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Abstract

Background: Tumor-infiltrating CD8+ T cells are correlated with prolonged progression-free and overall survival in epithelial
ovarian cancer (EOC). A significant fraction of EOC patients mount autoantibody responses to various tumor antigens,
however the relationship between autoantibodies and tumor-infiltrating T cells has not been investigated in EOC or any
other human cancer. We hypothesized that autoantibody and T cell responses may be correlated in EOC and directed
toward the same antigens.

Methodology and Principal Findings: We obtained matched serum and tumor tissue from 35 patients with high-grade serous
ovarian cancer. Serum samples were assessed by ELISA for autoantibodies to the common tumor antigen NY-ESO-1. Tumor
tissue was examined by immunohistochemistry for expression of NY-ESO-1, various T cell markers (CD3, CD4, CD8, CD25,
FoxP3, TIA-1 and Granzyme B) and other immunological markers (CD20, MHC class I and MHC class II). Lymphocytic infiltrates
varied widely among tumors and included cells positive for CD3, CD8, TIA-1, CD25, FoxP3 and CD4. Twenty-six percent (9/35)
of patients demonstrated serum IgG autoantibodies to NY-ESO-1, which were positively correlated with expression of NY-ESO-
1 antigen by tumor cells (r = 0.57, p = 0.0004). Autoantibodies to NY-ESO-1 were associated with increased tumor-infiltrating
CD8+, CD4+ and FoxP3+ cells. In an individual HLA-A2+ patient with autoantibodies to NY-ESO-1, CD8+ T cells isolated from
solid tumor and ascites were reactive to NY-ESO-1 by IFN-c ELISPOT and MHC class I pentamer staining.

Conclusion and Significance: We demonstrate that tumor-specific autoantibodies and tumor-infiltrating T cells are
correlated in human cancer and can be directed against the same target antigen. This implies that autoantibodies may
collaborate with tumor-infiltrating T cells to influence clinical outcomes in EOC. Furthermore, serological screening methods
may prove useful for identifying clinically relevant T cell antigens for immunotherapy.
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Introduction

Epithelial ovarian cancer (EOC) is a challenging disease that

affects more than 190,000 women worldwide each year (Interna-

tional Agency for Research on Cancer). The high mortality rate is

attributed to the fact that most patients are diagnosed with

disseminated disease, often with extensive ascites. Standard

treatment involves cytoreductive surgery followed by taxane- and

platinum-based chemotherapy [1]. Over 80% of patients are

highly responsive to frontline treatment, but 60–70% experience

disease recurrence within 2–5 years and ultimately succumb to

their disease [2,3].

Despite these unfortunate statistics, 20–30% of EOC patients

survive five years or more after diagnosis. Favorable prognostic

factors include early stage, non-serous histology, low grade, good

performance status, and optimal surgical debulking [4,5]. In

addition, several recent studies have shown a correlation between

tumor-infiltrating CD3+CD8+ T cells and favorable outcomes

[6,7]. Zhang et. al. first reported that patients with CD3+ T cell

infiltrates in tumor epithelium had increased progression-free and

overall survival [8]. This has been confirmed by two other studies

[9,10], and two groups have extended this finding to the CD8+ T

cell subset in particular [11,12]. In addition, the presence of

CD3+CD56+ T cells in ascites has been linked to platinum

sensitivity [13]. These findings are in agreement with earlier

studies showing a positive correlation between survival and

expression of interferon-c (IFN-c) [14,15], the IFN-c receptor

[16], IL-18 [17], and MHC class I [18,19], all of which are
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characteristic of CD8+ T cell responses. In contrast, the presence

of tumor-infiltrating CD25+FoxP3+ T cells in EOC is correlated

with inferior survival [11,20–22]. Thus, it appears that the balance

of CD8+ effector T cells to CD25+FoxP3+ regulatory T cells is an

important determinant of clinical outcomes in EOC.

In addition to tumor-infiltrating T cells, many EOC patients

mount serum autoantibody responses to a variety of tumor antigens,

including NY-ESO-1, HOXA7, Ep-CAM, HSP-90, MUC-1 and

p53 [23–25]. In Type I diabetes and other autoimmune conditions,

the development of autoantibody responses portends tissue infiltra-

tion and destruction by autoreactive T cells [26]. We therefore

hypothesized that EOC patients may show a similar relationship

between tumor-specific autoantibody responses and tumor-infiltrat-

ing lymphocytes. This hypothesis was tested in a cohort of 35

advanced stage, high grade serous EOC cases for which matched

serum and tumor specimens were available. Using NY-ESO-1 as a

test antigen, we demonstrate for the first time a correlation between

tumor-specific autoantibodies and tumor-infiltrating T cells. Our

findings raise the possibility that autoantibodies may play a role in the

previously recognized relationship between tumor-infiltrating T cells

and clinical outcomes in EOC.

