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Abstract
The serotonin system is strongly implicated in the pathophysiology and therapeutic alleviation of
stress-related disorders such as anxiety and depression. Serotonergic modulation of the acute
response to stress and the adaptation to chronic stress is mediated by a myriad of molecules
controlling serotonin neuron development (Pet-1), synthesis (tryptophan hydroxylase 1 and 2
isozymes), packaging (vesicular monoamine transporter 2), actions at presynaptic and postsynaptic
receptors (5-HT1A, 5-HT1B, 5-HT2A, 5-HT2C, 5-HT3A, 5-HT4, 5-HT5A, 5-HT6, 5-HT7),
reuptake (serotonin transporter), and degradation (monoamine oxidase A). A growing body of
evidence from preclinical rodents models, and especially genetically modified mice and inbred mouse
strains, has provided significant insight into how genetic variation in these molecules can affect the
development and function of a key neural circuit between the dorsal raphe nucleus, medial prefrontal
cortex and amygdala. By extension, such variation is hypothesized to have a major influence on
individual differences in the stress response and risk for stress-related disease in humans. The current
article provides an update on this rapidly evolving field of research.
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1. Introduction
The work of Graeff et al. has contributed greatly to our understanding of the role of serotonin
(5-hydroxytryptamine) in orchestrating the behavioral response to psychological stress (Graeff
et al., 1996). Their work adds to a large corpus of data compiled over the past couple of decades
which has uncovered the major enzymes, transporters and receptors that subserve the
serotonergic system's modulation of both the acute response to stress and the adaptation to
chronic stress. In concert, a more nascent literature has begun to identify sources of genetic
variation within these molecules. These parallel lines of research have led to new ways of
thinking about how genetically driven differences in serotonin function might predispose
certain individuals to stress-related neuropsychiatric conditions such as depression and anxiety
disorders and how we can better identify and therapeutically treat these people.
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The present article provides an update on this rapidly growing field. The focus is studies that
have utilized mice with modifications in serotonin genes to assess stress-related phenotypes.
These data are placed in the context of salient pharmacological, neurochemical and
electrophysiological findings in both rats and mice and, where applicable, findings of genetic
influences from studies in humans. The review is also limited in focus to a neural circuit
connecting the serotonergic dorsal raphe nucleus to the medial prefrontal cortex (mPFC) and
amygdala, given growing evidence implicating this circuit in rodent stress-related responses
and human stress-related disease (Drevets, 2001; Ressler and Mayberg, 2007). For a discussion
of the mesencephalic tectum system as a site of serotonin's stress-related actions (see Graeff,
2004) and accompanying articles in this Special Issue. There have also been a number of
excellent recent reviews dealing with the theme of serotonin genetics and stress, and the reader
is referred to these for a complimentary perspective (Ansorge et al., 2007; Gross and Hen,
2004; Joca et al., 2007; Lucki, 1998; Maier et al., 2006; Neumeister et al., 2004a; Southwick
et al., 2005). Lastly, for a comprehensive review of the pharmacology of serotonin's stress-
related actions see Griebel, 1995; Menard and Treit, 1999; Millan, 2003.

2. Serotonin release
Serotonin is a major modulatory neurotransmitter, the actions of which are determined by
various synthesizing and catabolizing enzymes, pre- and post-synaptic receptors, and
molecules controlling intracellular trafficking and extracellular transport (Fig. 1). Serotonin
producing neurons originate in the dorsal and median raphe nuclei located in the midbrain
(Dahlstrom and Fuxe, 1964). Despite there being few serotonin neurons relative to total neuron
number in brain (Jacobs and Azmitia, 1992), the serotonin system, and particularly the dorsal
raphe nucleus (DRN), extensively innervates most of the brain including the key corticolimbic
structures involved in the regulation of stress such as the mPFC, septum, extended amygdala,
and hippocampus (Ma et al., 1991;Steinbusch, 1981). There is further topographical
organization within the DRN itself. Although the possible significance of this organization will
not be discussed here, Lowry and colleagues among others have shown that certain DRN
subregions appear to be preferentially involved in stress and anxiety (Abrams et al., 2004,
2005;Lowry, 2002;Maier and Watkins, 2005;Silva et al., 2002).

Under most waking states rodent serotonin neurons show slow, regular tonic activity (Jacobs
and Azmitia, 1992). Following exposure to stressors such as inescapable shock serotonin
neuron activity is increased, as evidenced by increased immediate-early gene expression in the
DRN (Amat et al., 2005; Grahn et al., 1999; Takase et al., 2004). A large literature also
demonstrates that extracellular fluid concentrations (ECF) of serotonin are increased in both
the vicinity of the DRN and the corticolimbic targets of the serotonin system, including the
mPFC, amygdala and hippocampus. The stressors shown to cause this increase in ECF, which
is almost certainly due to increased serotonin release, range from exposure to a predator, tail
pinch, elevated platform exposure, inescapable shock, social defeat, to restraint/immobilization
(Adell et al., 1997; Amat et al., 2001; Bland et al., 2003; Funada and Hara, 2001; Grahn et al.,
1999; Hajos-Korcsok et al., 2003; Jordan et al., 1994; Kang et al., 2005; Kawahara et al.,
1993; Keck et al., 2005; Keeney et al., 2006; Kehr et al., 2001; Kirby et al., 1995, 1997; Kirby
and Lucki, 1998; Maswood et al., 1998; Miyata et al., 2007; Mokler et al., 2007; Petty et al.,
1994; Price et al., 2002; Renard et al., 2003; Rex et al., 2005; Rueter and Jacobs, 1996; Storey
et al., 2006; Takahashi et al., 2000; Thorre et al., 1997; Yoshioka et al., 1995; Yoshitake et al.,
2004). It is important to note however that not all studies have found increases in forebrain
ECF serotonin in response to stress and there are actually some reports of stress-induced
decreases (e.g., Kirby et al., 1997; Rueter and Jacobs, 1996). The reason for these apparent
discrepancies is not clear but could be a function of the type of stressor used and other
methodological factors, as well as the brain region examined. Another possibility is that the
variability reflects genuine biological differences in the capacity for regulating stress-induced
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serotonin release that different studies are inadvertently tapping – including genetic diversity
between different strains of rat or mouse employed. Whatever the reasons, this issue intimates
from the outset the complexity of the serotonergic modulation of the central nervous system's
response to stress.

3. Serotonin synthesis
The magnitude of stress-induced serotonin release will be dependent in part on the amount of
serotonin available in the presynaptic terminal. In rodent, the synthesis of serotonin from L-
tryptophan (McGeer and McGeer, 1973) in the brain is controlled by the rate-limiting enzyme
tryptophan hydroxylase type 2 (Tph2) (Walther and Bader, 2003). Inhibition of Tph2 activity
by chemical agents such as para-chlorophenylalanine methyl ester hydrochloride (PCPA)
markedly decreases levels of serotonin (Fratta et al., 1973). PCPA-induced depletion of
serotonin blocks the antidepressant-like effects of serotonin reuptake inhibitors (SRIs) in rodent
assays for these effects, such as the forced swim test (Page et al., 1999) (for a discussion of
these tests (see Cryan and Holmes, 2005)). This is consistent with the finding that upregulation
of Tph2 mRNA levels in the DRN following chronic SRI treatment correlates with the
magnitude of the antidepressant-like response in the forced swim test (Shishkina et al., 2007).
Perhaps surprisingly however, serotonin depletion does not seem to affect the behavioral
response during exposure to stressful situations – for example, as measured by the level of
active swimming relative to passive immobility in the forced swim test. The absence of effects
on baseline stress responsivity could be due to compensatory changes within the serotonin
system following PCPA insult.

Compensatory adaptations do not however appear capable of mitigating the consequences of
genetically driven loss of Tph2 function. In the mouse, a single-nucleotide polymorphism
(SNP) has been identified in the mouse Tph2 gene that leads to a substitution of arginine to
proline at position 447 and a significant decrease in brain serotonin levels (Zhang et al.,
2004) (for genomic location of this and other mouse genes discussed in this article, see Fig.
2). The BALB/cJ and DBA/2J inbred mouse strains that carry the 1473G allele exhibit
significantly lower levels of serotonin in the frontal cortex and striatum relative to the C57BL/
6J and 129X1/SvJ strains (with 1473C) (Zhang et al., 2004) (see also Hackler et al., 2006).
Interestingly, the BALB/cJ and DBA/2J strains also tend to exhibit higher levels of anxiety-
like behavior and stress-reactivity than C57BL/6J, and BALB/cJ also show greater sensitivity
to the antidepressant-like effects of SRI's (Anisman et al., 2001; Belzung and Griebel, 2001;
Dulawa et al., 2004). The implication here is that the low functioning mouse Tph2 variant could
account for the abnormal anxiety- and stress-related phenotype of these and possibly other
mouse strains (Zhang et al., 2004). Further work will be needed to substantiate and extend this
hypothesis. For example, because Tph2-mediated serotonin synthesis is known to be regulated
by glucocorticoids in C57BL/6J (Clark et al., 2007; Clark et al., 2005) it would be of interest
to examine whether this mechanism is impaired in strains with the low-expressing SNP such
as DBA/2J and BALB/cJ (Table 1).

Whether genetic control of human TPH2 might affect human stress-related disease has
generated a lot of interest. A loss-of-function SNP (G1463A) in the human TPH2 gene has
been associated with increased incidence of depression; although it is not yet clear whether
this association extends beyond a certain subpopulation of patients (Delorme et al., 2006;
Zhang et al., 2006; Zill et al., 2004). In addition, using functional magnetic resonance imaging
(fMRI) Hariri and colleagues have recently shown that a more common SNP (G(−844)T) in
the promoter region of the TPH2 gene predicts exaggerated amygdala responses to threatening
faces (Brown et al., 2005). Finally, there is preliminary evidence that a 218A/C TPH2
polymorphism is also linked to increased rates of anxiety disorders and depressive illness
(Christiansen et al., 2007). Taken together, these data provide encouraging support for the
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notion that genetic variation in the control of serotonin synthesis, via Tph2, can affect stress-
related behaviors and the neural systems supporting these behaviors, both in mouse and in man.

