
The role of T-regulatory cells and Toll-like receptors in the
pathogenesis of human inflammatory bowel disease

Introduction

Crohn’s disease (CD) and ulcerative colitis (UC), known

collectively as inflammatory bowel disease (IBD), are

autoimmune-like disorders characterized by chronic, idio-

pathic inflammation of the intestinal mucosal tissue,

which causes a range of symptoms including abdominal

pain, severe diarrhoea, rectal bleeding and wasting.1,2 IBD

tends to emerge in late childhood, occurs primarily in

immunocompetent individuals and is most prevalent in

westernized regions of the world.2,3 CD and UC are dis-

tinguished by the tissues affected: CD can affect any

region of the gastrointestinal tract in a discontinuous and

transmural manner, whereas pathology in UC is restricted

to the surface mucosa of the colon, in particular the

rectum.1,2 Current treatment regimens, including anti-

inflammatory and immunosuppressive agents, are not

curative and only reduce the degree of intestinal inflam-

mation associated with disease.1

Although the aetiology of IBD is unclear, both CD and

UC are believed to be T-cell-driven processes, with

inflammation resulting from inappropriate cytokine pro-

duction by subsets of CD4+ T-helper (Th) cells.1 Specifi-

cally, CD is associated with Th1 and Th17 cytokine

profiles, whereas UC is typically associated with Th2

cells.1,2 It has been suggested that IBD results from defects

in the T-cell-mediated regulatory processes that would

normally prevent and/or terminate inflammatory

responses; compelling data from mouse models support

this hypothesis (reviewed in ref.4). In this review, we will

focus on evidence that such defects in CD4+ CD25+ fork-

head box P3 (FOXP3)+ T-regulatory (Treg) cell function

may underlie IBD in humans, and discuss evidence that

altered T-cell-dependent responses to bacterial proteins

may be central to its aetiology.

Role of Treg cells in human IBD

The gut is an immunologically unique organ that must

retain the ability to mount an adaptive response to patho-

gens while maintaining tolerance to dietary antigens and

commensal bacteria.2 Much experimental evidence
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(IBD). Current treatment options are not curative, and patients face life-

long therapy and debilitation. IBD is thought to be the product of a com-

bination of genetic and environmental factors that result in the abnormal

regulation of immune responses. Experimental models have demonstrated

that normal CD4+ T-regulatory (Treg) cell responses and commensal

bacteria are required for the maintenance of gut immune homeostasis.

Recent evidence that CD4+ T cells express Toll-like receptors (TLRs) and

respond directly to TLR ligands, suggests that signals from commensal

bacteria may directly affect T-cell responses in the gut. In this review, we

focus on evidence that defects in Treg cells may underlie IBD in humans.

In addition, we discuss evidence that direct signaling via TLRs to T cells

can affect IBD and that T-cell-dependent responses to bacterial proteins,

such as flagellin, are central to the aetiology of this disease.
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indicates that Treg cells expressing FOXP3 and/or inter-

leukin (IL)-10 have a fundamental role in maintaining gut

immune homeostasis.5,6 Pioneering experiments by Powrie

et al. demonstrated, more than 15 years ago, that transfer

of naive CD4+ T cells into immunodeficient mice in the

absence of Treg cells results in colitis that is dependent on

the presence of commensal bacteria.7–9 Remarkably, adop-

tive transfer of Treg cells not only prevents disease, but

also, acting through both IL-10 and transforming growth

factor–b (TGF-b)-dependent and -independent mecha-

nisms, halts the progression of established disease and

reverses pathology.5,10 In addition, Treg cells suppress not

only T-cell-dependent colitis, but also intestinal inflamma-

tion triggered by bacteria.11 Together, these data provide a

reason to believe that methods used to boost and/or

restore Treg-cell numbers and function may be effective in

the treatment of established IBD in humans.

