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SUMMARY
Arthropod-borne viruses have emerged as a major human health concern. Viruses transmitted by
mosquitoes are the cause of the most serious and widespread arbovirus diseases worldwide and are
ubiquitous in both feral and urban settings. Arboviruses, including dengue and West Nile virus are
injected into vertebrates within mosquito saliva during mosquito feeding. Mosquito saliva contains
anti-haemostatic, anti-inflammatory and immunomodulatory molecules that facilitate the acquisition
of a blood-meal. Collectively, studies investigating the effects of mosquito saliva on the vertebrate
immune response suggest that at high concentrations salivary proteins are immmunosuppressive,
whereas lower concentrations modulate the immune response; specifically, TH1 and antiviral
cytokines are down-regulated, while TH2 cytokines are unaffected or amplified. As a consequence,
mosquito saliva can impair the anti-viral immune response thus affecting viral infectiousness and
host survival. Mounting evidence suggests that this is a mechanism whereby arbovirus pathogenicity
is enhanced. In a range of disease models, including various hosts, mosquito species, and arthropod-
borne viruses, mosquito saliva and/or feeding is associated with a potentiation of virus infection.
Compared to arbovirus infection initiated in absence of the mosquito or its saliva, infection including
mosquito saliva leads to an increase in virus transmission, host susceptibility, viraemia, disease
progression, and mortality.
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Most arthropod-borne (arbo)viruses of public health significance are mosquito-borne, and thus
transmitted to vertebrates via the feeding of an infected mosquito. For a mosquito to
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successfully obtain a blood meal from a vertebrate host it must overcome physical barriers and
the complex and redundant physiological responses orchestrated by haemostatic and
inflammatory systems that have evolved to prevent blood loss and to combat infection.
Mosquitoes, like all haematophagous arthropods, have evolved mechanisms to effectively
neutralize host haemostatic responses, based upon the release of saliva into the feeding site.
Saliva is a pharmacologic cocktail of secreted molecules, principally proteins, that can affect
vascular constriction, blood coagulation, platelet aggregation, inflammation, immunity, and
angiogenesis (Arca et al. 1999, Arca et al. 2007, Arca et al. 2002, Arca et al. 2005, Billingsley
et al. 2006, Calvo et al. 2004, Calvo et al. 2006a, Calvo et al. 2006b, Calvo and Ribeiro
2006, Champagne 2004, Champagne et al. 1995, Cross et al. 1994, James et al. 1991, Kerlin
and Hughes 1992, Mellink and Vos 1977, Ribeiro 1987, 1989b, 1992, Ribeiro et al. 2007,
Ribeiro et al. 2000, Ribeiro et al. 2001, Ribeiro and Francischetti 2001, 2003, Ribeiro and
Nussenzveig 1993, Ribeiro et al. 1994, Ribeiro and Valenzuela 2003, Schneider et al. 2004,
Stark and James 1998, Suwan et al. 2002, Valenzuela et al. 2003, Valenzuela et al. 2002,
Wanasen et al. 2004, Wasserman et al. 2004, Zeidner et al. 1999). The saliva of all species of
haematophagous arthropod analyzed to date contains at least one anticlotting, one anti-platelet,
and one vasodilatory substance. Despite recent advances in our knowledge of these molecules
and their role in blood-feeding, functions can be ascribed to less than half of the molecules
present in mosquito saliva (Ribeiro et al. 2007, Valenzuela et al. 2002).