Although present to some extent in the rodent DRN (Gundlah et al., 2005), the tryptophan
hydroxylase isoform Tph1 largely governs peripheral serotonin synthesis. However, even if
Tph1 did not act directly in the brain (which is still not certain), the porous blood–brain barrier
in developing rodents could render the developing brain highly sensitive to the effects of
variation in Tph1 gene function during ontogeny. Intriguingly in this context, mouse dams in
which the Tph1 gene is knocked out produce offspring that exhibit gross abnormalities in brain
development, regardless of the offspring's own Tph1 genotype (Cote et al., 2007). This
demonstrates that loss of the maternal supply of peripheral serotonin can have profound
consequences for the brain. The question of whether gene variation in the human TPH1 or
mouse Tph1 gene impacts the development of corticolimbic circuits mediating stress responses
has not yet been answered, but represents an important avenue for future work. It also raises
the more general issue of how serotonin gene variation can influence stress responses by acting
during ontogeny; a critical issue that will be revisited throughout this article.

Deneris and colleagues have shown that the pheochromocytoma 12 ETS domain transcription
factor-1, Pet-1, is essential for the generation of serotonin neurons, as evidenced by the ability
of gene knockout of mouse Pet-1 to dramatically disrupt the differentiation of serotonin
neurons during embryogenesis (Hendricks et al., 2003). Adult Pet-1 knockout mice exhibit a
70% loss of serotonin neurons, an 89% decrease in serotonin tissue content in cortex and
hippocampus, and significant decrease in Tph2, serotonin transporter and Vmat2 mRNA
expression in serotonin neurons that are extant (Hendricks et al., 2003). Preliminary phenotypic
analysis of these mice demonstrated an increase in anxiety-like behavior in some of the standard
assays such as the novel open field and elevated zero-maze (for description and discussion of
these tests, see Cryan and Holmes, 2005), as well as an increase in conspecific aggression
(Hendricks et al., 2003). Pet-1 mice represent a powerful model for studying the stress-related
consequences of genetically driven lifelong loss of brain serotonin (see also Lmx1b knockout
mice (Zhao et al., 2006b)) and further data on these mice is eagerly anticipated.

4. Serotonin vesicular packaging
Following its synthesis, serotonin must be properly packaged into secretory vesicles and
transported to the presynaptic terminal prior to release. The vesicular monoamine transporter
type 2 (VMAT2) has an important role in this process (Hoffman et al., 1998). An early
indication that VMAT2 might contribute to stress-related pathology stemmed from the
serendipitous discovery that pharmacological inhibition of VMAT by reserpine treatment
produced striking depressive-like symptoms in humans (Freis, 1954). Indeed this was one of
the key findings that subsequently led to the monoamine-deficiency hypothesis of depression.

‘Reserpinization’ of rodents causes a suppression of motor activity that has been likened to a
depressive-like state, which probably reflects the combined effects of central depletion of
dopamine and norepinephrine as well as serotonin (Bourin, 1990). In addition, repeatedly
exposing rats to immobilization or forced swimming has been found to increase or decrease
VMAT2 expression (Rusnak et al., 2001; Zucker et al., 2005). Beyond these data there is still
surprisingly little investigation of VMAT2's possible role in modulating the stress response
until a recent report in a mouse model of loss of Vmat2 (Slc18a2) gene function (Fukui et al.,
2007).

Complete knockout of Slc18a2 is lethal, but mice lacking one copy of the gene are viable and
develop with significantly reduced brain serotonin (as well as dopamine and norepinephrine)
(Fon et al., 1997). Fukui et al. found that Vmat2-deficient mice exhibit normal anxiety-like

Holmes Page 4

Neurosci Biobehav Rev. Author manuscript; available in PMC 2009 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



behaviors on the standard test assays, but show an exaggerated corticosterone response to
forced swim stress and a number of behavioral abnormalities indicative of an increased
‘depression-related’ phenotype—i.e., poor escape learning in the passive avoidance test and
reduced sucrose preference (an assay for anhedonia) (Fukui et al., 2007). These mice also
showed an increased ‘depression-like’ phenotype in the forced swim test and tail suspension
tests, in a manner that was reversible by antidepressant treatment (Fukui et al., 2007). This
latter observation is noteworthy in the context of recent work by Lucki and colleagues
demonstrating that variation in the magnitude of the antidepressant-like response between two
inbred mouse strains (BALB/c, A/J) was associated with a quantitative trait locus in the
chromosomal region where Slc18a2 resides (Crowley et al., 2006) (see Fig. 2). Taken together,
these rodent data suggest that variation in human SLC18A2 could influence risk for depression
as well as antidepressant efficacy. However, although numerous SNPs have been identified in
SLC18A2 there is not yet any hard evidence linking any specific variants with these phenotypes.

5. Serotonin reuptake
Serotonin released as a result of stress will be removed from the extracellular space by the
high-affinity serotonin transporter (SERT, 5-HTT). SERT has an important role in determining
the magnitude and duration of serotonin's activity on its presynaptic and postsynaptic receptors,
because while other monoamine transporters can take up serotonin under certain conditions,
SERT is the principal active means of removing substrate from the synaptic space (Blakely et
al., 1991) and has a particularly prominent extrasynaptic role in regulating serotonin volume
transmission (Torres and Amara, 2007). SERT is best known as the initial molecular target for
the SRI class of antidepressants and anxiolytics. Precisely how SERT mediates the effects of
these drugs is less certain. The time lag between drug action and clinical efficacy alone
demonstrates that SERT blockade is not in and of itself sufficient to alleviate stress-related
symptoms and likely represents the initial stage upstream of a complex process eventually
leading to therapeutic outcome (Blier and de Montigny, 1994; Duman et al., 1997; Manji et
al., 2001).

There is evidence of reduced SERT binding in the PFC and amygdala of depressives (Oquendo
et al., 2007; Parsey et al., 2006). However, despite one study reporting no gross alteration in
SERT-mediated reuptake in the rat forebrain under acute stress (Martin et al., 2000), and
evidence of decreased DRN SERT mRNA in chronically socially stressed rats (McKittrick et
al., 2000) (cf. Arborelius et al., 2004; Vazquez et al., 2000) it is not fully clear how SERT
function is altered by stress. Notwithstanding, alterations in SERT-mediated reuptake would
be predicted to be an important mechanism by which the serotonin system can self-regulate
the amount of synaptic serotonin evoked by stress. For example, SERT upregulation could
explain why stress-induced increases in extracellular serotonin are sometimes lost with
repeated stress (Kirby and Lucki, 1998). Conversely, a failure of SERT-mediated serotonin
clearance would significantly limit regulation of ECF serotonin and thereby compromise the
dynamic capacity of the system to respond and adapt to stress. This is borne out at the genetic
level by a growing body of data from mouse and human studies.

Gene knockout of the mouse SERT gene (Slc6a4) produces loss of serotonin clearance and a
consequent increase in ECF levels of serotonin in forebrain (Mathews et al., 2004; Montanez
et al., 2003). A loss of 5-HT1A-R binding and autoreceptor function in these knockout mice
further exacerbates ECF levels for the reasons discussed below (Bouali et al., 2003; Fabre et
al., 2000; Gobbi et al., 2001; Li et al., 1999, 2000, 2004). These neurochemical changes are
associated with an increase in anxiety-like behavior in a battery of the standard test assays
(Ansorge et al., 2004; Carroll et al., 2007; Fox et al., 2007; Holmes et al., 2002a, 2003b,
2003c; Kalueff et al., 2007; Lira et al., 2003; Zhao et al., 2006a). Interestingly, transgenic
overexpression of the SERT gene produces the opposite phenotype—i.e., reduced anxiety-like
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behavior (Jennings et al., 2006). In response to exposure to a variety of stressors such as saline
injection and predator odor or low maternal care, SERT knockout or SERT-deficient mice
display an exaggerated glucocorticoid catecholamine response and in some cases an
enhancement of the anxiety-like phenotype (Adamec et al., 2006; Carola et al., 2007; Li et al.,
1999, 2004; Tjurmina et al., 2004). In terms of behavioral responses to stress, these mice exhibit
an increased ‘depression-related’ phenotype on the forced swim test, tail suspension test and
passive avoidance task (Ansorge et al., 2004; Holmes et al., 2002b; Lira et al., 2003).
Interestingly, SERT knockout mice have been found to show elevated levels of rapid eye
movement (or paradoxical) sleep; an abnormality that is also found in human depression
(Alexandre et al., 2006; Wisor et al., 2003). Finally and not surprisingly, SERT knockout mice
are insensitive to the antidepressant-like effects of drugs that principally target SERT, such as
fluoxetine, but not other monoamine transporters, such as desipramine (Holmes et al.,
2002b).

A noteworthy extension of these data is that the increased depression-related phenotype seen
in SERT knockout mice appears to be exacerbated by repeated stress exposure (Wellman et
al., 2007; Zhao et al., 2006a). In fact, in some instances the phenotype is restricted to these
repeated stress conditions and this appears to depend upon the genetic background strain onto
which the SERT knockout is crossed, as in the case of backcrossing into the relatively stress-
resilient C57BL/6 strain (Holmes et al., 2003b; Zhao et al., 2006a). One interpretation of these
findings is that consequences of loss of Slc6a4 in the mouse is determined both by the chronicity
of the stressor and by epistatic interactions with other genetic factors that can confer risk or
resilience against the effects of Slc6a4 deletion (Holmes and Hariri, 2003). In support of this
hypothesis is recent data demonstrating that stress-related interactions with SERT and brain-
derived nerve growth factor (for further discussion, see Carola et al., 2007; Ren-Patterson et
al., 2005, 2006).

