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Abstract
Microglial cells are critical components of the injurious cascade in a large number of
neurodegenerative diseases. However, the precise molecular mechanisms by which microglia
mediate neuronal cell death have not been fully delineated. We report here that reactive species
released from activated microglia induce the liberation of Zn2+ from intracellular stores in cultured
cortical neurons, with a subsequent enhancement in neuronal voltage-gated K+ currents, two events
that have been intimately linked to apoptosis. Both the intraneuronal Zn2+ release and the K+ current
surge could be prevented by the NADPH oxidase inhibitor apocynin, the free radical scavenging
mixture of superoxide dismutase and catalase, as well as by 5,10,15,20-tetrakis(4-sulfonatophenyl)
porphyrinato iron(III) chloride. The enhancement of K+ currents was prevented by neuronal
overexpression of metallothionein III or by expression of a dominant negative (DN) vector for the
upstream mitogen-activated protein kinase apoptosis signal regulating kinase-1 (ASK-1).
Importantly, neurons overexpressing metallothionein-III or transfected with DN vectors for ASK-1
or Kv2.1-encoded K+ channels were resistant to microglial-induced toxicity. These results establish
a direct link between microglial-generated oxygen and nitrogen reactive products and neuronal cell
death mediated by intracellular Zn2+ release and a surge in K+ currents.
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INTRODUCTION
Microglia, rapidly activated in response to neuronal injury, are critically important in
promoting neurodegeneration in many CNS disorders (Bessis et al., 2007; Block et al., 2007;
Colton et al., 2000, 2005; Wojtera et al., 2005). In addition to cytokines, activated microglia
can release neurotoxic levels of nitric oxide (·NO) and superoxide ( ), respectively, generated
by inducible nitric oxide synthase (iNOS) and NADPH oxidase (Colton and Gilbert, 1987; Li
et al., 2005; Mander and Brown, 2005). Peroxynitrite (ONOO−), rapidly and favorably formed
by the cogeneration of · NO and  (Espey et al., 2002), can trigger or exacerbate
neuropathological injury (Bal Price et al., 2002; Beckman et al., 1990; Keynes and Garthwaite,
2004). At physiological pH, ONOO− becomes protonated and undergoeshomolytic cleavage
to generate the protein tyrosine nitrating species nitrogen dioxide (·NO2) as well the highly
oxidizing hydroxyl radical (·OH; Schopfer et al., 2003). In addition, peroxynitrite can react
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with CO2 to generate ONOOCO2, leading to ·NO2 and ·CO3 radicals, also via homolytic
cleavage (Schopfer et al., 2003). However, it has been demonstrated that ONOO− can readily
traverse membrane lipids at rates faster than its decomposition pathways (Marla et al., 1997).
Thus, unlike O− 2· or ·OH, ONOO− can diffuse cellular dimension distances, providing the
reactive species it generates widespread access to internal cellular structures (Lee et al.,
1998; Marla et al., 1997).

In neurons, exogenous ONOO− applied under physiological conditions induces the liberation
of Zn2+ from intracellular binding sites, which, in turn, initiates a cell death cascade mediated
by the activation of the mitogen-activated protein kinase (MAPK) p38 (Zhang et al., 2004). In
addition, ONOO− application also initiates a p38-dependent enhancement of voltage-
dependent K+ currents (Bossy-Wetzel et al., 2004; Pal et al., 2004), a process that has been
tightly linked to neuronal apoptosis (McLaughlin et al., 2001; Redman et al., 2007; Yu et al.,
1997). Enhanced K+ currents enable cytosolic K+ efflux, necessary for the completion of the
cell death cascade (Bortner and Cidlowski, 2004; Yu, 2003). Consistent with this, blocking
K+ efflux following injury can halt neuronal apoptosis in a large number of experimental
models (Yu, 2003; Yu et al., 1997). However, despite a pronounced K+ current surge in cortical
neurons following exposure to ONOO donors (Pal et al., 2004), neurotoxicity could not be
averted by preventing K+ channel function (Zhang et al., 2004). This observation raises the
possibility that ONOO− donors cannot mimic potential physiological sources of the reactive
species (Espey et al., 2002) and, consequently, overwhelm the affected neurons, such that
K+ efflux is not necessary for the cell death process. Here, we used a co-culture model to
investigate whether activated microglia, under conditions more akin to a pathophysiological
insult in the brain, could initiate a cell death pathway in cortical neurons that was characterized
by intraneuronal Zn2+ release and, especially, by a K+ current surge. Our results do indicate
that reactive oxygen and nitrogen species originating from activated microglia induces
neuronal death via a process that is fully dependent on Zn2+ release and an enhancement of
K+ currents.