The enigma of immunomodulation in rapid feeding vectors
It is now clear that the feeding of mosquitoes has an immunomodulatory effect on their hosts
(Billingsley et al. 2006, Cross et al. 1994, Depinay et al. 2006, Schneider et al. 2004, Wanasen
et al. 2004, Wasserman et al. 2004, Zeidner et al. 1999). The presence of this activity in vector
saliva is a reflection of the inherent overlapping and interconnected nature of the host
haemostatic and inflammatory/immunological responses and the intrinsic need to prevent these
host defences from disrupting successful feeding. Duration of feeding varies greatly among
blood-feeders (minutes for fleas, sand flies, and mosquitoes; hours for soft ticks, and up to two
weeks for hard ticks), but even the most rapid feeders must contend with the host haemostasis
system, which activates within a matter of seconds (Champagne 2004). Key host targets for
arthropod anticoagulation action, such as coagulation factor Xa, also serve to activate anti-
microbial responses (Champagne 2004). Clearly, arthropods such as ticks that take a long time
to engorge must additionally deal with host inflammatory and immune responses, thus
necessitating vector anti-inflammatory/anti-immunological factors. It is less obvious why
rapidly feeding dipterans, in particular mosquitoes and sand flies, have evolved salivary factors
that directly modulate host immune defences that peak after completion of engorgement and
after the arthropod has left the host. One possible explanation is that these molecules have
evolved because they have long-term beneficial effects for the species/population rather than
to the individual at the time of feeding. Since a host animal may be fed upon by large numbers
of biting flies (Higgs et al. 2005), it is possible that immune reactions to arthropod salivary
factors promoted by previous exposure, may be deleterious to subsequent arthropods feeding.
Indeed, reduction of salivary protein levels in saliva causes an increase in intradermal probing
time thus increasing the risk of vector detection by the host and deceasing the likelihood of a
successful blood meal (Rossignol et al. 1984). New anti-tick vaccines designed to reduce the
intensity and duration of tick infestations and thus the incidence of tick-borne disease are based
upon antibody responses directed towards tick digestive tissue epitopes (Labuda et al. 2006).
If vertebrates were to mount strong immune responses that reduced mosquito feeding efficiency
a decrease in mosquito longevity and fecundity may occur. One can speculate that down
regulation of these responses by mosquito salivary compounds may therefore have evolved to
minimize such potential anti-vector effects and, as a consequence, would maintain the
maximum reproductive capacity of the population as a whole.
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Immunosuppression would reduce the possibility that a host could develop specific immune
responses that impair the activities of anticlotting and vasodilatory molecules essential for
blood acquisition by vectors. A second and, perhaps, more convincing reason for
immunomodulatory activity in rapidly feeding arthropods is the high level of interaction
between the host haemostatic, inflammatory, and immune responses. A mosquito by necessity
must suppress the haemostasis system. The effect of saliva on vasodilation, coagulation, and
platelet aggregation factors results in modulations of inflammation and immune responses. For
example, indirect effects of mosquito salivary anticoagulant proteins, such as Aedes
anticoagulant-factor Xa (Stark and James 1998) may suppress extravasation of some
inflammatory cell types and suppress complement pathways. The Aedes anticoagulant inhibits
fXa, which is required for activation of Hagemen factor, which in turn converts factor XI to
its active form XIa and prekallikrein to kallikrein (Stark and James 1998). Kallikrein is
responsible for generation of the anaphylatoxin C5a from compliment (Wiggins and Cochrane
1981). A reduction in C5a, as would be expected from inhibition of upstream effectors, could
have significant effects at the site of mosquito feeding. Notably, C5a is important for
recruitment of antibody, extravasation of complement, homing of polymorphonuclear
leukocyte (PMN), and activation of macrophages and neutrophils. Therefore mosquito saliva,
by inhibiting factor Xa, decreases the production of C5a, thereby suppressing these downstream
effects that hasten the destruction of pathogens. Interestingly, a recent study confirmed that
complement plays a critical role in controlling West Nile virus (WNV) infection, a mosquito-
transmitted flavivirus (Mehlhop and Diamond 2006).