The mouse Slc6a4 model finds strong parallels in the human literature. There has been
enormous interest in a common variable number tandem repeat (VNTR) polymorphism in the
promoter region of human SERT gene (SLC6A4). Of all the variants thus far identified in
serotonin genes, this polymorphism has undoubtedly been the most widely studied. The short
(s) allelic version of the polymorphism is associated with reduced SERT brain expression and
lesser serotonin reuptake in vitro (Lesch et al., 1996; Little et al., 1999). This variant is
considered a loss-of-function variant although functionality is contingent upon additional
sources of variation in the SLC6A4 (Zalsman et al., 2006). Without reiterating a literature that
has been exhaustively covered elsewhere (for reviews and meta-analyses (see Anguelova et
al., 2003b; Lotrich and Pollock, 2004; Rees et al., 1997; Serretti et al., 2007b), individuals
carrying the s allele have been found to be at moderately increased risk for anxiety disorders
and depression, and to respond unfavorably to antidepressant drugs. Moreover, reminiscent of
the stress-related phenotype observed in the SERT knockout mouse, the risk for major
depression in individuals carrying the s allele is particularly pronounced, and perhaps even
limited to, cases in which there is a history of exposure to traumatic life events (for discussion,
see Caspi and Moffitt, 2006; Hariri and Holmes, 2006; Uher and McGuffin, 2007). Finally, as
in SERT knockout mice, human s allele carriers also have significantly reduced 5-HT1A-R
binding in brain (David et al., 2005) (cf. Lee et al., 2005).

Recent studies, both in rodent and human, provide some insight into the corticolimbic locus
of the stress-related phenotype associated with loss of SERT gene function. SERT knockout
mice display increased spine density in the basolateral nucleus of the amygdala and elongation
of neuronal dendrites in the mPFC (Wellman et al., 2007). In humans, Hariri and colleagues
first demonstrated that exposure to threatening faces, a stimulus that reliably engages the
amygdala in humans, produces a relatively greater amygdala response in s allele carriers than
long (l) allele carriers, as measured by fMRI (Hariri et al., 2002; Munafo et al., 2007).
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Subsequent studies found that this amygdala hyperactivity is related to a functional
‘uncoupling’ between the circuit connecting the amygdala with the anterior cingulate region
of the PFC (Heinz et al., 2005; Pezawas et al., 2005). These data support a model in which loss
of SERT gene function leads to a possible failure of cortical systems to exert sufficient
inhibitory control over the amygdala during stressful situations, thereby catalyzing the
development of chronic pathological states such as depression (Hariri and Holmes, 2006;
Pezawas et al., 2005).

It is worth pointing out at his juncture that the adverse phenotypic consequences of loss of
SERT function at the genetic level in human and mouse differ from the therapeutically
beneficial (anxiolytic, antidepressant) effects of chronic treatment with SRIs (note bene—acute
SRI treatment can often produce increased anxiety in rodent and human (Griebel, 1995; Holmes
and Rodgers, 2003; Millan, 2003; Salchner and Singewald, 2002; Silva and Brandao, 2000)).
The reason for this ostensible paradox between genetic and pharmacological inactivation of
SERT is not yet understood, but one potentially crucial factor is that loss of SERT gene function
may exert its long-term phenotypic effects by acting during brain development (Ansorge et al.,
2007; Holmes et al., 2003a). A number of observations support this hypothesis. First, treating
non-mutant rats and mice with SERT-blocking SRIs such as fluoxetine during the first weeks
of life (corresponding to late pregnancy in humans) mimics the increased anxiety- and
depression-like phenotype of Slc6a4 knockout (Andersen et al., 2002; Ansorge et al., 2004,
2008; Feng et al., 2001b; Hilakivi and Hilakivi, 1987; Maciag et al., 2006a, 2006b). Second,
Alexandre and colleagues have shown that either depleting serotonin levels with PCPA or
inhibiting 5-HT1A-Rs with WAY 100635 during the first few weeks of life, both of which
presumably block some of the actions of excessive neonatal serotonin, is sufficient to rescue
some of the depression-related abnormalities in adult SERT knockout mice (Alexandre et al.,
2006).

That SERT inactivation during development can have such profound effects is perhaps not
surprising considering that serotonin is a major developmental signal (Sodhi and Sanders-Bush,
2004; Whitaker-Azmitia et al., 1996). The rodent neonatal period also corresponds to a time
of high transient expression of SERT (but not other monoamine transporters) on non-serotonin
neurons (Lebrand et al., 1998). SERT knockout mice exhibit cytoarchitectural malformations
and functional deficiencies in various sensory cortical regions that can be rescued by depleting
the excess of neonatal serotonin (via PCPA treatment) in these mice (Esaki et al., 2005; Gaspar
et al., 2003). This poses the question of whether the PFC-amygdala abnormalities resulting
from genetic variation in mouse and human SERT also have their origins in ontogeny. The
answer could have important implications for the field.

The VNTR promoter polymorphism is not the only potentially interesting variant in the human
SLC6A4 gene. An intron 2 VNTR polymorphism in SLC6A4 is also associated, albeit
inconclusively, with depression and suicide (Anguelova et al., 2003a, 2003b). Moreover, this
variant as well as a rare gain-of-function mutation (I425V), has recently been implicated in
various other psychiatric conditions with a major stress component, including autism and
obsessive compulsive disorder (Ozaki et al., 2003; Sutcliffe et al., 2005). It is likely that
additional sources of variation in SLC6A4 will be uncovered and these may also prove to
influence serotonin regulation of the stress response (Wendland et al., 2008).

6. Serotonin degradation
Serotonin cleared from the extracellular space by SERT and returned to the cell undergoes
oxidative deamination into inert metabolites by the mitochondrial enzyme monoamine oxidase
A (MAOA). The rate at which MAOA degrades serotonin is therefore another determinant of
serotonin availability (Shih et al., 1999). MAOA inhibitors were some of the first drugs to exert
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demonstrable antidepressant activity in humans (Klein and Fink, 1962). Treatment with these
drugs increases serotonin tissue levels in the rodent brain and produces an antidepressant-like
response on the forced swim and tail suspension test (Fukui et al., 2007; Holmes et al.,
2002b). On the other hand, these drugs increase anxiety-like behavior and cause a resistance
to habituation to the effects of chronic mild stress (Griebel, 1995; Holmes and Rodgers,
2003; Menard and Treit, 1999; Millan, 2003; Ward et al., 1998).

The effects of constitutive gene knockout of the mouse Maoa gene are in some ways similar
to MAOA inhibitors. Maoa knockout mice have increased ECF serotonin in the PFC and
hippocampus and display exaggerated unconditioned and conditioned fear behaviors, as well
as increased conspecific aggression (Cases et al., 1995; Dubrovina et al., 2006; Evrard et al.,
1999; Kim et al., 1997; Popova et al., 2000). However, these mice also display an attenuated
glucocorticoid response to acute and chronic stressors (Popova et al., 2006) that may relate to
the significant reduction in dorsal raphe neuron activity observed in these mice (Evrard et al.,
1999).

A very rare point mutation in the human MAOA gene causing loss of MAOA function causes
impulsive aggression in men within a Dutch family (Brunner et al., 1993). This variant is
unlikely to influence stress or emotional traits in the general population, but it does provide a
dramatic example of the consequences of loss of MAOA. A more common VNTR in the
MAOA promoter region has been linked to various social and emotional abnormalities.
Individuals carrying a lesser expressing form of this variant that were also maltreated as
children have been found to be at greater risk of developing an antisocial, violent personality,
in some but not all studies (e.g., Caspi et al., 2002; Huizinga et al., 2006; Kim-Cohen et al.,
2006). The same variant is coupled with a range of structural and functional abnormalities in
the corticolimbic system. Specifically, the low-expressing form of the variant is associated
with an augmented amygdala (and hippocampal) response and an attenuated PFC response to
threatening faces (Buckholtz et al., 2007; Meyer-Lindenberg et al., 2006). In addition, there is
a decrease in anterior cingulate, amygdala, insula, and hypothalamus grey matter volume, and
increased orbitofrontal cortex volume in these individuals (Buckholtz et al., 2007; Meyer-
Lindenberg et al., 2006).

Both at the neural and behavioral level, the phenotypic consequences of genetically driven loss
of MAOA in the mouse and human differ in certain ways to the effects of SERT gene loss.
Although both lead to an increased stress-reactivity, there is a tendency for this to manifest as
increased aggression in the case of loss of Maoa/MAOA but increased harm avoidance in the
case of Slc6a4/SLC6A4 deficiency. The reason for this distinction is likely related to the fact
that disruption of Maoa/MAOA leads to a significant increase in norepinephrine and dopamine
as well as serotonin (as demonstrated in the mouse (Cases et al., 1995))—producing a more
complex milieu of neurochemical changes during development and adulthood than would be
wrought by an increase in serotonin alone.

7. Role of 5-HT1A receptors
Serotonin released into the extracellular space acts at multiple pre-synaptic and post-synaptic
located receptors that are organized in a hugely complex pattern of regional and subcellular
distribution. For excellent overviews of serotonin receptor pharmacology and signaling
mechanisms (see Barnes and Sharp, 1999; Hoyer et al., 2002; Kroeze and Roth, 1998).

The 5-HT1A-R subserves two critical roles within the serotonin system in regards to stress—
as an autoreceptor regulating DRN neuron activity and as a postsynaptic receptor mediating
serotonin's action on corticolimbic regions including the mPFC and amygdala. Activation of
5-HT1A-R autoreceptors located on the soma and dendrites of serotonin cells (Sotelo et al.,
1990; Verge et al., 1986) inhibits DRN neuronal firing and consequent forebrain release
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(Clifford et al., 1998; Sprouse and Aghajanian, 1986). This provides an essential mechanism
by which the serotonin system can self-regulate its activity under conditions of stimulation,
such as stress exposure. This mechanism appears to be compromised by chronic stress. For
example, Lanfumey and colleagues have shown that corticosterone or chronic mild stress
desensitizes 5-HT1A-R autoreceptor control of DRN firing (via a glucocorticoid receptor-
dependent mechanism) (Froger et al., 2004; Laaris et al., 1995, 1997; Lanfumey et al., 1999)
(see also Gartside et al., 2003). Along similar lines, the loss of 5-HT1A-R autoreceptor function
caused by gene knockout of the mouse Htr1a exacerbates the increase in ECF concentrations
in the DRN resulting from mild stress exposure (Amargos-Bosch et al., 2004; Bortolozzi et
al., 2004; He et al., 2001).