MATERIALS AND METHODS
Cell Culture

Cortical cultures were prepared from embryonic, day 16 Sprague-Dawley rats as previously
described (Hartnett et al., 1997). Briefly, cortices were dissociated, and the resultant cell
suspension was adjusted to 600,000 cells/well (six-well tissue culture plates containing five,
11-mm poly-L-ornithine-treated coverslips/well) in a growth medium composed of a volume-
to-volume mixture of 80% Dulbecco’s modified minimal essential medium (MEM), 10%
Ham’s F12-nutrients, 10% bovine calf serum (heat-inactivated, iron-supplemented; Hyclone,
Logan, UT) with 25 mM HEPES, 24 U/mL penicillin, 24 μg/mL streptomycin, and 2 mM L-
glutamine. Cultures were maintained at 37°C, 5% CO2, and the media was partially replaced
on a monday–wednesday–friday schedule. Glial cell proliferation was inhibited after 2 weeks
in culture with 1–2 μM cytosine arabinoside, after which the cultures were maintained in
growth medium containing 2% serum and without F12-nutrients. Cultures were utilized at 18–
22 days in vitro (DIV) and contained ~20% neurons (Rosenberg and Aizenman, 1989). In these
cultures, neuronal somata and proximal processes are phase bright and protrude above a phase
dark, flat astrocyte layer that covers distal processes (Harris and Rosenberg, 1993).
Immortalized rat brain microglial cells (Cheepsunthorn et al., 2001) were generously supplied
by J. Connor (Pennsylvania St. University, Hershey, PA). Microglia were maintained in
Dulbecco’s modified MEM supplemented with 10% heat-inactivated fetal bovine serum, and
plated in trans-well inserts (Corning, Corning, NY) at a density of 0.5 ×106 cells/well for 24
h prior to activation (Li et al., 2005). For the Zn2+ imaging and electrophysiological studies,
trans-well inserts containing microglia were placed on top of neuron-containing coverslips in
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24-well plates immediately prior to microglial activation. To ensure a robust and consistent
activation of microglia, 10 U/mL interferon-γ (IFN-γ, Chemicon, Temecula, CA) and 1 μg/mL
lipopolysaccharide were added directly into the well inserts (Duport and Garthwaite, 2005).
Chemical activation of this microglial cell line leads to activation of both iNOS and NADPH
oxidase in less than 30–60 min (Cheepsunthorn et al., 2001; Qian et al., 2007). The insert-
containing co-cultures were then immediately transferred to the incubator and maintained in
the dark at 37°C and 5% CO2 for the duration of the exposure (see later) to minimize the light-
dependent consumption of microglial-generated NO by cell culture media components
(Keynes et al., 2003).

Intracellular Zinc Measurements
After a 60-min exposure to activated microglia, trans-well inserts were removed and cortical
cultures, in the absence of microglia, were thoroughly rinsed and loaded with the Zn2+-sensitive
fluorescent reporter Fluozin-3 AM (5 μM, Molecular Probes, Carlsbad, CA) for 30 min in
buffered solution (144 mM NaCl, 3 mM KCl, 10 mM HEPES, 5.5 mM glucose, with 5 mg/
mL bovine serum albumin; pH 7.3). Coverslips were then transferred to a recording chamber
(Warner, Hamden, CT) mounted on an inverted epifluorescence microscope and superfused
with MEM, supplemented with 25 mM HEPES and 0.01% BSA. Images were acquired with
490 nm excitation light using a computer-controlled monochromator (Polychrome II, TILL
Photonics, Martinsried, Germany) and a CCD camera (IMAGO, TILL Photonics). After
baseline images were acquired, free intracellular Zn2+ was chelated with 20 μM tetrakis-(2-
pyridylmethyl)ethylenediamine (TPEN). The relative Zn2+ fluorescence for all neuronal cell
bodies in a single field (n = 5–30) was determined by subtracting the fluorescence signal after
TPEN application from the baseline signal (ΔFTPEN). Zn2+ signals emanating from supporting
astrocytes are minimal under these conditions, as these cells appear to buffer intracellular
Zn2+ more effectively than neurons (Dineley et al., 2000).