Many groups have undertaken association studies in

patients with IBD to define whether changes in Treg cells

can be correlated with disease, with a particular focus on

defining differences between circulating cells and gut tissue

cells. The vast majority of these studies have analyzed

CD4+ CD25+ FOXP3+ Treg cells as they can be tracked

and are isolated relatively easily. Early studies found that

patients with CD or UC have decreased numbers of

peripheral suppressive CD4+ CD45RO+ CD25+ FOXP3+

Treg cells during active disease, suggesting that the severity

of disease is inversely correlated with the frequency of

peripheral Treg cells.12–15 In contrast, several studies have

found that the lamina propria, mesenteric lymph nodes

and intestinal inflamed mucosa of patients with either CD

or UC actually contain increased numbers of Treg cells

compared with healthy controls.5,13,15,16 These data are

consistent with findings in other gut-inflammatory condi-

tions, such as diverticulitis, pseudomembranous colitis and

cytomegalovirus-induced colitis, which show a similar cor-

relation between an increase in FOXP3+ Treg-cell numbers

and disease severity.13 Combined with similar data from

other autoimmune diseases,17,18 these findings support the

hypothesis that Treg cells traffic to sites of inflammation in

an attempt to restore immune homeostasis. Consistent

with this notion, a recent study found that the frequency

of FOXP3+ cells in the colorectal mucosa decreased follow-

ing treatment with granulocyte and monocyte adsorptive

apheresis and correlated with clinical response.19

Notably, in vitro functional analysis of Treg cells from

the peripheral blood or intestinal mucosal tissue of IBD

patients revealed that, despite numerical changes, they

maintain normal cell-contact-dependent, cytokine-inde-

pendent suppressive capacity, even against pathogenic

T-effector cells derived from the inflamed mucosa.20 Fur-

thermore, mucosa-derived Treg cells from IBD patients

effectively suppress both proliferation and cytokine pro-

duction, in contrast to Treg cells from rheumatoid arthritis

patients that are reported to specifically lack the capacity to

suppress cytokine production.16,17 These findings from

IBD also appear to contrast with a report describing a clear

defect in suppressive capacity of cells from patients with

multiple sclerosis, although this deficiency was dependent

on the strength of T-cell-receptor (TCR) activation,21

which is known to have a major effect on in vitro suppres-

sion assays.22 As studies of Treg cells from human IBD

mucosal biopsies have not examined suppressive capacity

with varying strengths of T-cell stimulation, it remains pos-

sible that subtle functional defects, possibly only in antigen-

specific responses, in these cells have been overlooked.

Problems with assessing Treg-cell numbers and
function in human inflammatory diseases

Considering the extensive evidence from mouse models,

and data from other human autoimmune diseases, it is

somewhat surprising that no defect in the numbers or

in vitro function of tissue-derived Treg cells from IBD

patients has been reported. It is important to note, how-

ever, that the in vitro assays of suppressive function of

such cells are performed outside their inflamed environ-

ment of origin, and, in the absence of the in vivo cytokine

milieu, may not accurately reflect their in vivo activity.

An additional consideration is that in humans, in contrast

to mice, FOXP3 is expressed by non-suppressive activated

T-effector cells following stimulation, so simple enumera-

tion of FOXP3+ cells is unlikely to assess Treg cell num-

ber or function accurately.23–27 On the other hand, recent

data suggest that activated CD4+ T-effector cells which

accumulate within inflamed joints do not frequently

undergo the demethylation required to express activation-

induced FOXP3.28 If this holds true in the inflamed gut,

then activation-induced expression of FOXP3 may not be

a major confounding factor in the enumeration of Treg

cells in the gut. Finally, recent evidence from murine

studies shows that CD4+ CD25+ FOXP3+ Treg cells can

remain FOXP3+ yet display a Th17 cell phenotype when

cultured in the presence of IL-6.29,30 If human Treg cells

have a similar capacity to remain FOXP3+ while acquiring

the properties of inflammatory Th17 cells in a pro-

inflammatory environment, this would also have a signifi-

cant impact on the interpretation of many studies that

enumerate FOXP3+ cells. Clearly, ex vivo analyses of

human Treg cells must be accompanied by rigorous func-

tional assays and an extensive phenotypic analysis, includ-

ing expression of CD127 and intracellular cytokine

staining for IL-2 and interferon-c (IFN-c), which are not

suppressed by activation-induced FOXP3.23

Toll-like receptor engagement affects CD4+ T-effector
and Treg cells

The importance of Toll-like receptor (TLR)–ligand inter-

actions in dendritic cell biology, and the resulting effects
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on adaptive immunity, are well established.31 More

recently, however, it has been recognized that TLRs are

expressed on CD4+ T cells, and that direct engagement of

TLRs on T cells also affects adaptive immunity (reviewed

in refs32–34). In the context of IBD, the role of TLRs on

CD4+ T cells is of particular interest because commensal

bacteria in the gut represent a large source of potential

TLR ligands, and loss of integrity of the gut epithelium in

IBD patients35 could result in abnormal exposure of T

cells to bacteria-derived innate immune signals, and

thereby promote disease.