Genetically driven or stress-induced loss of 5-HT1A-R auto-receptor function would prevent
some of the plastic changes that occur in the DRN with chronic stress. Maier and colleagues
have shown that rats repeatedly exposed to inescapable shock exhibit a passive behavioral
response even when escape from shock becomes available in a phenomenon termed ‘learned
helplessness’ (Seligman, 1972). Inescapable, but not escapable, stress not only activates DRN
neurons (Grahn et al., 1999; Maswood et al., 1998), but ‘sensitizes’ these neurons to subsequent
stress (Amat et al., 1998). The development or expression of this sensitization is prevented by
pharmacological stimulation of 5-HT1A-Rs in the DRN—presumably by inhibiting stress-
induced serotonin neuron activation (Maier et al., 1995).

As noted, 5-HT1A-R function plays a prominent role in mediating serotonin's postsynaptic
actions, and these receptors are densely expressed in the mPFC (Clement et al., 1996; Kia et
al., 1996b; Landry and Di Paolo, 2003; Pompeiano et al., 1992; Wright et al., 1995). Application
of selective 5-HT1A-R agonists such as 8-OH-DPAT directly into the mPFC inhibits the
spontaneous and glutamate receptor-mediated firing of the major projection neurons therein
(Araneda and Andrade, 1991; Ashby et al., 1994; Borsini et al., 1995; Cai et al., 2002).
Likewise, inhibitory actions of serotonin on these neurons is reversed by co-application of
selective 5-HT1A-R antagonists such as WAY 100635 (Cai et al., 2002; Casanovas et al.,
1999; Hajos et al., 2003; Tanaka and North, 1993).

5-HT1A-Rs can not only control serotonergic responses to stress via their actions as
autoreceptors, but can indirectly influence DRN activity via their postsynaptic actions. There
is an important projection from the mPFC back to the DRN (Peyron et al., 1998) (as well as
recently identified pathway from the subthalamic nucleus to the DRN (Temel et al., 2007)).
The glutamatergic mPFC projection synapses onto GABA interneurons that in turn negatively
regulate DRN activity (Hajos et al., 1998). Using the aforementioned learned helplessness
paradigm, Maier and colleagues have provided compelling evidence that the mPFC-DRN
pathway determines whether stress is ‘perceived’ as uncontrollable and, as a result, the extent
to which stress activates the serotonergic system. This is best illustrated by the finding that
inactivation of the PFC promotes DRN activation, forebrain serotonin release and learned
helplessness behavior in response to stress (for further discussion, see Maier et al., 2006; Maier
and Watkins, 2005). By recruiting the mPFC-DRN pathway, activation of 5-HT1A-Rs in the
mPFC causes a decrease in DRN firing and suppresses forebrain serotonin release (Celada et
al., 2001; Gartside et al., 2000; Hajos et al., 1998, 1999, 2001, 2003; Martin-Ruiz et al.,
2001; Martin-Ruiz and Ugedo, 2001; Puig et al., 2005). It is not yet certain how the activation
of (inhibitory) 5-HT1A-Rs in the mPFC can stimulate the projection to the DRN, but may stem
from their action at GABA interneurons in mPFC (Aznar et al., 2003; Santana et al., 2004).
Whatever the precise mechanism of action, intra-mPFC actions of 5-HT1A-Rs (and as
described later, other serotonin receptors) is a critical means of system-level regulation of the
serotonergic response to stress. In this regard, a loss in mPFC 5-HT1A-R binding following
stress or glucocorticoid excess (Crayton et al., 1996; Preece et al., 2004) (cf. Arborelius et al.,
2004) could significantly impact this form of regulation.
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Beyond the mPFC and DRN, 5-HT1A-Rs are present in the amygdala (Clement et al., 1996;
Pazos and Palacios, 1985). The level of 5-HT1A-R binding in basolateral nucleus of the
amygdala (BLA) is increased by maternal separation stress in rats (Vicentic et al., 2006) and
Octodon degus (Ziabreva et al., 2003). Under non-stressed conditions, application of 5-HT1A-
R agonists (e.g., 8-OH-DPAT) inhibits the excitability of neurons in the BLA, while the
inhibitory actions of 5-HT on these neurons can be prevented by 5-HT1A-R antagonist co-
application (Cheng et al., 1998; Stein et al., 2000; Wang et al., 1999). However 5-HT1A-Rs
can also suppress GABA interneuron activity in the BLA (Koyama et al., 1999, 2002), which
might account for the minimal 5-HT1A-R agonist activity in the BLA reported in some studies
(Rainnie, 1999). As such, the net effect of stress-induced release in this area of the brain critical
for anxiety and fear processing will be determined by the relative balance of 5-HT1A-R actions
on excitatory and inhibitory neurons. This ambiguity appears to manifest at the behavioral
level. Direct administration of 5-HT1A-R agonists (ipsapirone, buspirone, 8-OH-DPAT) into
the rat BLA amygdala has been shown to reduce anxiety-like behavior in some tests (e.g.,
shock-induced vocalization), increase anxiety in others (social interaction) and have no or
variable activity in others (e.g., elevated plus-maze, shock-punished conflict) (Gonzalez et al.,
1996; Griebel, 1995; Hodges et al., 1987; Menard and Treit, 1999; Millan, 2003; Schreiber
and De Vry, 1993; Zangrossi Junior and Graeff, 1994).

In addition to having a major role in controlling fear and anxiety, the amygdala also regulates
the hypothalamic–pituitary–adrenal (HPA) axis response to stress via a pathway from the main
output nucleus of the amygdala, the central nucleus, to the paraventricular nucleus of the
hypothalamus (PVN) (Swanson and Petrovich, 1998). Serotonin can influence the HPA axis
response to stress not only via the amygdala, but also via the mPFC, the hippocampus and
direct innervation from the raphe (for review, see Herman et al., 2005). Intra-amygdala (and
in some cases systemic) administration of 5-HT1A-R agonists can attenuate both the behavioral
and neuroendocrine responses to various stressors, including restraint, forced swim and
conditioned fear stimuli (Krysiak et al., 2000; Li et al., 2006; Rittenhouse et al., 1992).
Conversely, although mRNA for the receptor is not abundant in the paraventricular nucleus of
the hypothalamus (Heisler et al., 2007b), 5-HT1A-R agonists such as 8-OH-DPAT injected
directly into this structure stimulates the HPA-axis (Calogero et al., 1990, 1993; Gilbert et al.,
1988; Pan and Gilbert, 1992). A pro-HPA-axis action of 5-HT1A-Rs would be consistent with
the observation that systemic administration of the 5-HT1A-R agonist flesinoxan increased c-
Fos expression in corticotropin-releasing hormone (CRH)-labeled cells in the PVN of the
hypothalamus (as well as the central nucleus of the amygdala) (Compaan et al., 1996, 1997).

The complex and sometimes opposing actions of serotonin at 5-HT1A-R on different cell types
and multiple nodes within the DRN-mPFC-amygdala circuit might explain why 5-HT1A-R
agonists never reached their full potential as clinical anxiolytics and antidepressants (Blier and
Ward, 2003; Holmes, 2008). This complexity also suggests that genetically driven loss of 5-
HT1A-R function should have pleiotropic consequences for stress-related phenotypes. This is
indeed so in the case of gene knockout of mouse Htr1a. Adrien and colleagues have shown
that 5-HT1A-R knockout mice display a profile of increased paradoxical sleep and insensitivity
to stress-induced changes in sleep patterns (Boutrel et al., 2002) that is similar to that seen in
other mouse models of depression (Popa et al., 2006). On the other hand, 5-HT1A-R knockout
mice display a profile in the tail suspension test that is more consistent with an antidepressant-
like response, and a normal profile on the ‘differential-reinforcement-of-low-rate 36-seconds’
test for depression-related behavior (Heisler et al., 1998; Jones and Lucki, 2005; Mayorga et
al., 2001; Pattij et al., 2003). These mice are also insensitive to the antidepressant-like effects
of SRIs in the tail suspension test implying the receptor may be an important mechanism in
these effects (Knobelman et al., 2001a, 2001b; Mayorga et al., 2001).
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In terms of anxiety, 5-HT1A-R knockout mice exhibit increased spontaneous anxiety-like
behaviors on the standard exploration-based tests (Bailey and Toth, 2004; Gross et al., 2000;
Heisler et al., 1998; Parks et al., 1998; Ramboz et al., 1998; Zhuang et al., 1999). In addition,
Olivier and colleagues have demonstrated exaggerated autonomic (e.g., hyperthermia,
tachycardia) responses to acute stress exposure in these mice (Pattij et al., 2001, 2002a,
2002b) (see also Gross et al., 2000). Finally, consistent with a loss of the inhibitory actions at
5-HT1A-R's in the mPFC and the excitatory effects of 5-HT1A-Rs on the HPA-axis,
respectively, both effects are diminished by knockout of the receptor (Bruening et al., 2006;
Gross et al., 2000).