Electrophysiology
After a 60-min exposure to activated microglia, trans-well inserts were removed and cortical
cultures were returned to the incubator for an additional 3 h, a time-point by which we have
observed pronounced K+ current surges in neurons undergoing apoptosis (McLaughlin et al.,
2001). Following this time, cultures were rinsed thoroughly and transferred to a recording
chamber. All recordings were performed from neurons at room temperature using whole cell
recordings, with 2–3 MΩ patch electrodes as previously described (McLaughlin et al., 2001).
The extracellular recording solution consisted of 115 mM NaCl, 2.5 mM KCl, 2.0 mM
MgCl2, 10 mM HEPES, 10 mM D-glucose, pH 7.2; 0.25 μM TTX was added. The electrode
solution consisted of (in mM) 120 K-gluconate, 11 EGTA, 10 KCl, 1 MgCl2, 1 CaCl2, 10
HEPES, 0.22 ATP; pH 7.2. Currents were amplified with an Axopatch 200B amplifier (Axon
Instruments, Foster City, CA), filtered at 2 kHz, and digitized at 10 kHz. Potassium currents
were evoked with 80-ms voltage steps from −70 mV in 10-mV increments. For analysis, steady-
state current amplitudes were measured at + 10 mV and normalized to cell capacitance. Series
resistance was compensated in all cases (~80%).

Neuronal Transfection
Neurons were transfected with either apoptosis signal-regulating kinase-1 dominant negative
(DN) vector (ASK1 DN; gift from H. Ichijo, Tokyo Medical University, Japan),
metallothionein III (MT-III), or a DN truncated mutation of Kv2.1 (gift from J. Nerbonne,
Washington University, St. Louis, MO) in 18–22 DIV neurons using Lipofectamine 2000
(Invitrogen, Carlsbad, CA) as described by Pal et al. (2003). Transfection rates for neurons in
this type of culture are normally around 1% (Santos and Aizenman, 2002), but can be as high
as 5% (unpublished). For electrophysiological recordings, neurons were also transfected with
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a plasmid encoding enhanced green fluorescent protein (eGFP). For toxicity assays, neurons
were co-transfected with a luciferase-expressing vector (Boeckman and Aizenman, 1996; Pal
et al., 2003). The MT-III plasmid was constructed by amplifying full-length cDNA from rat
brain. The primers used were as follows: sense, agaagcttgccaccatggaccctgagacctgccc;
antisense, gaggatcctggcagcagctgcatttct. The MT-III cDNA obtained was inserted into an
eGFP-expressing vector. Transfections were performed 24 h prior to activated microglial
exposure.

Toxicity Assay
Cell death was measured using a luciferase activity assay (Boeckman and Aizenman, 1996;
Pal et al., 2003). Twenty-four hours after transfecting neurons with a luciferase expressing
vector plus or minus a vector of interest, microglia (50,000 cells/mL) were plated directly on
top on neurons and activated for 60 min as described previously. Trans-well inserts were not
utilized under these conditions to minimize expenses, since individual neurons did not have to
be identified for recordings (i.e., Zn2+ measurements or electrophysiology). Cell viability was
assayed 48 h later on transfected neurons as previously described (Pal et al., 2003). An
overnight exposure to staurosporine (0.5 μM) or NMDA (200 μM) in the absence of microglia
was used as a positive control for maximal neuronal cell death. We also took advantage of the
fact that neuroprotective manipulations of neurons could be performed without affecting
microglial function. As such, the overexpression of DN vectors for either the p38 upstream
MAPK apoptosis signal regulating kinase-1 (ASK-1), or Kv2.1, could be directed to neurons
prior to co-culture and activation of microglia. These conditions were important to control
since some of the signaling pathways triggered in neurons during cell death are also involved
within microglia to promote their activation, including both p38 phosphorylation and changes
in K+ channel function (Kaushal et al., 2007; Koistinaho and Koistinaho, 2002).