Results

Study cohort
We investigated the relationship between tumor-specific auto-

antibodies and tumor-infiltrating lymphocytes using matched

tumor and serum specimens from a retrospective cohort of 35

patients with high-grade serous EOC (Table 1). We elected to

focus on a single histological subtype, as other subclasses of EOC

exhibit distinct biological and clinical properties that might have

confounded the analysis [27]. All blood samples were collected

prior to surgery or chemotherapy, and all tumor specimens were

obtained at the time of primary cytoreductive surgery prior to

chemotherapy. Control blood samples were obtained from 60 age-

matched women with no known personal history of cancer.

Analysis of tumor-infiltrating lymphocytes
Tumor-infiltrating lymphocytes were assessed by immunohisto-

chemistry (IHC) using antibodies to a variety of immunological

markers (Figure 1, Table 2). All raw IHC data can be found in

Supplementary Tables S1 and S2. Only 23% (8/35) of evaluable

tumors showed significant CD20+ B cell infiltrates. In contrast,

94% (33/35) of tumors had detectable CD3+ T cell infiltrates.

Staining with antibodies to CD4 and CD8 revealed that 59% (20/

34) and 69% (24/35) of evaluable tumors had significant CD4+
and CD8+ cellular infiltrates, respectively. CD4+ and CD8+ cells

were strongly correlated (r = 0.69, p,0.0001). All evaluable

tumors (27/27) expressed MHC class I to some degree, indicating

they could theoretically present antigen to the infiltrating CD8+ T

cells. Seventy-two percent (18/25) of tumors expressed MHC class

II and hence could theoretically present antigen to CD4+ T cells.

Since many tumors had dense CD8+ T cell infiltrates, we

analyzed tissues for TIA-1 and Granzyme B, both of which are

expressed by CD8+ cytotoxic T cells as well as natural killer cells

[28–30]. Seventy-three percent (25/34) of tumors had significant

TIA-1+ cellular infiltrates, which showed a positive correlation

with CD8+ infiltrates (r = 0.83, p,0.0001) (Figure 2). In contrast,

only 20% (7/35) of the tumors had significant Granzyme B+
cellular infiltrates (data not shown); as expected, 6 of the 7 positive

tumors were also positive for CD8+ cells.

Tumors were also analyzed for cellular infiltrates expressing

FoxP3, a marker of activated T cells and regulatory T cells [31].

Sixty-six percent (23/35) of evaluable tumors had significant

FoxP3+ infiltrates (Figure 2), which were strongly correlated to

CD4+ cells (r = 0.73, p,0.0001). We also evaluated expression of

CD25, an additional marker of activated and regulatory T cells

[32]. Fifty percent (17/34) of tumors had significant CD25+ cellular

infiltrates (Figure 2), which were strongly correlated with CD4+ cells

(r = 0.58, p = 0.0003) and FoxP3+ cells (r = 0.75, p,0.0001).

We further stratified T cell infiltrates according to their

epithelial or stromal location within the tumor, as intraepithelial

CD3+/CD8+ T cells in particular have been correlated with

increased survival in EOC [8–12]. For this analysis, we first

measured the tumor composition as defined by the epithelial:stro-

mal ratio in each tissue core and then calculated the density of T

cells per unit of epithelium or stroma. As summarized in Table 3,

the density of CD3+ T cells per unit of tumor epithelium ranged

from 0–17, with a median of 4.6. In comparison, the density of

CD3+ T cells per unit of tumor stroma ranged from 0–138, with a

median of 16.3. In general, the density of CD3+ T cells in tumor

epithelium and stroma were only weakly correlated (r = 0.34,

p = 0.048), and there were many examples of tumors with dense

CD3+ infiltrates in epithelium but not stroma, and conversely, in

stroma but not epithelium. Similar to CD3+ cells, CD8+, CD4+,

FoxP3+ and TIA-1+ cells were generally denser in tumor stroma

than tumor epithelium (Table 3).

Composition of tumor-infiltrating lymphocytes after
neoadjuvant chemotherapy

The TMA used in the above analyses also contained an

additional cohort of 15 tumors from women who, as part of a

clinical trial, had undergone neoadjuvant platinum/taxane-based

Table 1. Clinical characteristics of the retrospective patient
cohort.

Age at surgery (years)

Mean 61.93

Std dev 15.61

Range 22.52–90.99

Median 63.61

* Overall Survival (years)

Mean 1.63

Std dev 0.703

Range 0–3.06

Median 1.69

Silverberg Grade

1 0

2 10

3 23

Unknown 2

Stage

I 4

II 3

III 19

IV 4

Unknown 5

Total number of evaluable patients 35

*There were no deaths due to causes other than ovarian cancer, therefore
disease-specific and overall survival were equivalent.

doi:10.1371/journal.pone.0003409.t001
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chemotherapy prior to their primary surgery. As with the 35-case

cohort, these women had high-grade serous EOC. Tumors had

been resected after three cycles of carboplatinum/taxol-based

chemotherapy. Although the sample size was small, this provided a

unique opportunity to evaluate the effects of chemotherapy on

tumor-infiltrating lymphocytes. By most parameters, lymphocytic

infiltrates were similar between treated and untreated tumors.