Further extending the phenotypic profile of the 5-HT1A-R knockout mouse, Gross and
colleagues have recently demonstrated that these mice have a fear bias towards environmental
cues that are ambiguous predictors of trauma and which produce little fear in non-mutant mice
(Klemenhagen et al., 2006; Tsetsenis et al., 2007). 5-HT1A-Rs are expressed on pyramidal
neurons in the hippocampus (Chalmers and Watson, 1991; Clement et al., 1996; Khawaja,
1995; Kia et al., 1996a, 1996b; Pazos and Palacios, 1985; Raurich et al., 1999; Wright et al.,
1995) where they exert an inhibitory action (Corradetti et al., 1998). 5-HT1A-R knockout mice
display signs of hippocampal hyperexcitability (Sibille et al., 2000) and Tsetsenis et al. found
that inhibition of cells within the dentate gyrus subregion of the hippocampus was sufficient
to normalize the abnormal fear bias in the knockouts (Tsetsenis et al., 2007). While the
hippocampus is not a focus of the current review, these findings are consonant with the idea
that the hippocampus works in concert with the PFC and amygdala to gate environmental
information regarding the precise stimulus features of threatening stimuli (Maren and Quirk,
2004; McHugh et al., 2007) (see also Gray and McNaughton, 1996). The data in knockout mice
identify hippocampal 5-HT1A-Rs as a mechanism subserving this process. It is worth pointing
out, therefore, that stress exposure likely impacts this mechanism via changes in 5-HT1A-R
expression and function in the hippocampus. An increase in hippocampal 5-HT1A-R binding
or mRNA is seen in rodents exposed to glucocorticoids, unpredictable stress, amygdala-
kindling, and, in some studies at least, maternal separation (Arborelius et al., 2004; Harvey et
al., 2003; Kalynchuk et al., 2006; Lopez et al., 1999; Neumaier et al., 2002; Vazquez et al.,
2000, 2002).

Both the fear-related and anxiety-like phenotypes in 5-HT1A-R knockout mice appear to have
their origins in development. The most compelling evidence of this comes from the finding
that restricting genetic loss of 5-HT1A-R to the second and third postnatal weeks was sufficient
to recapitulate the pro-anxiety-like effects of constitutive gene knockout (Gross et al., 2002).
Contrariwise, deleting the 5-HT1A-R only in adulthood had no effect on anxiety-like behavior.
Using a simple pharmacological approach, the fear-bias to ambiguity was mimicked in non-
mutant mice by treatment with a 5-HT1A-R antagonist (WAY 100635) during the third and
fourth postnatal weeks (Tsetsenis et al., 2007). These data again speak to the importance of
serotonin as a factor driving the development of the corticolimbic systems subserving the stress
response later in life (for further discussion, see Ansorge et al., 2007; Gross and Hen, 2004;
Hariri and Holmes, 2006).

The rodent data strongly support variation in the human HTR1A gene as a candidate for stress-
related disorders. A SNP (−1019C/G) in the promoter region of the human HTR1A gene is
associated with depression, suicide and panic (Huang et al., 2004; Lemonde et al., 2003). There
is also an interesting fMRI report that relatively low levels of 5-HT1A-R autoreceptor binding
in the midbrain predict increased amygdala reactivity to threatening faces (Fisher et al.,
2006), which extends positron emission tomography studies indicating lesser PFC 5-HT1A-R
binding and blunted neuroendocrine responses to the 5-HT1A-R partial agonist ipsapirone in
patients with panic disorder and depression (Lesch et al., 1992; Lopez-Figueroa et al., 2004;
Neumeister et al., 2004b; Sullivan et al., 2005). However, it was not clear in these cases whether
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this apparent loss of 5-HT1A-R was genetic in origin or a consequence of a stress phenotype.
We still await real insight into this genetic contribution of this receptor in human stress-related
disease.

8. 5-HT1B receptors
5-HT1B-Rs serve as terminal presynaptic autoreceptors regulating serotonin release and as
heteroreceptors on non-serotonin neurons (Moret and Briley, 1997; Morikawa et al., 2000).
The autoreceptor function of 5-HT1B-Rs is exemplified by the augmentation of stimulated-
increases in ECF serotonin levels in forebrain regions by pharmacological antagonism or gene
knockout of the receptor (Ase et al., 2000; de Groote et al., 2002a, 2002b; Knobelman et al.,
2001a, 2001b; Malagie et al., 2001; Trillat et al., 1997). Virus-induced overexpression of 5-
HT1B-R autoreceptors has been shown to increase basal, but attenuate stress-induced, anxiety-
like behavior in rats (Clark et al., 2002, 2004); which is generally consistent with the pro-
anxiety effects of 5-HT1B-R agonist such as CP 94,253 (Lin and Parsons, 2002; Moret and
Briley, 2000). On the other hand, normal variation in levels of 5-HT1B-R mRNA in the DRN
of the rat has also been correlated with differences in anxiety-like behaviors, such that higher
5-HT1B-R levels were associated with relatively low levels of anxiety-like behavior in various
tests (Clark et al., 2004; Kaiyala et al., 2003; Neumaier et al., 2002) (cf. Edwards et al.,
1991). However, this relationship was lost in rats that were exposed to forced swim, restraint
or shock stress, possibly due to the downregulation of 5-HT1B-Rs caused by the stress exposure
(Bolanos-Jimenez et al., 1995).

Gene knockout of mouse Htr1b is notable for the hyper-aggressive, locomotor hyperactivity
and impaired impulse control phenotype that results (Bouwknecht et al., 2001; Malleret et al.,
1999; Saudou et al., 1994; Zhuang et al., 1999). This, in and of itself, is pertinent to stress in
view of the high incidence of suicide, a form of self-directed impulsive aggression, in stress-
related disorders such as depression. 5-HT1B-R knockout mice do not exhibit any clear change
in anxiety-like behavior. However, these mice do show an exaggerated autonomic reaction to
acute stress and depressive-like enhancement of paradoxical sleep and an antidepressant-like
response in forced swim and tail suspension test that is normalized by SRI treatment or PCPA
depletion of central serotonin (Boutrel et al., 1999; Brunner et al., 1999; de Boer and Koolhaas,
2005; Dirks et al., 2001; Groenink et al., 2003; Jones and Lucki, 2005; Lopez-Rubalcava et
al., 2000; Mayorga et al., 2001; Olivier and van Oorschot, 2005; Pattij et al., 2003; Ramboz et
al., 1996; Sibille et al., 2007). On the face of it the antidepressant-like phenotype is congruent
with the antidepressant-like activity of the selective 5-HT1B-R antagonist SB-616234-A
(Dawson et al., 2006).

Providing insight into the signaling mechanisms underlying the 5-HT1B-Rs role in stress,
Svenningsson et al. recently found that the activity of p11 (also known as S100A10), an
intracellular signaling molecule which localizes 5-HT1B-R to the cell surface, is increased in
mouse brain following antidepressant treatment, and is downregulated in postmortem brain
samples from human depressives (Svenningsson et al., 2006). These authors were also able to
demonstrate that gene knockout of p11 (causing loss of 5-HT1B-R function) caused increased
‘depression-related’ behavior in mouse tail suspension and sucrose preference tests, while
transgenic overexpression of p11 produced the opposite pheno-type. The ‘pro-depressive’
phenotype of p11 knockout contrasts from the ‘antidepressant-like’ phenotype of knockout of
5-HT1B-R itself, but the reason for this is not clear.

Any link between genetic variation in the human HT1BR gene and stress is unlikely to be any
less straightforward, but the available data are meager. Perhaps most notable is that a G816C
SNP in the human HT1BR gene, which could encode for lesser 5-HT1B-R binding (Duan et

Holmes Page 12

Neurosci Biobehav Rev. Author manuscript; available in PMC 2009 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



al., 2003; Huang et al., 1999), is significantly more frequent in depression (Huang et al.,
2003).

9. 5-HT2A receptors
Although distributed in various corticolimbic regions, there is accumulating evidence that 5-
HT2A-Rs play a particularly important role in mediating serotonin's action in the mPFC during
stress. 5-HT2A-R are located on the dendrites of glutamatergic pyramidal neurons and
interneurons in the rodent mPFC (Aghajanian and Marek, 1997; Cornea-Hebert et al., 1999;
Hamada et al., 1998; Jansson et al., 2001; Miner et al., 2003; Willins et al., 1997; Xu and
Pandey, 2000). Electrophysiological studies have demonstrated that selectively stimulating 5-
HT2A-Rs (typically by co-applying a mixed 5-HT2A-R/5-HT2C-R agonist and a 5-HT2C-R
antagonist to isolate 5-HT2A-Rs) can either excite or inhibit the activity of neurons in the rat
mPFC, although an excitatory action appears to predominate under most conditions
(Aghajanian and Marek, 1997, 1999; Amargos-Bosch et al., 2007; Araneda and Andrade,
1991; Arvanov et al., 1999; Ashby et al., 1990, 1994; Liu and Aghajanian, 2008; Marek et al.,
2006; Puig et al., 2003; Zhou and Hablitz, 1999). On the basis of what appears to be an
extrasynaptic localization of 5-HT2A-Rs on mPFC neurons (Jansson et al., 2001), some authors
have proposed that the excitatory action of this receptor may be particularly prominent under
conditions of high serotonin release (Sharp et al., 2007).

There is strong evidence that 5-HT2A-Rs work in close concert with the glutamate system to
modulate mPFC activity (for reviews, see Beique et al., 2007; Celada et al., 2004). 5-HT2A-
R activation augments glutamatergic thalamic input to the mPFC, and synergizes with AMPA
and metabotropic mGluR2/3 glutamate receptors to excite mPFC neurons (Aghajanian and
Marek, 1999; Ashby et al., 1990; Beique et al., 2007; Lambe and Aghajanian, 2001; Lopez-
Gil et al., 2007; Marek et al., 2001, 2006; Martin-Ruiz et al., 2001; Muschamp et al., 2004;
Puig et al., 2003; Scruggs et al., 2000, 2003). In addition, 5-HT2A-Rs positively modulate
stress-induced release of dopamine in the mPFC (Pehek et al., 2006). As such, changes in 5-
HT2A-R function in mPFC would be expected to have a broad impact on the overall activation
of the mPFC following stress. In this context, exposure to chronic unpredictable stress, isolation
rearing or chronic corticosterone treatment have been found to increase 5-HT2A-R binding in
the mPFC (and amygdala) and alter 5-HT2-mediated head shakes (Chaouloff et al., 1994;
Izumi et al., 2002; Katagiri et al., 2001; Ossowska et al., 2001; Preece et al., 2004; Schiller et
al., 2003; Takao et al., 1997). It is difficult to posit whether this upregulation is the result of
either stress-induced elevation or diminution of serotonin in the mPFC. 5-HT2A-Rs are
atypical amongst 5-HT receptors in exhibiting desensitization and downregulation not only
following chronic agonism but also in response to chronic antagonism and serotonin depletion;
thus upregulation could potentially occur through various stress-related changes in
serotonergic neurotransmission (Blackshear et al., 1986; Blackshear and Sanders-Bush,
1982; Buckholtz et al., 1985; Conn and Sanders-Bush, 1986; Gray and Roth, 2001; Marek et
al., 2001; McKenna et al., 1989).