Modulation of the vertebrate immune response by mosquito saliva
Whilst the molecular mechanisms for mosquito saliva-induced alteration of the host immune
response is unclear, the data clearly demonstrate that such an effect occurs. Studies evaluating
the effect of mosquito saliva on the immune response began relatively recently (Bissonnette
et al. 1993, Cross et al. 1994), following the discovery that sand fly saliva enhanced infections
with Leishmania major (Ribeiro 1989b, Theodos and Titus 1993). Early work described a
factor in Ae. aegypti saliva that directly suppresses tumour necrosis factor (TNF)-α release,
but not antigen-induced histamine secretion, from activated mast cells (Bissonnette et al.
1993). This factor has a molecular weight greater than 10 kDa and is neutralized by boiling,
suggestive of a protein. Several studies have focused on the effect of mosquito saliva on
splenocytes in vitro. Experiments by Cross et al. (1994) demonstrated that the inclusion of Ae.
aegypti salivary gland extract (SGE) into naïve cultures suppressed interleukin (IL)-2 and
interferon (IFN)-γ production, but had no effect on the cytokines IL-4 and IL-5. Cellular
proliferation promoted by IL-2 is clearly reduced by prior treatment of cells with SGE (Cross
et al. 1994). Correspondingly, activated splenocytes isolated from mice fed upon by either Ae.
aegypti or Cx. pipiens mosquitoes produce markedly higher levels of IL-4 and IL-10 concurrent
with suppressed IFN-γ production (Zeidner et al. 1999). Unexpectedly, this TH1 to TH2 shift
in cytokine expression from splenocytes is sustained for up to 10 d after mosquito exposure,
suggesting that exposure to natural feeding of mosquitoes can have a profound, enduring, and
systemic effect on T cell functions. Inoculation of the Ae. aegypti salivary vasodilator,
sialokinin mimics this effect of mosquito SGE (Zeidner et al. 1999). Modulating these
cytokines may have significant effects; IL-10 has pleiotropic effects in immunoregulation and
inflammation (e.g. it inhibits pro-inflammatory and TH1 cytokines, however, it stimulates
certain T cells, mast cells and B cells), while IL-4 is the prototypical TH2 cytokine (i.e. it
differentiates CD4+ T-cells into TH2 cells and up-regulates major histocompatibility complex
(MHC) class II production). Enhancement of IL-10 expression could account for reduction in
secretion of other cytokines because it inhibits antigen presentation, IFN–γ expression, and
macrophage activation (Thomson et al. 1998). IFN–γ is especially important in defence against
RNA virus infections. This cytokine causes proliferation and differentiation of many cell types,
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activates production of cellular proteins that prevent viral mRNA translation, and enhances
macrophage nitric oxide production (Ribeiro and Nussenzveig 1993).

T cell populations are especially susceptible to the effects of mosquito saliva, showing
increased mortality and decreased division rates (Wanasen et al. 2004). This immune
suppression appears to correlate with the vector’s host preferences. For example, the saliva of
Ae. aegypti , a species that feeds on mammals and in particular humans, exerts an enhanced
suppressive effect on mammalian splenocytes, whereas saliva of Cx. pipiens, an ornithophilic
species (Wang 1975), has less immunomodulatory effect on mammals (Wanasen et al. 2004).
Parallel work by Wasserman et al. (2004) demonstrated that T- and B-cell proliferation was
inhibited in a dose dependent manner from concentrations as low as 0.15 salivary gland pairs
(SGP)/ml. Each mosquito possesses a pair of salivary glands, and it has been estimated that
mosquitoes inject about 50–60% of their active salivary factors during a feed and re-ingest
approximately 20%, leaving roughly 30–40%, or the equivalent of 0.3–0.4 SGP, in the skin
(Wasserman et al. 2004). Lower concentrations of SGE inhibited TH1 cytokines (IL-2 and IFN-
γ) and T cell proliferation, while higher concentrations suppressed TH1, TH2 (IL-4 and IL-10),
and proinflammatory (granulocyte macrophage colony stimulating factor and TNF-α)
cytokines and decreased T cell viability. This pattern suggests that at the immediate feeding
site, an immunosuppressed environment is created, whereas more distal regions with
decreasing saliva concentrations experience a dysregulation of the immune response. A 387
kDa protein was implicated in this observed activity (Wasserman et al. 2004). Depinay et al.
(2006) observed a suppression of antibody-specific T cell responses mediated by Anopheles
stephensi saliva and dependent on mast cells and IL-10 expression. The delayed-type
hypersensitivity (DTH) response was reduced by 75% in mice that were exposed to mosquito
saliva during the sensitization phase, and the number of leukocytes recruited to the draining
lymph node (LN) were also reduced (50%) in this group as compared to controls (Depinay et
al. 2006). This altered response corresponded with a suppression of IFN-γ and an up-regulation
of IL-10.