However, treated tumors showed a uniform trend towards increased

infiltration by all subsets of T cells assessed, and this increase was

significantly higher for CD3+ (median 80 vs 35, p = 0.02) and CD8+
(median 78 vs 30, p = 0.013) cells (data not shown).

Serum autoantibody responses to NY-ESO-1
Although ovarian cancer patients demonstrate autoantibody

responses to a broad repertoire of antigens [23–25], we focused on

one of the most immunogenic antigens, NY-ESO-1 [24,33,34].

Sixty control sera were assayed for IgG autoantibodies to

recombinant NY-ESO-1, and the mean and standard deviation

of the OD values were calculated (Supplementary Tables S1 and

S2). Individual sera were scored as positive if their OD value was

equal to or greater than two standard deviations from the mean of

control subjects. Consistent with published results, 26% (9/35) of

ovarian cancer cases demonstrated IgG autoantibodies to NY-

ESO-1, compared to only 5% (3/60) of controls (Figure 3A).

To determine whether autoantibody responses to NY-ESO-1

correlated with expression of the corresponding antigen, matched

tumor specimens were analyzed by IHC for expression of NY-

ESO-1. Of 34 evaluable tumors, 5 (14.7%) scored positive for NY-

ESO-1 antigen (Figure 3B). All five of these cases were also positive

for autoantibodies to NY-ESO-1. In contrast, 4 cases were positive

for NY-ESO-1-specific autoantibodies but negative for NY-ESO-1

antigen expression.

Correlations between autoantibody responses and
lymphocytic infiltrates

We next investigated whether serum autoantibodies to NY-

ESO-1 were correlated with tumor-infiltrating lymphocytes. For

this analysis, we considered epithelial and stromal T cell infiltrates

separately, as described above. We classified cases as being positive

or negative for autoantibodies to NY-ESO-1 using a cut-point of

two standard deviations from the mean of the control group

(Supplementary Tables S1 and S2). By Mann Whitney t test,

patients with autoantibodies to NY-ESO-1 had a significantly

greater stromal density of CD8+ cells (p = 0.011), FoxP3+ cells

(p = 0.013), and CD4+ cells (p = 0.026). Thus, autoantibodies to

NY-ESO-1 showed a significant correlation to T cell infiltrates,

especially in tumor stroma.

Recognition of NY-ESO-1 by autoantibodies and tumor-
infiltrating CD8+ T cells from the same patient

The correlation between autoantibodies to NY-ESO-1 and

tumor-infiltrating T cells suggested the possibility that tumor-

infiltrating T cells may recognize NY-ESO-1 in seropositive

patients. To address this issue, we collected blood, tumor and

ascites specimens from a prospective cohort of 15 newly diagnosed

serous EOC patients. Two patients were positive for serum

autoantibodies to NY-ESO-1. Of these, one case (IROC013) was

HLA-A2+, allowing T cells to be enumerated by flow cytometry

with HLA-A2 pentamers loaded with a known CD8+ epitope from

NY-ESO-1 (Figure 4A). NY-ESO-1-specific CD8+ T cells were

rare in peripheral blood from this patient (0.22% of CD8+ cells),

but were enriched in ascites and solid tumor (1.53% and 6.64% of

CD8+ cells, respectively). Furthermore, T cells from ascites and

solid tumor produced IFN-c in response to NY-ESO-1 peptide

(Figure 4B) but not control peptides derived from p53, HER-2/neu

or WT-1 (data not shown). Indeed, in ascites the response to NY-

ESO-1 was almost as strong as that seen to the CEF viral control

peptides. Intriguingly, tumor tissue from this patient showed dense

CD3+ and CD8+ T cell infiltration of tumor stroma but not

epithelium (Figure 4C), similar to the pattern commonly seen with

autoantibody-positive patients in the retrospective cohort. Despite

mounting a strong humoral and T-cell response to NY-ESO-1,

solid tumor from this patient stained negative for expression of

NY-ESO-1 antigen; however, ascites from this patient contained

NY-ESO-1-positive cells (Figure 4C).

Figure 1. Immunohistochemical analysis of serous ovarian
tumors showing cases with high (left) and low (right) scores for
the following markers: (A,B) CD20; (C,D) CD3; (E,F) CD4; (G,H)
CD8; (I,J) MHC Class I; and (K,L) MHC Class II.
doi:10.1371/journal.pone.0003409.g001
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Discussion

Using matched serum and tumor specimens from 35 patients

with high-grade serous EOC, we have demonstrated a correlation

between tumor-infiltrating T cells and tumor-specific autoanti-

bodies. To our knowledge, this is the first study to identify such a

correlation in any human cancer. Specifically, the presence of NY-

ESO-1-specific IgG autoantibodies in serum correlated with

infiltration of tumor stroma by cells expressing CD8, CD4 and

FoxP3. Moreover, in an individual patient with autoantibodies to

NY-ESO-1, corresponding ascites and solid tumor specimens were

shown to be enriched for NY-ESO-1-reactive CD8+ T cells, as

assessed by MHC class I pentamer staining and IFN-c ELISPOT.