There are now several reports characterizing the expres-

sion profile and function of TLRs on T-cell subsets, and

these are summarized in Table 1. In most cases TLR

engagement results in enhanced survival and accelerated

induction of T-effector-cell responses, with the data relat-

ing to TLR-2, -3, -5 and -9 being the most consistent and

conclusive. For example, stimulation of TLR-2 with bacte-

rial lipoproteins/lipopeptides induces cytokine production

and the proliferation of both murine36–38 and human

CD4+ T cells.23,37,39 Stimulation of TLR-3, the receptor

for viral and synthetic double-stranded RNA, enhances

the survival, but not the proliferation, of activated murine

CD4+ T cells.40 Flagellin, the only known ligand for

TLR-5,41,42 enhances TCR-stimulated proliferation and

cytokine production from human T-effector cells.39,43,44

Similarly, activation of TLR-7/-8, the receptor for viral

single-stranded RNAs and nucleosides, stimulates memory

CD4+ T cells to increase IFN-c production.39 Finally,

activation of TLR-9, the ligand for unmethylated

cytosine-phosphate-guanine (CpG) motifs from bacteria,

directly co-stimulates murine CD4+ T cells.45

Stimulation of TLRs can also directly influence the

function of Treg cells.46 For example, using mice deficient

for TLR-2 or MyD88, an intracellular adaptor protein

known to be essential for many TLR-mediated effects, it

was shown that stimulation of TLR-2 on Treg cells, in the

context of IL-2 and TCR triggering, induces proliferation

and a transient loss of FOXP3 expression and suppressive

capacity.47,48 In apparent direct contrast, exposure of

human Treg cells to endogenous heat-shock protein 60,

which also stimulates TLR-2, enhances their suppressive

activity.49 TLR-5 is also expressed by human Treg cells at

levels similar to those on CD4+ T-effector cells, and stim-

ulation with its ligand, flagellin, enhances FOXP3 expres-

sion and suppressive capacity.43 In contrast to the effects

of TLR-5, triggering TLR-8 on human Treg cells reverses

suppression, while CD4+ T-effector cells remain

unaffected.50 Similarly, stimulating TLR-9 acts directly on

Treg cells to block suppression.51 In contrast, Tregs from

tlr-9)/) mice are impaired in their ability to suppress an

in vitro assay of autoreactivity in a lupus model, suggest-

ing that TLR-9 may provide a positive signal to Treg cells

in this context.52 An as-yet unanswered question is

whether Treg cells differ from T-effector cells in terms of

whether they are receptive to TLR signals independently

from TCR engagement, or at very low concentrations of

antigens.

There is significant controversy regarding the role of

direct signalling via TLR-4 to T cells. In some cases lipo-

polysaccharide (LPS) (recognized by TLR-4) was reported

to stimulate the activation of protein kinase C in CD3+ T

cells53 and perforin production in a subset of CD4+ T

cells in patients with ankylosing spondylitis.54 Moreover,

Fukata et al.36 found that LPS-stimulated proliferation of

T-effector cells was dependent on Myd88. In contrast,

others found no effect of LPS on CD4+ T-effector

cells.37,43,47 Whether or not LPS/TLR-4 interactions influ-

ence Treg cells is also controversial. Initial reports showed

that LPS directly enhances suppression by murine Treg

cells through TLR-4;55 however, subsequent studies found

the expression level of TLR-4 on murine Treg cells to be

low.40,47,48 With respect to human Treg cells, two studies

found that these cells neither express TLR-4 nor respond

to LPS,37,43 whereas another report suggests that Treg

cells do express TLR-4 and that LPS stimulation results in

decreased FOXP3 expression.56 The mostly likely explana-

tion for these varying results is differences in the purity

of the LPS used (commercial sources are often contami-

nated with TLR-2 ligands) as well as the purity of the

cells assayed, which must be rigorously purified to

ensure no contaminating antigen-presenting cells could

be activated in response to LPS and thereby provide

co-stimulation and cytokines.