Immunomodulation in the context of arbovirus infection
Recent in vivo data has established the relevance of these observations in the context of early
arbovirus replication (Schneider et al. 2004). Following intradermal co-inoculation of the
alphavirus Sindbis virus (SINV) and Ae. aegypti SGE intradermally, IL-4 and IL-10 expression
levels in the skin were 3.3- and 7.6-fold higher, respectively, by 72 hpi as compared to mice
injected with SINV alone. An increase in IL-4 could shift the T helper response towards TH2,
a response that is generally not favourable during viral infections. IL-10 may generate
conditions favourable to viral replication by suppressing the innate and adaptive responses
(Brooks et al. 2006). IL-10 down regulates MHC class II antigen expression by monocytes and
inhibits antigen presentation by several types of antigen-presenting cells (APC) (Enk et al.
1993, Macatonia et al. 1993). The existence of viruses with IL-10 homologs reveals an
evolutionary advantage to enhanced IL-10 levels for an invading virus (Griffiths 2002, Salek-
Ardakani et al. 2002). Studies with peripheral blood leukocytes found that early after infection
with dengue virus (DENV), a flavivirus, increased IL-10 production induces lasting T cell
inactivation and decreases the control of virus infection (Ejrnaes et al. 2006). Consequently,
the interaction of immunosuppressive IL-10-producing cells with T cells early during arbovirus
infection may result in the loss of T-cell responsiveness, facilitate an enhancement of viral
replication, and a impaired adaptive immune response. In addition to these cytokines, both type
1 and type 2 IFNs are suppressed at the site of virus inoculation when SGE is present (Schneider
et al. 2004). This inhibition of IFN expression is supported by a complimentary in vitro study,
which revealed by ribonuclease protection assay that IFN-α2 expression was depressed in
vesicular stomatitis virus (VSV)-infected L929 cultures supplemented with SGE (Limesand
et al. 2003). The contribution of type I IFN towards recovery from infection and defence against
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arboviruses has been demonstrated in vivo by the therapeutic and prophylactic effects of
administration of IFN-inducers or IFN (Haahr 1971, Taylor et al. 1980, Vargin et al. 1977).
After a low-dose infection with the flavivirus Murray Valley encephalitis virus, mice deficient
in IFN–α receptor succumb to infection, in contrast to a 70% survival rate in wild-type mice
(Lobigs et al. 2003). Similar results are observed with IFN-α/β-deficient mice infected with
SINV (Ryman et al. 2000), WNV, and DENV (Chambers and Diamond 2003). Additionally,
administration of IFN-α prevents or suppresses flavivirus infections in vivo, and in vitro
treatment of cells with type I IFNs 4 h prior to or shortly after infection with DENV or St.
Louis encephalitis virus (SLEV) significantly inhibits viral replication (Crance et al. 2003).
The abundance of research that demonstrates an effect of mosquito saliva on host immune
mediators affirms a role for saliva in modulation of the host immune response pathways.

Mosquito associated potentiation of arbovirus transmission and infection
During blood-feeding an infected mosquito transmits virus in saliva secreted predominantly
in the extravascular space of the skin (Amino et al. 2007, Hurlbut 1966, Ribeiro et al. 1984,
Smith et al. 2005, Styer et al. 2007, Turell and Spielman 1992, Turell et al. 1995). Depending
on the virus, mosquito species, and method of quantification employed, the estimated level of
virus inoculated within mosquito saliva ranges from approximately 101 to 107 pfu (Colton et
al. 2005, Colton and Nasci 2006, Gubler and Rosen 1976, Reisen et al. 2005, Smith et al.
2005, Styer et al. 2007, Vanlandingham et al. 2004). As described above, components of
mosquito saliva have immunomodulatory activity, and thus, as a consequence, mosquito saliva
can affect the anti-viral immune response and virus pathogenesis. Indeed, enhanced infection
attributable to components of arthropod saliva is an accepted phenomenon, particularly with
agents transmitted by ticks and sand flies (Cupp et al. 1998, Edwards et al. 1998, Limesand et
al. 2000, Nuttall and Labuda 2004, Theodos and Titus 1993). For example, when Leishmania
major is inoculated with salivary gland extracts of sand flies, parasite burden, lesion size, and
disease outcome are all amplified (Titus and Ribeiro 1988). In this seminal research, Titus and
Ribeiro (1988) found that co-inoculation of sand fly SGE lead to a parasite burden that was
5580-fold greater than in control groups inoculated with parasites alone. Increasingly, studies
are additionally supporting the hypothesis that mosquito saliva influences the transmission and
course of arbovirus diseases (Table 1).