These findings raise the possibility that autoantibody responses

may collaborate with tumor-infiltrating T cells to influence clinical

outcomes in EOC.

In addition to NY-ESO-1-specific autoantibodies, several

factors expressed by ovarian tumors have shown a positive

correlation with tumor-infiltrating T cells, including the chemo-

kines CXCL9, CCL21, CCL22 [8], CCL2 and CCL5 [35]; p53

mutations [36]; and MHC class I [37]. Conversely, tumor-

infiltrating T cells show a negative correlation with VEGF [8], B7-

H1/PD-L1 [12], CD68+ macrophages [38] and the endothelin B

receptor [39]. Thus, multiple factors influence the composition of

tumor-infiltrating T cells in EOC.

While this study focused on a single, commonly recognized

tumor antigen, NY-ESO-1, a large number of other autoantibody

target antigens have been identified in EOC, including HOXA7,

Ep-CAM, HSP-90, MUC-1 and p53 [23–25]. Indeed, tumor-

specific autoantibody responses are common among EOC

patients. For example, Stone et al. found that 44% of newly

diagnosed EOC patients had an autoantibody response to at least

1 of a panel of 12 tumor antigens [24]. Future work will determine

whether autoantibody responses to other tumor antigens also

correlate with the presence of tumor-infiltrating T cells.

Table 2. Primary antibodies used for immunohistochemistry.

Antigen Clone Supplier Catalogue Source Concentration

NY-ESO-1 E978 Zymed 35-6200 Mouse 1/200

CD20 Polyclonal Lab Vision RB-9013 Rabbit 1/400

CD3 SP7 Lab Vision RM-9107 Rabbit 1/150

CD4 4B12 Lab Vision MS-1528 Mouse 1/10

CD8 SP16 Lab Vision RM-9116 Rabbit 1/100

FoxP3 eBio7979 eBioscience 14-7979 Mouse 1/50

CD25 4C9 Lab Vision MS-1088 Mouse 1/40

Granzyme B Polyclonal Abcam ab4059 Rabbit 1/50

TIA-1 TIA-1 Abcam ab2712 Mouse 1/50

MHC class I (A, B, C) EMR8-5 MBL D226-3 Mouse 1/500

MHC class II (DR, DP & DQ) CR3/43 Affinty BioReagents MA1-25914 Mouse 1/50

Pan-cytokeratin PCK-26 Sigma C1801 Mouse 1/300

doi:10.1371/journal.pone.0003409.t002

Figure 2. Immunohistochemical analysis of serous ovarian
tumors showing cases with high (left) and low (right) scores for
the following markers: (A,B) TIA-1; (C,D) FoxP3; and (E,F) CD25.
doi:10.1371/journal.pone.0003409.g002

Table 3. Density of lymphocyte subsets in tumor stroma
versus epithelium.

Marker * Epithelial Density * Stromal Density

Median Range Median Range

CD3 4.6 0–17 16.3 0–138

CD8 1.8 0–17 6.6 0–49

CD4 1 0–13 4 0–123

FoxP3 1 0–9 7 0–74

CD25 1.1 0–25 1.1 0–29

TIA-1 1.4 0–13 4.5 0–33

Granzyme B 0 0–6 0 0–47

CD20 0 0–3 0 0–106

*All values are reported as cells per unit area defined by the Chalkley grid.
doi:10.1371/journal.pone.0003409.t003
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In contrast to serological responses, less is known about the

target antigens of tumor-infiltrating T cells in EOC. T cell

receptor (TCR) spectratyping studies have shown that tumor-

infiltrating T cells in EOC represent oligoclonal populations,

which is consistent with antigen-induced clonal expansion [40–

44]. Many studies have shown recognition of autologous tumor

cells by tumor-infiltrating T cells [45–50]. Moreover, previous

work has identified T cells specific for HER2/neu [44,51–53], p53

[54] and folate-binding protein [55,56] among tumor-infiltrating

or tumor-associated T cells. To our knowledge, the current study is

the first to demonstrate recognition of NY-ESO-1 by tumor-

infiltrating and tumor-associated (i.e., ascites derived) T cells, as

evidenced by the results for patient IROC013. Intriguingly, T cell

responses to NY-ESO-1 were undetectable in peripheral blood

from this patient, indicating a strong enrichment of this T cell

subpopulation in tumor and ascites. Indeed, the IFN-c ELISPOT

response to NY-ESO-1 was similar in magnitude to that seen with

CEF control peptides. Nonetheless, the NY-ESO-1-specific

subpopulation represented only 6.6% of all tumor-infiltrating

CD8+ T cells in this subject, indicating there are likely many other

antigens recognized by infiltrating T cells. Notably, over 80% of

ovarian cancers exhibit loss of BRCA1 and/or BRCA2 function,

leading to compromised DNA repair[57,58]. One can speculate

that the resulting genetic instability leads to the expression of

abnormal proteins that may serve as neoantigens to the host

immune system.