Role for altered TLRs in IBD

TLRs are expressed on a large variety of immune cells and

play a major role in initiating immune responses. In the

steady state the gut is a rich source of TLR ligands from

commensal bacteria, and during disease a variety of

endogenous TLR ligands may also be released in the pro-

cess of inflammation and tissue destruction. TLRs thus

have dual roles in IBD: they are necessary for maintaining

tolerance and eliminating pathogenic microorganisms, but

they can also amplify inappropriate immune responses

that ultimately cause chronic inflammation. The vast

majority of studies have considered the role of TLRs in

IBD in terms of their effects on innate immune cells, such

as dendritic cells and macrophages (reviewed in ref.57).

Recently, however, it has been demonstrated that specific

ligation of TLRs on T cells can also influence the develop-

ment of colitis. Pathogenic T-effector cells from Myd88-

deficient mice have a significant defect in Th17 cell

differentiation in vivo and do not induce colitis when

transferred into immunodeficient mice.36,58 Moreover,

myd88)/) Treg cells are less able to suppress the adoptive

transfer of colitis,36 and treatment of mice with a TLR-9

ligand induces the development CD4+ Treg cells that are

protective in the T-cell transfer model of colitis.59 These
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results suggest that T-cell-specific stimulation of TLRs,

presumably by commensal bacteria, has a significant role

in the development of IBD.

Additional evidence for the role of TLRs in IBD comes

from studies of flagellin and TLR-5. TLR-5-deficient mice,

originally described by Uematsu et al.,60 develop sponta-

neous colitis,61 suggesting that flagellin–TLR-5 inter-

actions normally have a protective anti-inflammatory

role. In contrast, in humans, a common polymorphism in

TLR-5 that produces a dominant-negative receptor is pro-

tective against CD, but not UC, in people of Ashkenazi

Jewish descent.62,63 The reason for this apparent contra-

diction is unclear, but could relate to differences between

mice and humans in species of commensal bacteria, roles

of the intracellular sensor of flagellin [the nucleotide-

binding oligomerization domain (NOD)-like receptor

known as Ipaf],64 effects of TLR-5 on CD4+ T cells and/

or differences in the expression of TLR-5. Differences

between mouse and humans in expression of TLR-5 may

be of particular importance, as studies have shown that in

mouse intestinal tissue only CD11chi CD11bhi lamina

propria dendritic cells express TLR-5,65 whereas in

humans, TLR-5 is expressed on a variety of cells including

intestinal epithelial cells,42 dendritic cells,66 endothelial

cells,67 CD4+ T-effector cells and Treg cells.43

In addition to TLR-5, polymorphisms in the TLR-1, -2,

-4, -6 and -9 loci have been associated with IBD in

humans,68–70 although the functional effects of these vari-

ants are not well defined. In terms of protein expression,

TLR-3 is down-regulated, whereas TLR-2 and -4 are

up-regulated, in the intestinal mucosa of patients suffer-

ing from active IBD.71,72 In vitro evidence suggests that

altered TLR-2 signalling is associated with disease because

peripheral blood mononuclear cells isolated from patients

with active CD or UC produce more TNF-a in response

to TLR-2 stimulation than those of healthy controls.73

There is also genetic evidence that functional polymor-

phisms in the intracellular sensor for bacterial peptido-

glycan, NOD2 (also known as CARD15), is linked to

CD,2 but there is currently no evidence regarding a

possible role for these receptors in T cells.

Role for bacterial antigens in IBD

There is strong evidence that abnormal regulation of the

immune response to commensal bacteria is a driving

force in IBD (reviewed in ref.74) Mouse models of IBD

have shown that the development of colitis is dependent

on the presence of gut flora because the disease is gener-

ally absent in mice raised in germ-free environments and

is ameliorated by the administration of antibiotics75 in

normal laboratory conditions. Moreover, in IL-10-defi-

cient mice, the development of spontaneous colitis

requires commensal flora and an intact TLR–MyD88

signaling pathway.76 More direct evidence for the

antigenic role of commensal flora comes from studies of

immune responses towards specific gut bacterial antigens.