As already noted, pharmacological studies indicate that 5-HT2A-Rs can sometimes exert
inhibitory actions in the mPFC. This likely occurs via local γ-aminobutyric acid (GABA)ergic
interneurons that synapse onto projection neurons (Abi-Saab et al., 1999; Amargos-Bosch et
al., 2004; Blue et al., 1988; Feng et al., 2001a; Jansson et al., 2001; Martin-Ruiz et al., 2001;
Pompeiano et al., 1994; Roth et al., 1998; Santana et al., 2004; Willins et al., 1997; Zhou and
Hablitz, 1999). These inhibitory actions provide an additional mechanism by which 5-HT2A-
Rs can modulate mPFC activity and speak to the highly nuanced nature of 5-HT2A-R function
in this key brain region. Defining the physiological conditions under which inhibitory versus
excitatory actions of 5-HT2A-Rs in mPFC predominate, and how this balance is shifted by
stress and genetic variation, are major issues that are not yet answered. This balance will not
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only determine the intrinsic functionality of the mPFC but also the level of negative feedback
control over the DRN.

We discussed earlier how 5-HT1A-Rs in the mPFC control DRN activity via a subcortical
projection. Selective stimulation of PFC 5-HT2A-Rs decreases (but in some cases increases)
the activity of DRN neurons to affect a consequent change in ECF serotonin concentrations in
mPFC and other forebrain targets (Boothman et al., 2003; Bortolozzi et al., 2003; Celada et
al., 2001; Martin-Ruiz et al., 2001). As in the aforementioned 5-HT1A-R model of DRN
regulation, 5-HT2A-R-mediated excitation of the mPFC likely inhibits DRN neuronal activity
via stimulation of local GABAergic interneurons (Boothman et al., 2006; Boothman and Sharp,
2005; Liu et al., 2000). Although activation of 5-HT1A-Rs and 5-HT2A-Rs in the mPFC can
both exert an inhibitory influence on the DRN, there is evidence that co-application of agonists
for the two subtypes can nullify these subcortical effects (Amargos-Bosch et al., 2004; Araneda
and Andrade, 1991; Martin-Ruiz et al., 2001). Notwithstanding the complexity of these
interactions, the functional localization of 5-HT2A-Rs in the mPFC positions this receptor
subtype to exert a profound influence over the serotonergic response to stress.

Beyond the PFC, most amygdala nuclei show low to moderate levels of 5-HT2A-R binding
and mRNA (Pazos et al., 1985; Pompeiano et al., 1994; Wright et al., 1995). (Tangentially, 5-
HT2A-R-immunoreactive neurons in the BLA project to the mediodorsal thalamus; thereby
providing another link to the mPFC (McDonald and Mascagni, 2007).) Immunocytochemical
analyses indicate 5-HT2A-R expression on the dendrites of pyramidal neurons in the BLA,
and more intense straining on parvalbumin-containing interneurons in this area (Cornea-Hebert
et al., 1999; McDonald and Mascagni, 2007; Morilak and Ciaranello, 1993; Xu and Pandey,
2000). The presence of 5-HT2A-Rs on these GABAergic interneurons likely accounts for the
inhibitory actions of the receptor in the amygdala. These effects are inferred from the
observation that serotonin or mixed 5-HT2A-R/5-HT2C-R agonists such as DOI inhibit BLA
neuronal firing in a manner that can be mimicked by 5-HT2A-R (not 5-HT1A-R) agonists and
be blocked by GABA receptor antagonists (Rainnie, 1999; Stein et al., 2000; Stutzmann and
LeDoux, 1999).

For a number of years, a lack of agonists with specificity for 5-HT2A-Rs over 5-HT2C-Rs
meant that pharmacological dissociation of the role of these subtypes in stress-related behaviors
had to be inferred from the ability of subtype-selective antagonists to block the behavioral
effects of mixed 5-HT2A-R/5-HT2C-R agonists (e.g., DOI). This approach has shown that
systemic antagonism of 5-HT2A-Rs, but not 5-HT2C-Rs, is sufficient to block the anxiolytic-
like effects of DOI or SRIs, even though selective 5-HT2A-R antagonists such as MDL 100,907
have weak inherent anxiolytic-like activity (Griebel, 1995; Griebel et al., 1997; Kehne et al.,
1996; Millan, 2003; Mora et al., 1997; Nic Dhonnchadha et al., 2003; Ripoll et al., 2006;
Schreiber et al., 1998). Systemic treatment with selective 5-HT2A-R antagonists such as MDL
100,907 is also capable of blunting the corticosterone release and activation of CRH-positive
PVN hypothalamic neurons produced by mixed 5-HT2A-R/5-HT2C-R agonists like DOI (e.g.,
Hemrick-Luecke and Evans, 2002; Van de Kar et al., 2001).

The pharmacological data are extended by the finding that gene knockout of the mouse
Htr2a causes a decrease in anxiety-like behavior in various tasks (Weisstaub et al., 2006).
Weisstaub et al. were able to demonstrate that expressing 5-HT2A-Rs in the cortex of these
knockout mice was sufficient to normalize the anxiety-like behavior, suggesting that cortical
5-HT2A-Rs normally serve to promote anxiety-like behavior. Precisely how this relates to the
regulation of mPFC neuronal activity by 5-HT2A-Rs is not yet clear. Furthermore, although
5-HT2A-R knockout mice showed normal ‘depression-related’ behavior in the forced swim
test, and a normal HPA-axis response to this stressor (Weisstaub et al., 2006) further
examination of these mice for other stress-related behaviors would be informative. Such studies
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are encouraged by the increased PFC 5-HT2A-R binding found in depression (Meyer et al.,
1999; Yatham et al., 2000), and the antidepressant efficacy of drugs with 5-HT2A-R antagonist
properties (e.g., nefazodone, trazodone, mirtazapine) (Celada et al., 2004; Millan, 2003).

Genetic associations between stress-related disorders and variants in the human HTR2A gene,
including the more well-studied 102 T/C and Tyr452 variants, remain preliminary (Norton and
Owen, 2005; Serretti et al., 2007a). There has in fact been more interest in HTR2A gene
variation as a risk factor for psychosis given the role of the 5-HT2A-R subtype in mechanism
of action of both psychotomimetics and antipsychotics (Kroeze and Roth, 1998; Meltzer,
1999; Sanders-Bush et al., 2003). This is nonetheless potentially very salient to stress. First,
executive dysfunction is not limited to schizophrenia, and is prominent in affective disorders
such as major depression (Taylor Tavares et al., 2007). Second, 5-HT2A-Rs localized in the
mPFC have been found to be important modulators of executive functions that are known to
be impaired in affective as well as psychotic illness, such as working memory, cognitive
flexibility and impulse control (Clarke et al., 2004; Stein et al., 2007; Williams et al., 2002;
Winstanley et al., 2004). Third, exposure to stress causes dendritic retraction of mPFC
pyramidal neurons and blunts 5-HT2A-R-mediated modulation of these neurons (Liu and
Aghajanian, 2008), and produces associated deficits in PFC-mediated behaviors such as fear
extinction and attentional set-shifting (Izquierdo et al., 2006; Liston et al., 2006). Thus, loss
of 5-HT2A-R function in the mPFC could be a mechanism linking stress with some of the
cognitive and executive symptoms found in stress-related disease.

10. 5-HT2C receptors
5-HT2C-Rs are highly expressed in the mPFC and amygdala (Abramowski et al., 1995; Clemett
et al., 2000; Li et al., 2003; Lopez-Gimenez et al., 2002; Molineaux et al., 1989; Pompeiano
et al., 1994; Sharma et al., 1997; Wright et al., 1995). Pharmacological studies point to a role
for this receptor subtype in mediating serotonin's pro-anxiety effects at the level of the
amygdala. Treatment with the non-specific serotonin receptor agonist m-
chlorophenylpiperazine (mCPP) has potent anxiogenic effects in rodent and man alike
(Griebel, 1995; Menard and Treit, 1999; Millan, 2003; Murphy et al., 1986). Selective blockade
of 5-HT2C-Rs with compounds such as SB 242084, either systemically or in the amygdala, is
sufficient to prevent mCPP-induced (and in some cases, spontaneous or stress-induced) rodent
anxiety-like behavior (Campbell and Merchant, 2003; Cornelio and Nunes-de-Souza, 2007;
Graeff et al., 1996; Griebel, 1995; Hackler et al., 2007; Harada et al., 2006, 2007; Kennett et
al., 1996; Martin et al., 2002; Millan, 2003). Systemic treatment with SB 242084 also blocks
the enhancement of conditioned fear produced by acute SRI treatment (Burghardt et al.,
2004, 2007) (cf. Santos et al., 2006). The ability of SB 242084 to antagonize the anxiogenic-
like effects of mCPP were associated with a significant attenuation of neural activation in the
amygdala (as well as the hippocampus and hypothalamus, but not mPFC) (Hackler et al.,
2007). Finally, the aforementioned anxiety-like phenotype in SERT knockout mice is
associated with a significant increase in 5-HT2C-R binding density in the amygdala (Li et al.,
2003). Collectively, these findings indicate that serotonin's ability to promote anxiety is
mediated in part by actions at 5-HT2C-Rs in the amygdala. This presumably occurs by exciting
projection neurons therein, although there is surprisingly little electrophysiological verification
of such an action.