Although tumor infiltrating T cells are associated with

prolonged progression-free and overall survival in EOC, it remains

unclear whether this reflects an active or passive role of T cells. In

other words, do T cells actively oppose tumor growth or are they

simply markers of some other feature of the tumor that drives

outcomes? There are several lines of evidence in support of the

former possibility. First, not all T-cell subsets are associated with

prognosis; rather, favorable outcomes are linked to the CD8+
subset and poor outcomes to the CD25+FoxP3+ subset

[11,12,20,21]. Second, several factors that are associated with

active CD8+ cytolytic responses are also linked to favorable

outcomes, including expression of IFN-c [14,15], the IFN-c

Figure 3. NY-ESO-1 serum autoantibodies and antigen expression in high-grade serous ovarian cancer. (A) Serum autoantibody
responses to NY-ESO-1 in the 35-patient cohort. Autoantibody responses are reported as the number of standard deviations from the mean of 60
age- and gender-matched controls with no known personal history of cancer. (B,C) Immunohistochemical analysis of NY-ESO-1 expression in two
representative serous ovarian tumors with high (B) and negative (C) expression of the antigen.
doi:10.1371/journal.pone.0003409.g003
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receptor [16] and IL-18 [17]. MHC class I has also been linked to

increased survival in ovarian cancer [18,19]. In the present study,

which focused exclusively on the serous subtype, all evaluable

tumors expressed MHC class I. Similar results have been reported

by others for serous EOC [59], suggesting the vast majority of

serous tumors are MHC class I positive and have the capacity to

present antigen to tumor-infiltrating CD8+ T cells. Third, tumor-

infiltrating T cells show significant cytotoxicity against ovarian

tumors in vitro [43,45,47,60,61]. However, it is noteworthy that

only a minority of tumors in this and another study [59] had

significant Granzyme B-positive immune infiltrates, suggesting

that cytotoxic function may be suppressed in vivo. And finally, as

discussed above, tumor-infiltrating T cells show evidence of clonal

expansion [40–44] and recognition of specific antigens [44,51–56],

as shown here for NY-ESO-1 (Figure 4). Thus, evidence is

accumulating in favor of the concept that tumor-infiltrating T cells

play an active role in promoting favorable clinical outcomes in

EOC. Similarly, in colorectal cancer, functional markers associ-

Figure 4. Analysis of the T cell response in a patient with autoantibodies to NY-ESO-1 showing the presence of NY-ESO-1 reactive
CD8+ T cells in ascites and tumor despite the lack of NY-ESO-1 expression in solid tumor. (A) MHC class I pentamer analysis
demonstrating enrichment of NY-ESO-1-specific CD8+ T cells in ascites and solid tumor compared to peripheral blood. The boxed areas and
associated numbers represent the percentage of pentamer-positive cells relative to total CD8+ cells. (B) ELISPOT analysis of IFN-c production by T
cells after stimulation with an HLA-A2-binding peptide from NY-ESO-1. Data is presented as the number of IFN-c-producing cells per 16106 bulk cells
from the indicated tissue compartments. (C) Immunohistochemical analysis of tumor-infiltrating CD3+ and CD8+ T cells in tumor stroma, and
expression of NY-ESO-1 antigen. While the solid tumor was negative for expression of NY-ESO-1, a fraction of cells from ascites were positive. The
cellular fraction of ascites also contained cytokeratin-positive epithelial cells, presumably of tumor origin (data not shown).
doi:10.1371/journal.pone.0003409.g004

Immunity to Ovarian Cancer
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ated with active Th1-like cytolytic T cell responses are linked to

favorable clinical outcomes [62]. This suggests that immune

modulatory strategies that enhance these naturally occurring T cell

responses may improve clinical outcomes further.

In contrast to T cell infiltrates, the relationship between tumor-

specific autoantibodies and clinical outcomes is less clear. This

issue has been studied most extensively for the tumor antigen p53,

which elicits autoantibody responses in 20–25% of EOC patients.

Goodell et. al. reported a positive correlation between autoanti-

bodies to p53 and increased overall survival in EOC [63].

However, other studies have found a negative correlation [64,65]

or no correlation [66,67]. As for NY-ESO-1, we found a trend

toward poor outcomes among patients with autoantibodies to NY-

ESO-1 in the 35-case cohort studied here (data not shown), but

this trend was not seen in an independent cohort of 35 patients

from a prior study [24] (data not shown). As discussed above, the

immune response to EOC involves multiple antigens, therefore we

believe that the prognostic significance of autoantibodies is best

addressed using an extended panel of tumor antigens and larger

patient cohorts.