Recently, the potential for mosquitoes to impact the course of WNV disease was investigated
by assessing pathogenesis in the presence or absence of mosquito saliva (Schneider et al.
2006). Mice inoculated intradermally with 104 pfu of WNV subsequent to the feeding of
mosquitoes (< 12/mouse) developed more progressive infection, higher viraemia, and
accelerated neuroinvasion than the mice inoculated with WNV alone. At a lower dose (102

pfu), mice exposed to mosquitoes exhibited increased mortality. Mice that were co-inoculated
with WNV and mosquito saliva experienced an accelerated and amplified WNV infection in
the brain (Schneider et al. 2006). As the viral inoculum was held constant while the presence
of mosquito saliva was varied, this study addresses the possibility that dissimilar level or source
of virus is responsible for the different phenotypes between needle-infected and mosquito-
infected mice. Similar studies with chickens and Cx. pipiens found that even compared to
chicks that were needle-inoculated with high doses (107 pfu) of WNV, those chicks infected
by mosquito feeding had significantly higher virus titres in the serum at the early time points
of 8, 12, and 24 h post-infection (Styer et al. 2006).

Adult mice are typically resistant to La Crosse virus (LACV), a mosquito borne flavivirus,
administered subcutaneously by needle, showing minimal signs of viral replication (Pekosz et
al. 1995). However, when LACV-infected mosquitoes feed upon adult mice, the majority of
mice die of encephalitis (Higgs et al. unpublished data). Fatal infection also results when adult
mice are infected subcutaneously with LACV-infected salivary gland suspensions. In contrast
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to mice inoculated with virus alone, mice infected in the presence of mosquito saliva developed
a viraemia of 1 – 3 d duration and die of LACV encephalitis within 6 – 12 d following mosquito
feeding. A dose response effect was noted; the more LACV-infected mosquitoes that fed, the
earlier clinical symptoms appeared, the longer the duration and higher the viraemia. This differs
substantially from the subcutaneous challenge of mice with LACV derived from brain
suspensions from lethal infections or from Ae. albopictus cell culture, which resulted in the
death of only a small fraction of mice (Higgs et al. unpublished data). Another study
investigated the potential for mosquito feeding to influence the disease course and reservoir
competence of wild mammals that naturally occur in regions where LACV is endemic (Osorio
et al. 1996). Despite the recognition that white-tailed deer constitute 65% of Ae. triseriatus
blood meals, needle-inoculation models of LACV had previously assumed that, due to low
viraemias detected in deer, these animals did not play an important role in the maintenance of
LACV in nature. However, subsequent experiments using infected mosquitoes to deliver
LACV demonstrated that higher and longer lasting viremias are produced compared with
infections initiated by needle inoculation (Osorio et al. 1996). A parallel study with chipmunks
observed that chipmunks infected with LACV via mosquito as compared to needle-inoculation
developed a viraemia that was 1000-fold higher (Osorio et al. 1996).

Mice generally do not become infected with Cache-Valley virus (CVV), an arthropod-borne
bunyavirus, following needle-inoculation of the virus (Edwards et al. 1998). However,
injection of CVV into sites of mosquito feeding results in production of viraemia and anti-
CVV antibody within two weeks of exposure (Edwards et al. 1998). This observed
enhancement of CVV infection resulted after feeding by either Ae. triseriatus, Ae. aegypti, or
Cx. pipiens and occurred when virus injection was delayed up to 4 h after mosquito feeding,
but it was not observed when virus inoculation was performed at a site distant from mosquito
feeding. The results of this study suggest that arbovirus infection can be exacerbated as a
consequence of the complex mosquito-vertebrate host interactions, and that enhancement is
due to factors in arthropod saliva, rather than due to changes in viral characteristics during
replication in the vector.