For example, spontaneously colitic C3H/HeJBir mice

(CBir), generated by selective breeding of C3H/HeJ mice

for the colitic phenotype, show increased B-cell and T-cell

reactivity towards bacterial antigens,77 and transfer of

CD4+ T cells from colitic CBir mice causes colitis in

immunodeficient recipient mice.78,79 This response is

specific for commensal flora because the relevant T cells

do not respond to food antigens or faecal extracts from

germ-free mice.80

A variety of clinical observations in IBD patients suggest

that responses to commensal bacteria are also central to the

development of human disease. Most notably, IBD lesions

are preferentially found in the terminal ileum and colon,

which harbour the highest concentrations of bacteria. In

addition, altering commensal flora with antibiotics or

probiotics can reduce the symptoms associated with dis-

ease, albeit transiently.81 Similar to colitic mice, human

IBD patients show enhanced immune responsiveness to

gut bacterial antigens and concurrent loss of tolerance.82,83

Some of the specific bacterial antigens driving disease

in mouse models of colitis and human IBD have recently

been identified. One key antigen that drives disease is

flagellin, the major structural subunit of bacterial flagella

(reviewed in ref.42). Initially, flagellin from commensal

Clostridia species was found to be an antigen in the CBir

mouse model of spontaneous colitis. Remarkably, when

sera from CBir mice were used to probe a caecal bacterial

phage display library, 25% of all proteins cloned were

flagellins from commensal organisms.84 More detailed

analysis revealed that CBir mice have antibody responses

to the amino-terminal conserved domain of flagellin, and

that flagellin-specific CD4+ T-effector cells can induce

severe colitis.84 Remarkably, even in wild-type mice,

chemically induced colitis is associated with the develop-

ment of anti-flagellin immunoglobulin responses, indicat-

ing that flagellin can be a dominant antigen in both

spontaneous and experimentally induced colitis.85,86

Immune responses to flagellin are also implicated in

human IBD:84,87–89 subsets of patients with CD, but not

with UC, have elevated antibody responses to CBir flagel-

lin,84,88 as well as to a wider variety of flagellin

subtypes.87,88 That flagellin is the only known human

TLR ligand which is a protein, and can thus activate both

the innate and adaptive immune systems in parallel, may

be one reason why this protein is a dominant antigen in

IBD.

Concluding remarks and a model

It is clear that multiple defects in innate and adaptive

immunity can initiate and sustain IBD. Here we have

focused on evidence as to whether insufficient numbers

or function of Treg cells could be a primary cause of
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IBD. Despite overwhelming data from animal models that

alterations in the numbers or function of Treg cells cause

colitis,4 it has been difficult to detect significant defects in

peripheral or gut Treg cells in association with UC or CD

in humans. These in vitro studies of immune regulation

with human cells, however, have been limited by in-

adequate markers to track and isolate Treg cells, and an

inability to replicate the in vivo inflammatory environ-

ment. There is therefore an urgent need to develop better

assays with which to study the ex vivo Treg cells isolated

from inflammatory environments and to identify markers

that are specifically associated with function. If there is a

real deficiency in Treg-cell function in human IBD, then

cell therapy-based strategies similar to those that are

effective in mice5,10 could be developed.

Of particular interest in the context of IBD is how TLR

ligands and antigens derived from commensal bacteria

may directly influence the balance and function of

T-effector and Treg cells. Via its capacity to act as an

antigen,84 an adjuvant both for T-cell and antibody

responses85 and as a co-stimulatory molecule,43 the

TLR-5 ligand flagellin appears to be central to this pro-

cess (Fig. 1). We can speculate that the increased epithe-

lial permeability associated with IBD could result in

abnormal exposure of T cells in the lamina propria to fla-

gellin from commensal bacteria. Flagellin could be phago-

cytosed and presented as an antigen by dendritic cells

and, in parallel, stimulate TLR-5 on immune and non-

immune cells. Evidence that mutations in TLR-5 may

protect humans from CD62,63 suggests that pharmaco-

logical inhibition of this pathway may be therapeutically

beneficial. Notably, because expression of TLR-5 in

humans is much more widespread than in mice,85 parallel

studies in mice and humans will be needed to define the

clinical relevance of data from models of IBD.

With respect to flagellin acting as a TLR ligand on

CD4+ T cells, low concentrations enhance the expression

of FOXP3 and the suppressive capacity of Treg cells,

whereas high concentrations stimulate T-effector cell

function.43 Presumably, in active IBD, the latter situation

would prevail and perpetuate the loss of normal Treg-cell

function. Whether or not flagellin also has a role as an

antigen in altering the balance of Treg and T-effector cells

in this context remains to be defined. However, we specu-

late that the induction of antigen-specific tolerance to

flagellin by promoting the development of flagellin-

specific Treg cells may be an attractive approach to

restoring intestinal regulatory responses and contribute to

the treatment of IBD.
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