The pharmacological literature on 5-HT2C-R and stress-related behaviors has been extended
by a mouse model of gene knockout of the X-linked Htr2c gene. Gene knockout of 5-HT2C-
R leads to a decrease in anxiety-like behavior on a variety of assays (Heisler et al., 2007a).
These mice also exhibit significantly lesser DOI- or mCPP-induced activation of CRH-positive
cells in the central nucleus of the amygdala and bed nucleus of the stria terminalis, and signs
of CRH downregulation in the PVN of the hypothalamus (Heisler et al., 2007a, 2007b).
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Serotonin normally stimulates glucocorticoid release in part via an action on CRH neurons in
the PVN (Calogero et al., 1990, 1993; Fuller and Snoddy, 1980; Heisler et al., 2007b; Jorgensen
et al., 1998, 2002), but Heisler et al. showed that this effect is lost in the 5-HT2C-R knockout
mice and ablated in non-mutant mice systemically treated with the selective 5-HT2C-R
antagonist RS 102221. Whether 5-HT2C-R inactivation would also inhibit stress-induced
HPA-axis activation has not been reported; although one study showed a greater decrease in
body weight in response to acute restraint stress in aged 5-HT2C-R knockout mice (Chou-
Green et al., 2003).

5-HT2C-R knockout mice do not show abnormalities in tests for ‘depression-related’ behaviors
such as the tail suspension test. However, either 5-HT2C-R gene knockout or systemic
treatment with the selective 5-HT2C-R antagonists SB 242084 or RS 102221 has been shown
to both potentiate the antidepressant-related effects of SRIs in the tail suspension test and
augment the increases in cortical and hippocampal ECF serotonin levels produced by SRI
treatment (Cremers et al., 2004, 2007). On the other hand, systemic treatment with the novel
5-HT2C-R agonists WAY 163909, RO 600175 also exert antidepressant-like effects in a range
of rodent assays (Cryan and Lucki, 2000; Martin et al., 1998; Rosenzweig-Lipson et al.,
2007). These data have not been reconciled but they imply that the influence of genetically
driven variation in human HTR2C function on risk for depression in humans may be complex.

An interesting feature of both the rodent and human 5-HT2C-R is that the receptor undergoes
post-transcriptional RNA editing to an isoform with reduced constitutive and agonist-
stimulated signaling activity (Burns et al., 1997; Sanders-Bush et al., 2003). The BALB/cJ and
DBA/2J inbred mouse strains have been found to exhibit differences in basal rates of 5-HT2C-
R editing in the mPFC and amygdala relative to other strains such as C57BL/6J (Englander et
al., 2005; Hackler et al., 2006). Schmauss and colleagues have shown that either exposure to
swim stress in adulthood or chronic maternal separation early in development increases 5-
HT2C-R editing in the PFC of the stress-reactive BALB/cJ strain but not stress-resilient
C57BL/6J strain, and that the increase in BALB/cJ can be normalized by SRI treatment
(Bhansali et al., 2007; Englander et al., 2005). This has led to the idea that trait variation in 5-
HT2C-R editing could contribute to differences in stress reactivity in the mouse and, by
extension, increase risk for stress-related disorders in the human (Schmauss, 2003).
Intriguingly, a number of studies have found increased 5-HT2C-R editing in the mPFC of
schizophrenics and depressive suicides (Gurevich et al., 2002; Sodhi et al., 2001). There is also
preliminary evidence that structural variants in the human HTR2C gene, including a Cys23Ser
SNP, are associated with bipolar disorder and major depression (Lappalainen et al., 1999; Lerer
et al., 2001; Massat et al., 2007).

11. 5-HT3 receptors
The 5-HT3-R distinguishes itself from other members of the 5-HT receptor family by being a
ligand-gated ion channel (as opposed to a G-protein-coupled receptor) (Derkach et al., 1989)
and by being largely expressed in the rodent brain as a presynaptic heteroreceptor on non-
serotonergic neurons, including GABA interneurons in the mPFC and amygdala (Kilpatrick
et al., 1987; Morales et al., 1998; Morales and Bloom, 1997; Tecott et al., 1993). Systemic
administration of 5-HT3-R antagonists such ondansetron and tropisetron have anxiolytic-like
effects in rodent assays, although this is not always consistently seen (reviewed in Costall and
Naylor, 2004; Griebel, 1995; Millan, 2003). There are 5-HT3A-R and 5-HT3B-R subtypes of
this receptor, but despite its presence in the human amygdala (Davies et al., 1999) little is
known about the contribution of 5-HT3B-R to corticolimbic function and stress. By contrast,
the contribution of 5-HT3A-R has been demonstrated by the finding that gene knockout of
Htr3A in mouse is associated with a reduction in anxiety-like behavior on various tasks
(Bhatnagar et al., 2004b; Kelley et al., 2003). 5-HT3A-R knockout mice also show exaggerated
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amygdala-mediated conditioned fear (Bhatnagar et al., 2004b), which might reflect the reported
pro-cognitive effects of 5-HT3-R antagonists in rats (Costall and Naylor, 2004).

5-HT3A-Rs are located in the PVN of the hypothalamus (Tecott et al., 1993). 5-HT3A-R
knockout mice show an attenuated adrenocorticotropin-releasing hormone response to restraint
stress (Bhatnagar et al., 2004b; Bhatnagar and Vining, 2004) similar to the attenuated restraint
stress-induced prolactin response produced by the 5-HT3-R antagonist ondansetron in rats
(Jorgensen et al., 1992; Nonaka, 1999) (but see Jorgensen et al., 1998). By extension the
elevated levels of CRH mRNA in the central nucleus of the amygdala of 5-HT3A-R knockout
mice may be an upstream compensation for a chronically depressed HPA-axis (Bhatnagar et
al., 2004b), although it could also reflect a loss of normal GABAergic facilitation mediated by
this receptor in the amygdala (Koyama et al., 2002; Turner et al., 2004). Systemic treatment
with 5-HT3-R antagonists including ondansetron and ramosetron also inhibit CRH and restraint
stress-induced colonic propulsion (Hirata et al., 2007; Miyata et al., 1993, 1998; Yamamoto
et al., 1998). This is one reason why 5-HT3-R antagonists have garnered interest as potential
treatments for Irritable Bowel Syndrome, a condition frequently found in stress-related
conditions (Gershon, 2005).

Recent evidence indicates that SRIs and other antidepressants have 5-HT3-R antagonist
properties (Eisensamer et al., 2003, 2005). Systemic treatment with the 5-HT3-R antagonist
ondansetron can augment the antidepressant-like actions of SRIs in the forced swim and tail
suspension tests, while the 5-HT3-R agonist 1-(m-chlorophenyl)-biguanide (mCPBG) has the
opposite effect (Nakagawa et al., 1998; Redrobe and Bourin, 1997) (cf. Akagawa et al.,
1999; Millan et al., 2003). 5-HT3A-R knockout mice do not display changes in baseline
behaviors in these tests with the exception of increased ‘depression-related’ behavior in female
knockouts with repeated forced swim exposure (Bhatnagar et al., 2004a). Whether these mice
respond abnormally to antidepressants is not known.

There is emerging evidence of a link between 5-HT3-R, stress and alcohol abuse. There is a
high degree of comorbidity between stress-related disorders and alcohol abuse and ondansetron
has efficacy in the treatment of certain types of alcoholism (Johnson, 2004). In the rodent,
systemic treatment with 5-HT3 antagonists including ondansetron, tropisetron and LY-278,584
reduces stress-induced reinstatement of alcohol self-administration and reward-related place
learning (Le et al., 2006; Matsuzawa et al., 1999). 5-HT3A-R knockout mice fail to show the
normal reduction in voluntary ethanol consumption produced by 5-HT3-R antagonist
LY-278,584, but otherwise show normal baseline consumption and sensitivity to the acute
behavioral effects of ethanol (Hodge et al., 2004). A different phenotype is produced by post-
developmental transgenic overexpression of 5-HT3-R in forebrain regions including the mPFC
and amygdala (Engel et al., 1998; Harrell and Allan, 2003). These transgenic mice show
increased sensitivity to the locomotor stimulant effects of ethanol and reduced voluntary
ethanol self-administration (but normal ethanol discriminative stimulus capabilities) (Engel
and Allan, 1999; Engel et al., 1998; Shelton et al., 2004). Interestingly, this phenotype is
mimicked by exposure to chronic swim stress in certain inbred strains of mice (Boyce-Rustay
et al., 2007a, 2007b). It also similar to the ethanol-related phenotype found in SERT knockout
mice (Boyce-Rustay et al., 2006; Daws et al., 2006), which display increased 5-HT3-R binding
and mRNA levels in various brain regions, including a near 50% increase in the mPFC
(Mossner et al., 2004). Collectively, these data suggest that the 5-HT3-R might be an important
link between stress and alcohol-related behaviors, including the propensity to abuse alcohol.

Variation in the human HTR3A thus represents an attractive candidate for affective illness and
alcoholism. An allelic variant of a SNP in the human HTR3A gene, C178T, is associated with
increased 5-HT3-R expression in vitro (Niesler et al., 2001). Individuals carrying this variant
exhibit lower scores for anxiety-related traits such as harm avoidance (Melke et al., 2003) and
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reduced amygdala and PFC activity in response to threatening stimuli as measured by fMRI
(Iidaka et al., 2005). This interesting source of gene variation in the serotonin system warrants
further study.

12. 5-HT4, 5-HT5A, 5-HT6, and 5-HT7 receptors
This review has largely focused on the 5-HT1, 5-HT2 and 5-HT3 receptor classes because
other receptor subtypes have been relatively less well studied due to their recent cloning or a
lack of well-defined research tools such as subtype-selective ligands or gene mutant mice. Of
course, this does not necessarily imply that these subtypes play any less of a role in modulating
serotonin's stress-related actions. In fact there are promising leads for a number of subtypes
expressed in the DRN-mPFC-amygdala circuit.