Furthermore, studies with vesicular stomatitis virus (VSV) further demonstrate the potential
for mosquito feeding or mosquito saliva to potentiate viral disease (Limesand et al. 2000).
Pathogenesis of VSV is age dependent: 3 day old mice infected with VSV by peripheral needle-
inoculation develop encephalitis and die, while older mice similarly infected show almost no
signs of viral replication with 13% and 11% of 3-week old and adult (>8 months) mice,
respectively, producing neutralizing antibody after needle inoculation. Conversely, following
mosquito inoculation of VSV, 94% of 3-week old mice and 73% of adult mice seroconvert to
VSV. It is interesting to note that in a supplementary experiment where mice were continuously
exposed to mosquito feeding, a lower rate of seroconversion was observed, suggesting that
factors in mosquito saliva may have suppressed antibody production. Follow-up in vitro studies
demonstrated a significant increase in viral growth in Ae. triseriatus SGE-treated mouse
fibroblast cells as compared to untreated controls and suggested that the mechanism of VSV
enhancement might be attributed to mosquito saliva-induced suppression of type I IFN
expression (Limesand et al. 2003).

Contrary to these observations, a few studies have suggested that there is no effect of mosquito
transmission on vertebrate infection, including studies on avian species infected with SLEV
and western equine encephalitis virus (Reisen et al. 2000), and studies with hamsters infected
with WNV (Sbrana et al. 2005), although the latter study compared mosquito transmission to
intraperitoneal inoculations, a route that allows the virus to bypass peripheral immune
responses that are robust in the dermis. These incongruous observations suggest that the effect
of mosquito feeding/saliva is variable, and may be influenced by host species, viral dose, and
saliva source as well as concentration.

Schneider and Higgs Page 6

Trans R Soc Trop Med Hyg. Author manuscript; available in PMC 2009 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Host immune response against mosquito saliva and implications for
arbovirus pathogenesis

Direct immune modulation of the host response may be one mechanism whereby the mosquito
alters the response to a virus, yet the immune response directed towards saliva may also be
important factor to consider. The host reaction to salivary components following mosquito
probing depends on host and mosquito species with overt cutaneous responses varying from
small papules to large pruritic swellings. These responses are often mild in unsensitized hosts,
and may become more pronounced if allergic sensitization occurs prior to exposure. The
mechanisms include type I (immediate, IgE-dependent) and type-IV (DTH) cell-mediated
reactions. Both hypersensitivity reactions cause a local increase in blood flow, vascular
permeability, and cellular infiltration (Demeure et al. 2005). This reaction to mosquito feeding
suggests that some components of mosquito saliva are allergenic. Mosquito saliva induces mast
cell degranulation, leading to fluid extravasation and neutrophil influx (Demeure et al. 2005).
Mast/dendritic cell (DC) interactions can enhance the immunomodulatory properties
inherently endowing this cell type, which exert both stimulatory and inhibitory effects on the
adaptive immune response (Hart et al. 1998, Villa et al. 2001). Following Anopheles
stephensi feeding on mice MIP-2 and IL-10 are selectively increased while IL-13 and IL-4 are
marginally increased in the skin and lymph nodes. This is relevant to mosquito-borne virus
infection because MIP-2 controls migration and adhesion of monocytes, which are susceptible
to a range of arboviruses, while the TH2 cytokines IL-4, IL-10, and IL-13 have been associated
with an ineffective immune response to viruses in the skin (Becker 2003).

Sensitization to mosquito feeding is associated with specific responses. In an animal model
(BALB/c mice) that explored the natural sensitization leading to IgE- and lymphocyte-
mediated hypersensitivities, mice were exposed twice a week for 4 weeks to at least 16 Ae.
aegypti mosquitoes (Chen et al. 1998). Following mosquito exposure, sensitized mice develop
a wheal 20 min after exposure and a delayed papule 24 h later. Mosquito saliva-specific IgG1
and IgE, but not IgG2a, is increased in sensitized mice, and comparisons show that most of the
antigens also elicited human IgE responses. The degree of the host response to mosquito saliva
is dependent on the duration and intensity of exposure to biting mosquitoes and the
immunological profile of the host (Peng et al. 1996). Intriguingly, the immune response to
mosquito saliva affects cytokine expression. IL-4 production is significantly increased while
IFN-γ production is decreased in sensitized mice, suggesting that a TH2 immune response
predominates following sensitization (Chen et al. 1998). Mean lymphocyte proliferation after
stimulation with mosquito antigens is higher in mice (Chen et al. 1998) and humans (Peng et
al. 1996) previously exposed to mosquito bites, implying that lymphocytes are involved in the
development of immunological reactions to mosquito saliva. A shift in the immune response
such as this at the site of arbovirus delivery could affect the pathogenesis of the virus. Skewing
the immune response, such as observed following mosquito feeding in sensitized hosts, towards
a TH2 response might be advantageous to a virus as outlined above. This and the inflammation-
mediated enhanced recruitment of virus-susceptible cell types to the feeding site would suggest
the possibility that immunological familiarity of the host to mosquito saliva may facilitate virus
replication. Supporting this hypothesis, a recent study demonstrated that sensitization to
mosquito feeding aggravated subsequent mosquito-transmitted WNV infection, leading to
increased mortality (Schneider et al. 2007). Exacerbation of the disease is associated with more
rapid viral replication, increased IL-10 expression, and enhanced influx of WNV-susceptible
cell types to the inoculation site. These differences in the early response to arbovirus in
mosquito-sensitized mice along with recent research that could not demonstrate a connection
between probing time and WNV inoculation in Ae. japonicus or Ae. triseriatus (Styer et al.
2007) suggest that observed potentiation of disease may not be due to mosquito feeding
efficacy, but rather a host response subsequent to probing. Nevertheless, the existence of a