The autoantibody response to NY-ESO-1 correlated to T cell

infiltration of tumor stroma as opposed to tumor epithelium. This

may reflect a statistical issue, as the absolute number of T cells was

higher in tumor stroma compared to epithelium, allowing the

stromal values to achieve statistical significance. Indeed, Spearman

rank correlation analysis showed a positive relationship between

autoantibodies to NY-ESO-1 and infiltration of tumor epithelium

by CD3+ and CD8+ cells, but this did not reach statistical

significance (data not shown). Alternatively, there may be a

biological explanation. In the Th1/Th2 paradigm, immune

responses are thought to polarize toward humoral or cytolytic

effector mechanisms [68]. Applied to our results, this would

suggest that patients with strong autoantibody responses would

have weak cytolytic responses, which may result in incomplete (i.e.,

stromal) infiltration of tumor tissue by T cells. A second possibility

is suggested by murine models where autoantibody responses have

been linked to weak CD8+ cytolytic T cell responses [69]. In this

case, it was proposed that autoantibodies facilitate uptake and

presentation of tumor antigens by B cells at the expense of

dendritic cells. Since B cells are less potent antigen presenting cells

than dendritic cells, the net result is an inferior T cell response

against the tumor [69]. A final consideration is that, in the present

study, autoantibody responses to NY-ESO-1 were correlated with

infiltration of tumor by not only CD8+ T cells, but also by CD4+
and FoxP3+ T cells. The latter cells may represent regulatory T

cells, which could inhibit cytolytic T cells responses and limit the

extent of tumor infiltration [32]. We are currently collecting

matched blood and tumor specimens from a larger, prospective

cohort of EOC patients to better understand the relationship

between tumor-specific autoantibodies, tumor-infiltrating T cells

and clinical outcomes.

Although not the primary focus of this paper, we had the

opportunity to assess the effect of neoadjuvant chemotherapy on

tumor-infiltrating T cells in 15 patients. In general, treated tumors

showed increased infiltration by all subsets of T cells, and this

reached statistical significance for CD3+ and CD8+ cells. This is

reminiscent of studies in breast cancer which showed increased T

cell infiltration after chemotherapy with taxanes [70] and other

agents [71] and an association with favorable clinical responses.

Taxanes may also promote tumor immunity by enhancing T and

NK cell activity [72–75] and antigen presentation [76]. Likewise,

platinum agents can enhance cytokine synthesis by human T cells

[77], abrogate suppressor T cell activity [78] and sensitize EOC

cells to Fas-mediated apoptosis [79]. Thus, platinum/taxane-based

chemotherapy may have favorable effects on host immunity to

EOC, a hypothesis we are currently investigating in a prospective

patient cohort.

Several groups have attempted adoptive immunotherapy of

ovarian cancer using T cells expanded from tumor-infiltrating T

cells [50,80–89]. Although promising anecdotal responses have

been reported, these efforts have generally met with limited

success. It is noteworthy that solid tumor tissue from patient

IROC013 was largely negative for expression of NY-ESO-1,

despite having NY-ESO-1-specific T cells in tumor and ascites. If

this scenario is representative of other EOC patients, it would

suggest that many tumor-infiltrating T cells may recognize

antigens that are poorly expressed by tumor tissue, possibly due

to immune selection during tumor development. If we are to

realize the promise of immunotherapy for EOC, there is a pressing

need to identify target antigens that are essential to the growth and

survival of recurrent, chemotherapy-resistant tumors. Our results

suggest that autoantibody responses hold practical value for

antigen identification and warrant further study with respect to

their role in host tumor immunity and clinical outcomes.

Materials and Methods

Study subjects
All specimens and clinical data were obtained with informed

consent under protocols approved by the Research Ethics Board of

the BC Cancer Agency and the University of British Columbia.

The retrospective case cohort consisted of 35 women with high-

grade serous ovarian cancer from whom matched serum and

tumor tissue was available (OvCaRe Ovarian Tumour Bank,

Vancouver, BC, Canada). Tumor tissue was obtained at the time

of primary surgery prior to any other treatment. Table 1 shows the

general clinical characteristics of the 35-case cohort. The

retrospective cohort also included tissue from an additional 15

women who received neoadjuvant chemotherapy prior to primary

surgery; these cases are discussed separately in Results. Blood,

ascites and tumor samples were also collected from a prospective

cohort of 15 patients through the BC Cancer Agency’s Tumour

Tissue Repository. Control serum samples were obtained from 60

women with no known personal history of ovarian cancer or other

cancers. All control subjects self reported receiving a negative

mammographic result within the past year. The age distribution of

the control cohort (mean 62.0 years, standard deviation 12.3 years,

range 45.9 to 88.9 years) was similar to that of the case cohort.