Immunocytochemistry
Cortical cultures were examined for the presence of 3-nitrotyrosine under control conditions
or after exposure to activated microglia (Mander and Brown, 2005). Ninety minutes after
microglia exposure as described earlier, neurons were fixed for 10 min in 4%
paraformaldehyde. Following a 5-min wash in phosphate buffered saline (PBS), neurons were
treated with 0.3% triton in PBS, washed again, and blocked in 1% bovine serum albumin.
Cultures were then incubated overnight with 3.3 μg/mL of antinitrotyrosine monoclonal
antibody (Upstate, Lacke Placid, NY) at 4°C. A FITC-conjugated secondary antibody (Sigma-
Aldrich, St. Louis, MO) was used to detect cells labeled with the primary antibody.

RESULTS
Activated Microglia Induce an Increase in Intraneuronal Zn2+

Neurons previously exposed to microglia activated with LPS/IFN-γ (see Materials and
Methods) exhibited a significant increase in TPEN-sensitive Zn2+ fluorescence (ΔFTPEN)
when compared with untreated control cells (Figs. 1 and 2). This increase in ΔFTPEN was not
evident in neurons treated for 60 min with LPS/IFN-γ in the absence of microglia, or in neurons
exposed for 60 min to resting microglia (Fig. 2A). To determine the origin of increased
cytosolic Zn2+ concentration ([Zn2+]i), we added a cell impermeable Zn2+ chelator Ca2+-
EDTA while neurons were exposed to activated microglia. Under these conditions, we still
observed a significant increase in ΔFTPEN, suggesting that influx of extracellular Zn2+ is not
necessary for the increase in [Zn2+]i (Fig. 2B). We did note, however, that even in control
neurons the overall Zn2+ fluorescence in Ca2+-EDTA exposed cells was generally lower in
intensity compared with neurons that remained in a normal buffer. This may have resulted from
the removal of exchangeable Zn2+ pools normally available to neurons (Frederickson et al.,
2002). Nonetheless, as [Zn2+]i was still substantially elevated in microglia-exposed cells in the
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presence of Ca2+-EDTA, we conclude that measurable changes in Zn2+ fluorescence are
primarily due to Zn2+ release from intracellular sources (Aizenman et al., 2000).

To characterize the origin of the reactive species responsible for intraneuronal Zn2+ release,
selective scavengers and inhibitors of microglial-generated free radicals were used. When the
O− 2 scavenging mixture of superoxide dismutase/catalase was added to the neuronal culture
medium during activated microglia exposure, ΔFTPEN was attenuated compared with neurons
exposed to activated microglia alone (Fig. 2C). Similarly, ΔF TPEN measured after exposure
to apocyanin-treated activated microglia was also significantly decreased, suggesting that
NADPH oxidase was the primary source of O− 2 production (Fig. 2C). Because NADPH-
derived microglial O− 2 contributes to ONOO− formation (Li et al., 2005), neurons were also
treated with 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato iron(III) chloride (FeTPPS)
during activated microglial exposure. FeTPPS is widely believed to be an ONOO−

decomposition catalyst with minimal superoxide dismutase activity, and does not appear to
complex with NO (Lee et al., 1998;Misko et al., 1998). Following this treatment, we observed
a significant reduction of the liberation of intraneuronal Zn2+ caused by activated microglia
(Fig. 2C). On the basis of these results, we suggest that activated microglia produce oxygen
and nitrogen reactive species, which causes an increase in [Zn2+]i in co-cultured neurons.
Importantly, evidence that the nitrating species ·NO2 was generated in our system was
confirmed by the presence of 3-nitrotyrosine immunoreactivity in neurons exposed to activated
microglia (Fig. 2D).

Activated Microglia Trigger a Surge in Voltage-Gated Potassium Currents in Neurons
Oxygen and nitrogen-derived reactive species induce intracellular Zn2+ release and enhance
voltage-gated K+ current during apoptosis (Aizenman et al., 2000; Bossy-Wetzel et al., 2004;
McLaughlin et al., 2001; Pal et al., 2004, 2006). Therefore, we investigated whether microglial-
generated reactive products would also induce a surge in neuronal K+ currents. K+ current
densities in neurons exposed to activated microglia were significantly larger than the current
densities recorded from control neurons (Figs. 3 and 4). Furthermore, this current enhancement
could be prevented by apocyanin or FeTPPS (Fig. 4A). To determine whether the microglia-
mediated increase in [Zn2+]i caused K+ current enhancement via the p38 upstream MAPK
ASK-1 (Aras and Aizenman, 2005), neurons were transfected with metallothionein-III (MT-
III), to bind excess intracellular Zn2+, or a DN vector for ASK-1. We observed that microglia-
exposed neurons expressing either MT-III or ASK-1 DN exhibited K+ current densities similar
to control cells (Fig. 4B). Likewise, both empty vector-expressing neurons and untransfected
cells behaved similarly when exposed to activated microglia. These results demonstrate that
an increase in [Zn2+]i triggered by activated microglia is capable of inducing a key step in the
neuronal cell death process, namely an ASK-1-mediated K+ current surge.