Schneider and Higgs Page 7

Trans R Soc Trop Med Hyg. Author manuscript; available in PMC 2009 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



positive association between probing time and virus inoculation in Cx. tarsalis (Styer et al.
2007), the intrinsic variability between species, and the possibility that the immune response
in mosquito-sensitized hosts increases probing time by impairing salivary protein function
suggest that further experiments are warranted to investigate whether mosquitoes feeding on
pre-exposed hosts inoculate more virus. Given the observation that prior exposure to An.
stephensi causes a dramatically different response in subsequent exposures (i.e. increased IFNg
and decreased IL-4) (Donovan et al. 2007), additional research is necessary to elucidate
whether the effect of immune familiarity to mosquito feeding varies between mosquito species.

Conclusion
This review has focussed on mosquitoes and has thus ignored ticks as vectors that attach to a
host for relatively long periods and for which there are substantial data demonstrating immune
suppression (Gillespie et al. 2000, Nuttall and Labuda 2004, Ribeiro 1989a, Ribeiro and
Francischetti 2003, Wikel 1999). Despite the rapid feeding of mosquitoes, mosquito saliva
clearly has immunomodulatory activity, and mounting data demonstrate that, as a consequence
of this activity, mosquito-borne pathogens may be delivered to the vertebrate in an environment
that is compromised in its ability to respond to and contain infection. As with other pathogens
that have visibly co-evolved with the vector to take advantage of arthropod saliva and the
unique immune environment it creates (Ramamoorthi et al. 2005), arboviruses also appear to
exploit this niche to improve transmission and survival. Continuing research into the effect of
mosquito saliva on host immune response and arbovirus infection will not only provide a
progressively more accurate understanding of mosquito-transmitted virus pathogenesis, but
may uncover the means to disrupt transmission or diminish disease by, in conjunction with
viral prophylactic strategies, undermining the action of salivary proteins.
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Table 1
The enhancement of arbovirus transmission and infection associated with mosquito feeding/saliva

virus host mosquito differential effect of mosquito on infection reference

Ae. triseriatus, needle inoculated mice did not become infected,
CVV mouse Ae. aegypti, whereas mosquito inoculation led to production Edwards et al. 1998

Cx. pipiens of viraemia and seroconversion
LACV deer, Ae. triseriatus increased and extended viraemia Osorio et al. 1996chipmunk
LACV mouse Ae. triseriatus mice develop viraemia and succumb to infection, Higgs et al.

needle inoculated mice do not unpublished data
VSV mouse Ae. triseriatus ~5-fold increase in seroconversion rate Limesand et al. 2000
VSV L929 cells Ae. triseriatus significant increase in viral growth Limesand et al. 2003
WNV mouse Ae. aegypti more progressive infection, higher viraemia, Schneider et al. 2006

and accelerated neuroinvasion
WNV chicken Cx. pipiens elevated viraemia early in infection Styer et al. 2006
SLEV, chicken, Cx. tarsalis no difference in viraemia or seroconversion Reisen et al.2000WEEV finch

Cache-Valley virus (CVV); La Crosse virus (LACV); vesicular stomatitis virus (VSV); West Nile virus (WNV); St. Louis encephalitis virus (SLEV);
western equine encephalitis virus (WEEV).
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