Tumor and serum specimens
Retrospective cohort. Tumor tissue was obtained during

primary cytoreductive surgery. Tissue had an ischemia time of less

than 30 minutes and spent less than 48 hours in formalin prior to

being processed in paraffin. A tissue microarray (TMA) was

constructed by taking duplicate 0.6 mm cores from tumor blocks

after review of hematoxylin- and eosin-stained sections by a

pathologist. Cores were selected from regions of tumor containing

representative proportions of epithelium and stroma, while

avoiding highly necrotic regions. TMAs were assembled using a

Pathology Devices tissue arrayer (Westminster, MD). Serum

samples from cases were collected prior to surgery or

chemotherapy. Blood samples were processed by standard

laboratory procedures.

Prospective cohort. Blood was collected prior to surgery in

heparanized Vacutainer tubes, and peripheral blood mononuclear

cells (PBMC) were isolated by Ficoll density centrifugation. HLA-

A2 status was determined by flow cytometry on a FACSCalibur

(BD Biosciences, San Jose, CA) after surface staining PBMC with
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anti-HLA-A2 antibody (clone BB7.2, BD Pharmingen, San Diego,

CA). Ascites collected during surgery was centrifuged (1200 rpm

for 10 min), and red blood cells (RBCs) were removed by

treatment with ACK lysis buffer (Sigma, St. Louis, MO). Solid

tumor removed during surgery was minced with scalpels to

approximately 2 mm2 and was then digested overnight at 4uC in

RPMI 1640 (Invitrogen, Carlsbad, CA) containing collagenase

Type I and IV (each at 0.05 mg/ml), 0.025 mg/ml hyaluronidase

and 0.01 mg/ml DNAse I (all from Sigma, St. Louis, MO). After

digestion, material was passed through a 100 mm sterile cell

strainer to remove clumps, and the resulting single-cell suspension

was pelleted as described above.

Immunohistochemistry and immunocytochemistry
TMAs were sectioned at 5 mm onto Superfrost plus slides

(Fisher Scientific, Ottawa, ON) and incubated overnight at 37uC.

Following deparaffinization, the slides were placed in a Ventana

Discovery XT autostainer (Ventana, Tucson, AZ) for immuno-

histochemical staining. Ventana’s standard CC1 protocol was used

for antigen retrieval. Primary antibodies are listed in Table 2.

TMAs were incubated with primary antibodies for 60 minutes,

and the appropriate cross-adsorbed, biotinylated secondary

antibody (Jackson Immunoresearch, West Grove, PA) was applied

for 32 minutes. Bound antibodies were detected using the

DABMap kit (Ventana), counterstained with hematoxylin (Ven-

tana), and coverslipped manually with Cytoseal-60 (Richard Allan,

Kalamazoo, MI).

Ascites from serous ovarian cancer patients was collected and

centrifuged using a Cytospin III cytocentrifuge (Thermo Shandon,

Waltham, MA). The slides were then fixed in acetone and stored

at 280uC until subjected to immunohistochemistry using standard

protocols. The ascites sample from patient IROC013 was stained

with antibodies to NY-ESO-1, CD3, CD8 and pan-cytokeratin

(Table 2).

Histopathological analysis
Immunostained TMAs were examined independently by two

pathologists and a high degree of inter-observer concordance was

achieved (r.0.7, p,0.0001) as well as intra-observer concordance

on different sessions (r = 0.79, p,0.0001). Although the TMAs

showed reasonable core retention, some cores were lost during the

sectioning process and were not evaluable for one or more

markers. Immunostaining was scored using three semi-quantitative

IHC scoring systems. For NY-ESO-1 antigen, a modified H score

approach was used [IHC score = (% positive neoplastic epithelial

cells)6(staining intensity ranked from 0 to 3)] that ranged from 0–

300. Positive was defined as an H score greater than 10; in

practice, negative cases had H scores of 0–5, whereas positive cases

had H scores ranging from 105–250. For MHC class I and II, a

simplified four category scale was used (0 to 3+); a score of $2 was

defined as positive. For immune cells, scoring was undertaken

using a Chalkley 25 point array and methods similar to those used

to assess vascular density. Briefly, each immunostained tumor was

reviewed at low magnification and the core with the highest

density of positive cells was selected. This core was then assessed at

higher magnification (620 objective) with a 25 cross hair grid

overlaid on the image. Under a 620 objective magnification, this

grid defines an area of 0.56 mm2. The proportion of the core

occupied by tumor epithelium was estimated, as was the total

number of positive immune cells within the area of the grid. The

number of grid points that coincided with positively staining

immune cells within both epithelial and stromal areas was then

determined. Positive immune cells that touched or overlapped

with tumor epithelial compartments were counted as intraepithe-

lial. All other positive cells were counted as intrastromal. For

subsequent statistical analyses, an epithelial or stromal region was

considered positive for a given immune cell population if there

were more than five cells per unit area.