Microglial-Induced Neuronal Cell Death
We hypothesized that reactive species produced by activated microglia, capable of increasing
neuronal [Zn2+]i and producing an ASK1-dependent K+ current surge, would cause neuronal
cell death via this pathway (Bossy-Wetzel et al., 2004; McLaughlin et al., 2001). A cell viability
assay was thus employed to investigate the mechanism of microglial-mediated neurotoxicity.
We first observed that activated microglial-induced neuronal death could be prevented by
apocyanin (Fig. 5A), confirming the role for NADPH oxidase in this process (Block et al.,
2007). FeTPPS appeared to interfere with the luciferase viability assay. However, treating co-
cultures with the iNOS inhibitor 1,400 W effectively attenuated microglia-mediated
neurotoxicity (Fig. 5A). The fact that inhibition of either NADPH oxidase or iNOS was
sufficient to halt neuronal death strongly suggests that microglial-derived reactive oxygen and
nitrogen species are responsible for mediating neuronal damage.
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Finally, we investigated the molecular progression of microglial-mediated neuronal death by
neuronal overexpression of either MT III, ASK-1 DN, or Kv2.1 DN (Fig. 5B). A
nonpharmacological approach was necessary to investigate the progression of this pathway,
as inflammatory microglia also exhibit activation of p38 MAP kinase and voltage-gated K+

currents, two of the key signaling components proposed in our neuronal death pathway
(Fordyce et al., 2005). Overexpressing metallothionein-III effectively increased neuron
viability, indicating that the increased availability of a high affinity Zn2+ buffer was sufficient
to rescue neurons from the microglial-triggered cell death process. We also observed that
interfering with ASK-1 function, required for Kv2.1-mediated K+ current surge (Aras and
Aizenman, 2005), attenuated cell death. Finally, overexpression of a DN vector for Kv2.1, the
K+ channel responsible for mediating neuronal apoptosis in cortical, midbrain dopaminergic,
and cerebellar granule neurons (Jiao et al., 2007;Pal et al., 2003;Redman et al., 2006), was also
highly neuroprotective. Taken together, these results demonstrate that microglial-derived
reactive species induce neuronal cell death via a process that involves the release of Zn2+ from
intracellular sources, ASK-1 activation, and a surge in Kv2.1-mediated voltage-gated K+

currents.

DISCUSSION
We provide evidence that two important components of a previously characterized cell death
cascade in neurons are intimately related to microglial-mediated neuronal injury, namely,
intracellular Zn2+ release and a surge in voltage-dependent K+ currents (Aizenman et al.,
2000; McLaughlin et al., 2001). Interfering with these processes proved to be highly effective
in blocking neuronal cell death as a result of microglial activation. There are increasing
numbers of studies suggesting a close association between microglia activation and neuronal
injury in central nervous system disorders (Bessis et al., 2007; Colton et al., 2000, 2005; Duport
and Garthwaite, 2005; Wojtera et al., 2005). In acute injury, such as that occurring during
stroke, microglial-derived oxygen and nitrogen reactive species may represent critical
components for initiating or compounding neuronal damage as it normally precedes but can
amplify the production of proinflammatory cytokines (Block et al., 2007; Qin et al., 2004).
Naturally, the production of microglial cytokines is a well-established mechanism of neuronal
injury and has been implicated with many chronic neurodegenerative disorders (Block et al.,
2007). Additionally, the production of reactive species by microglia is likely to impair other
cellular components, such as membrane lipids, that may or may not necessarily involve the
liberation of intracellular Zn2+. Of note however, aldehydes, which are lipid peroxidation
products, can react with Zn2+-thiolate clusters in proteins and readily liberate the metal (Hao
and Maret, 2006). We therefore suggest that targeting intraneuronal Zn2+ dysregulation, or the
cell death signaling transduction cascades activated by Zn2+, could provide effective
therapeutic strategies for minimizing neuronal damage in stroke and related disorders.

