relative

differences between predicting rgĝ in a random sample of a

population and in case control studies. The expressions for rgĝ
derived will help researchers design experiments of appropriate

size to estimate genetic risk to disease.
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