ELISA to detect serum autoantibodies to NY-ESO-1
A cDNA encoding NY-ESO-1 was amplified by reverse-

transcriptase PCR from the ovarian cancer cell line OVCAR-3.

The C-terminal 25 amino acids were truncated to improve

solubility of the protein. After sequencing, the cDNA was

subcloned into the prokaryotic expression vector pDEST17, which

adds a six-residue histidine tag at the N-terminus, and expressed in

the E. coli strain BL21AI (Invitrogen, Carlsbad, CA). Urea-soluble

recombinant NY-ESO-1 was purified on a HisTrapTM column

(GE Healthcare, Fairfield Conn), eluted in urea buffer containing

500 mM imidazole, dialyzed in phosphate-buffered saline (PBS)

and quantified by bicinchoninic acid (BCA) protein assay (Sigma,

St. Louis, MO).

Maxisorp 96-well plates (Nunc, Roskilde, Denmark) were

coated with 0.5 mg/well of purified NY-ESO-1 in 0.1 M

carbonate buffer (33.5 mM Na2CO3, 0.1 M NaHCO3, pH 9.6)

and incubated overnight at 4uC with gentle rocking. Plates were

blocked with 3% bovine serum albumin (US Biological, Swamps-

cott MA) in Tris buffered saline (TBS) containing 0.05% Tween-

20 (3% BSA/TBST) for 2 hours at room temperature on a rapid

shaker. All washes were performed with TBS/0.1% Tween-20

using a Skanwasher plate washer (Molecular Devices, Union City,

CA). Plates were washed and incubated with patient and control

serum diluted 1:100 in 3% BSA/TBST for 1 hour at room

temperature on a rapid shaker. All sera were assayed in triplicate.

Plates were washed and incubated with goat anti-human IgG

conjugated to horseradish peroxidase (Jackson, West Grove, PA) at

1:10,000 in 3% BSA/TBST for 1 hour on a shaker at room

temperature. Plates were developed with tetramethylbenzidine

(TMB) (Neogen, Lansing, MI) for 3 minutes at room temperature

and the reaction was stopped by addition of 1N HCl. The optical

density of each well was analyzed at 450 nm on a Versamax plate

reader (Molecular Devices, Union City, CA) and analyzed using

Softmax Pro 4.8.

IFN-c ELISPOT analysis
ELISPOT plates (MSIP, Millipore, Billerica, MA) were pre-

coated overnight with 10 mg/ml anti-IFN-c capture antibody (1-

D1K-Mabtech, Cincinnati, OH) and then blocked for 2 hours at

37uC with cRPMI (RPMI 1640, 10% FBS, 2 mM L-glutamine,

50 uM 2-mercaptoethanol, 10 mM HEPES, 10 mM MEM non-

essential amino acids, 10 mM sodium pyruvate and 50 ug/ml

gentamicin). Single cell suspensions of PBMC, ascites cells or solid

tumor-derived cells were prepared in 10 ml cRPMI and plated in

triplicate at 36105 cells per well. Cells were either left unstimu-

lated (i.e., media only) or stimulated with HLA-A2-restricted

tumor antigen peptides (NY-ESO-1157–165, p53264–272, WT-1126–134,

HER-2/neu654–662; each at 10 mg/ml); a CEF (Cytomegalovirus,

Epstein Barr, Flu) virus positive control peptide pool (10 mg/ml,

Anaspec, San Jose, CA); or the T-cell mitogen phytohemagglutinin

(PHA) (5 mg/ml). After overnight incubation at 37uC, ELISPOT

plates were washed and incubated for 2 hours at 37uC with 1 mg/ml

biotinylated anti-human IFN-c (mAb 7-B6-1, Mabtech) followed by

development with Vectastain ABC Elite kit and Vectastain AEC

substrate reagent according to the manufacturer’s instructions

(Vector Labs, Burlingame, CA). Spots were quantified using a Zeiss

automated ELISPOT reader and reported as the number of spot-

forming cells (SFC) per 106 PBMC.
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MHC class I pentamer analysis
Single-cell suspensions of ascites cells were depleted of red blood

cells and stained with APC-conjugated HLA-A2-NY-ESO-1157–

165 pentamer (Proimmune) according to the manufacturer’s

instructions. Pentamer staining was followed by surface staining

with PerCP-conjugated anti-CD8 (53-6.7) (BD Pharmingen). Cells

were analyzed on a BD FACSCalibur, and a minimum of 50,000

events were collected.

Statistical analysis
Spearman correlation, Mann Whitney t-tests, and log rank tests

were performed as appropriate to test statistical significance using

Graphpad Prism v4.2 (Graphpad Software, San Diego, CA).

Additional un-paired t-test analysis was performed using JMP

statistical software (v7.0) (SAS Institute, Cary, NC).
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