Since Zn2+ can be readily liberated from intracellular metal-binding proteins by oxygen and
nitrogen-derived stressors (Maret, 2006; Sidorkina et al., 2003), and can subsequently trigger
neuronal cell death (Aizenman et al., 2000; Bossy-Wetzel et al., 2004; McLaughlin et al.,
2001), it is also entirely possible that the processes described here will be shown to be widely
expressed in many forms of neurodegeneration. In fact, release of intracellular Zn2+ during
neuronal injury has now been reported to be involved in a number of neurodegenerative
conditions, including epileptic seizures (Lavoie et al., 2007; Lee et al., 2000), cerebral ischemia
(Calderone et al., 2004), and target deprivation (Land and Aizenman, 2005). Importantly,
microglial activation has been shown to be a potential crucial component of the
neuropathological changes observed in all of these conditions (Boer et al., 2006; De Simoni et
al., 2000; Ekdahl et al., 2003; Milligan et al., 1991b; Rizzi et al., 2003; Wang et al., 2007).
Microglia have also been shown to be activated during normal brain development (Milligan et
al., 1991a), where they play a critical role in the programmed death of neurons (Marin-Teva
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et al., 2004). Interestingly, it has been reported that both intraneuronal Zn2+ accumulation and
enhanced K+ currents are cellular markers of developmental neuronal cell death (Hribar et al.,
2004; Lee et al., 2006). It must be mentioned, however, that microglia activated in a manner
similar to that described here were unable to generate sufficient NO to injure neurons in
hippocampal slice cultures (Duport and Garthwaite, 2005). This preparation, however, is
markedly insensitive to NO-mediated damage (Keynes et al., 2004), and thus other regulatory
processes may be at play, including effective scavenging of reactive oxygen species by
endogenous substances, thereby possibly limiting the production of ONOO− and its reactive
products. It is also important to consider the possibility that the responses observed here in
neurons exposed to activated microglia may also be expressed during nonpathological
conditions. As such, an upregulation of delayed rectifier neuronal currents following microglial
signaling could lead to pronounced changes in intrinsic excitability (Misonou et al., 2005).

It has yet to be established if Zn2+ liberation under all injurious conditions precedes the
characteristic K+ current surge that is widely present in neuronal apoptosis. It is also not known
whether neuronal cell death can always be averted by preventing cellular K+ efflux. In fact,
our own work has shown that following exposure to ONOO− donors these two processes,
Zn2+ liberation and K+ current surge, are both not required together for cell death to ensue.
Specifically, we were unable to rescue cortical neurons from exposure to the ONOO− generator
3-morpholino-sydnonimine (SIN-1) by preventing cellular K+ efflux (Zhang et al., 2004), even
though a pronounced K+ current surge could be easily detected under similar circumstances
(Pal et al., 2004). This suggests that an exogenous ONOO− neurotoxicity circumvents the
K+ efflux requirement for completion of a cell death program. Other studies have shown that
the toxic actions of ONOO− generators such as SIN-1 can be complex and that they can
sometimes involve an excitotoxic component (Trackey et al., 2001). This additional injurious
component may not necessarily require either Zn2+ release or K+ extrusion to be fully
expressed. More significantly, however, addition of an exogenous ONOO− generator or
ONOO− itself may prove to be a stimulus not analogous to the release of reactive species by
activated microglia under pathological situations, as suggested by others (Espey et al., 2002).

The results presented in this study demonstrate that under conditions previously shown to be
highly toxic to both neurons (Xie et al., 2002) and oligodendrocytes (Li et al., 2005), reactive
oxygen and nitrogen species derived from activated microglia induce a molecular cell death
cascade that requires both the release of intracellular Zn2+ and a MAPK-dependent
enhancement of Kv2.1-mediated K+ currents. These two critical steps in neuronal apoptosis
thus provide discrete molecular targets for combating neurodegenerative conditions, where
activation of microglia could be deleterious to neurons.
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Fig. 1.
Intraneuronal Zn2+ accumulation as a result of activated microglia. (A) Fluorescence traces
from individual neurons before and after addition of the Zn2+ chelator TPEN (20 μM).
Compared with control cells, neurons previously exposed to activated microglia (AMG) have
higher baseline Zn2+ fluorescence and greater quenching by TPEN. (B) Average (mean ± SD)
TPEN-sensitive Zn2+ fluorescence (ΔFTPEN) from the control neuron-containing coverslip
shown earlier (n = 9 cells) and the neuronal culture exposed to activated microglia (n = 9 cells;
P < 0.05; t-test). (C) Examples of fluorescence images of rat cortical neurons loaded with 5
μM fluozin-3 AM following a 60-min exposure to activated microglia (10 U/mL IFN-γ + 1
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μg/mL LPS), before (left) and after (right) treatment with 20 μM TPEN. The picture shown is
representative of the range in responses observed in a typical coverslip. Bar: 60 μm.
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Fig. 2.
Properties of microglial-induced intraneuronal Zn2+ release. (A) Pooled (mean ± SEM) TPEN-
sensitive Zn2+ fluorescence (ΔF TPEN) from control neurons, neurons exposed to microglia
(MG) activated with LPS/IFN-γ, neurons exposed to LPS/IFN-γ alone or to quiescent microglia
(n = 13–18 coverslips per group, P < 0.05; ANOVA, Dunnett). (B) ΔFTPEN in control and
activated microglia-exposed cortical neurons in the presence of 1 mM Ca-EDTA to chelate
extracellular Zn2+ (n = 8–11 coverslips per group, P < 0.01; t-test). (C) ΔF TPEN in neurons
exposed to activated microglia in the absence (n = 10) or presence of the NADPH oxidase
inhibitor apocynin (APO, 1 μM) (n = 10), SOD/CAT (SOD 500 U/mL, catalase 100 U/mL)
(n = 9) or FeTPPS (5 μM) (n = 10) (P < 0.05; ANOVA, Dunnett). (D) Immunostaining of
tyrosine nitration in rat cortical neurons. Top panels, phase contrast images of control neurons
(a) and neurons exposed to activated microglia (b). Bottom panels, fluorescent images of the
same fields shown earlier demonstrating that 3-nitrotyrosine immunoreactivity is virtually
nonexistent in control neurons (c) whereas extensive labeling is observed in neurons previously
exposed to activated microglia (d). Bar: 20 μm.
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Fig. 3.
Exposure to activated microglia induces a voltage-gated K+ current surge in neurons. (A)
Representative K+ currents evoked by a series of 10-mV incremental voltage steps to + 70 mV,
from a holding potential of −70 mV in a control neuron (left) and a neuron previously exposed
to activated microglia (right). Calibration: 25 ms, 5 nA. (B) Steady-state current–voltage
relationship from traces shown in A.
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Fig. 4.
Molecular components of the K+ current surge mediated by microglia. (A) Mean (±SEM)
current densities (single voltage step to 10 mV) in control neurons (n = 29, P < 0.01), and in
neurons exposed to activated microglia in the absence (n = 37) or presence of apocyanin (APO,
1 μM) (n = 22, P < 0.01) or FeTPPS (50 μM, n = 13, P < 0.05); **P < 0.01, ANOVA, Dunnett.
(B) Mean (±SEM) current densities (single voltage step to 10 mV) comparing neurons
overexpressing either MT-III (n = 13, P < 0.001), ASK-1 DN(n = 9, P < 0.05) or an empty
eGFP-expressing vector (n = 10) to untransfected neurons on the same coverslip (n = 9 for
each group); ***P < 0.001; t-test.
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Fig. 5.
Molecular components of microglial neurotoxicity. (A) Mean (±SEM) viability (expressed as
% control) in neurons exposed to activated microglia in the absence (n = 9) or presence of
apocyanin (1 μM, n = 3) or 1,400 W (25 μM, n = 6) (P < 0.01; ANOVA, Dunnett). (B) Mean
(±SEM) viability (expressed as % control) in control neurons (n = 10) and in neurons
overexpressing metallothionein-III (MT-III) (n = 3, P < 0.01), ASK-1 DN (n = 4, P < 0.05) or
Kv2.1 DN (n = 3, P < 0.05); *,**P < 0.05, 0.01, ANOVA, Dunnett.
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