Both 5-HT4-Rs and 5-HT5A-Rs have been shown to exert negative feedback control over the
DRN, probably via an indirect, mPFC-mediated, and a direct, autoreceptor-mediated,
mechanism respectively (Lucas et al., 2005; Lucas and Debonnel, 2002; Thomas et al.,
2006). Genetic deletion of the mouse Htr5a has minimal effect on anxiety-like behavior
(Grailhe et al., 1999). Systemic treatment with 5-HT4-R-selective doses of the agonists RS
67333 and prucalopride has demonstrated an antidepressant-like profile across a range of
assays (forced swim test, olfactory bulbectomy, chronic mild stress) in rats (Lucas et al.,
2007). Pharmacological antagonism or gene knockout of 5-HT4-R in the mouse reduces
anxiety-like behaviors, and also attenuates certain stress-induced changes in gut motility and
feeding (Compan et al., 2004; Conductier et al., 2006; Kennett et al., 1997; Smriga and Torii,
2003). These data hint at a contribution of 5-HT4-Rs to the gastrointestinal and eating-related
symptoms that are prominent in stress-related disorders.

Pharmacological antagonism of 5-HT6-R produces cognitive improvement in conjunction with
anxiolytic-like and antidepressant-like activity, and a blockade of certain neural, molecular
and behavioral effects of SRIs (Mitchell and Neumaier, 2005; Svenningsson et al., 2007;
Wesolowska, 2008; Wesolowska and Nikiforuk, 2007, 2008; Woolley et al., 2004). This
contrasts with the pro-anxiety effects of antisense knockdown of 5-HT6-R (Hamon et al.,
1999) and a report in abstract form that mouse Htr6 knockout leads to increased anxiety-like
behavior (Tecott et al., 1998). Finally, antagonism of 5-HT7-R, via systemic SB-258719 or
SB-269970 treatment, also produces antidepressant-like effects, and there is preliminary
evidence that this receptor is upregulated by stress (Guscott et al., 2005; Hedlund et al.,
2005; Wesolowska et al., 2006; Yau et al., 2001). Along similar lines, Htr7 knockout gene
knockout produces an antidepressant-like (and in some studies anxiolytic-like) phenotype and
decreased paradoxical sleep (Guscott et al., 2005; Hedlund et al., 2005; Hedlund and Sutcliffe,
2007).

These emerging preclinical data encourage further investigation of these various serotonin
receptor subtypes. Not surprisingly however, we still know very little about how genetic
variation in any of these receptors might affect risk for stress-related psychiatric disorders in
man.

13. Summary and concluding remarks
The large literature from preclinical studies in rodents indicates that genetically driven
functional disruption at all levels of the serotonin system – from prenatal development to
neurotransmission in the adult brain – can influence the behavioral, physiological and
neuroendocrinological response to stress. While the field is still at an early stage and there is
much yet to be clarified, advances have been made in defining the contributions of key
molecules within the serotonin system.At the risk of oversimplifying a hugely complex
literature, some of the main findings and avenues for future work can be summarized.
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It is increasingly evident that the influence of serotonin gene variation begins during ontogeny
with the developmental formation of the neural systems mediating the stress response
including, but certainly not limited to, the pathway interconnecting the DRN, mPFC and
amygdala. By acting during development, functional alterations of Pet-1, Tph1, MAOA, SERT,
and 5-HT1A-R function have all been found to produce lasting changes in rodent stress-related
phenotypes and/or the corticolimbic systems subserving the stress response. Defining the
putative developmental influence of natural gene variation in these molecules is critical for
future work. There are also good grounds for predicting that genetically driven loss of the key
molecules controlling serotonin synthesis (Tph2), packaging (VMAT2), reuptake (SERT) and
degradation (MAOA) would cause an imbalance in serotonin availability and, in doing so,
significantly limit the plasticity of the adult serotonin system's adaptation to stress.

Serotonergic neurotransmission in the DRN-mPFC-DRN pathway occurs through a myriad of
receptors with complimentary and opposing actions (see Fig. 3). Pharmacological and
electrophysiological studies in the adult brain imply that variation in 5-HT1A-R function in
the mPFC and amygdala will determine the extent of serotonin's inhibitory postsynaptic actions
in these regions, as well as mPFC-mediated negative feedback to serotonin neurons. 5-HT1A-
Rs as well as 5-HT1B-Rs, also directly regulate serotonergic neuronal firing or 5-HT release
in their capacity as presynaptic autoreceptors. Variation in 5-HT2A-R is expected to have a
major influence on serotonin's actions in the mPFC with implications not only for stress-
responsivity but also stress-induced cognitive-executive dysfunction. 5-HT2C-Rs are a critical
component of the amygdala and HPA-axis response to stress and there is already evidence that
genetic and epigenetic (e.g., mRNA editing) variation in this receptor impacts stress-related
phenotypes. The 5-HT3A-R is also distributed in the mPFC and amygdala, and this subtype
appears to have a distinct role in linking stress and alcohol-related behaviors. Of the other 14-
plus serotonin receptor subtypes, there is already data encouraging the further exploration of
the role of 5-HT4-R, 5-HT5A-R, 5-HT6-R, and 5-HT7-R in mediating serotonergic modulation
of the response to stress.

This impressive corpus of data supports the contribution of molecular nodes throughout the
serotonin system to the stress response. It is unlikely, however, that a gene variant in any one
node within this complex system would in and of itself act in isolation to promote risk for
stress-related disease. The serotonin system is by its nature modulatory and extremely plastic.
A genetic variant in one component would be expected to lead to compensatory changes at
both the molecular and system level. For example, a loss of function variant in TPH2-mediated
synthesis could be mitigated by a compensatory downregulation in SERT-mediated reuptake,
or a genetically driven increase in 5-HT2A-R drive of PFC neurons could be balanced by a
parallel increase in 5-HT1A-R inhibition on the same neurons. Likewise, the reciprocal nature
of interconnected regions within the DRN-mPFC-amygdala circuit allows for a functional
alteration in one brain region in response to an abnormal level of activity in another.

From this perspective, stress-related pathology would be expected to manifest only when the
net effect of multiple gene variants causes a system-level failure to maintain homeostasis in
the face of persistent environmental challenge (Caspi and Moffitt, 2006; Holmes and Hariri,
2003; Jabbi et al., 2007; Murphy et al., 2003). Disentangling these epistatic interactions will
be an enormous task, but there is every reason to be optimistic that major advances toward this
goal can be made in the coming years.
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Fig. 1.
Major molecular components of the serotonin system. The serotonin system is shaped during
ontogeny by various molecules including the peripheral synthesizing enzyme tryptophan
hydroxylase 1 (TPH1), the serotonin neuron precursor PET-1, the serotonin transporter (SERT)
and serotonin degrading enzyme monoamine oxidase A (MAOA), and the 5-HT1A-R receptor
subtype. Within the adult pre-synaptic neuron, serotonin is synthesized by the rate-limiting
enzyme tryptophan hydroxylase 2 (TPH2) and packaged and transported via vesicular
monoamine transporter 2 (VMAT2) to the synapse for release. Following release, extracellular
concentrations of serotonin of regulated by SERT-mediated reuptake and by pre-synaptic
autoreceptors at both terminals (5-HT1B-R) and soma (5-HT1A-R). Internalized serotonin is
deaminated by MAOA. Extracellular serotonin acts on multiple post-synaptic receptor
subtypes located synaptically, as in 5-HT1A-R, 5-HT2C-R, and 5-HT3A-R, as well as extra-
synaptically, as may be the case for 5-HT2A-R. The 5-HT4-R, 5-HT5A-R, 5-HT6-R, and 5-
HT7-R receptor subtypes are also important functional components of the system these are not
depicted here for the sake of clarity.
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Fig. 2.
Approximate genomic location of serotonin system genes implicated in stress-related
phenotypes in the murine genome. Htr1a = 5-HT1A receptor (13 58.0 centimorgans (cM)),
Htr1b = 5-HT1B receptor (9 46.0 cM), Htr2a = 5-HT2A receptor (14 41.5 cM), Htr2c = 5-
HT2C receptor (X 66.15 cM), Htr3a = 5-HT3A receptor (19 A5.3), Htr4 = 5-HT4 receptor (18
D3), Htr5a = 5-HT5A receptor (5 15.0 cM), Htr6 = 5-HT6 receptor (4 64.9 cM), Htr7 = 5-
HT7 receptor (19 33.0 cM), Maoa = monoamine oxidase A (X 5.2 cM), Slc6a4 = serotonin
transporter (11 42.0 cM), Slc18a2 = vesicular monoamine transporter 2 (19 D3), Tph1 =
tryptophan hydroxylase 1 (7 23.5 cM), Tph2 = tryptophan hydroxylase 2 (10 D2).
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Fig. 3.
Localization of 5-HT1A-R, 5-HT1B-R, 5-HT2A-R, 5-HT2C-R, and 5-HT3A-R serotonin
receptor subunits in the DRN-mPFC-amygdala circuit. These receptor subtypes exhibit a
complex and often overlapping pattern of localization within the circuit. DRN = dorsal raphe
nucleus, mPFC = medial prefrontal cortex.
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Table 1
Summary of stress-related phenotypes associated with experimentally induced mouse gene mutations and naturally
occurring variation in mouse and man

Gene Mouse gene mutation Mouse gene variant Human gene variant

Htr1a KO: increased anxiety-like behavior,
autonomic response to stress, fear bias to
ambiguity, decreased ‘depression-like’
behavior (postnatal KO mimics anxiety-
related phenotype)

– −1019C/G SNP associated with
depression and panic

Htr1b KO: locomotor hyperactivity, impulsivity
p11 KO: increased ‘depression-like’
behavior p11 overexpression: decreased
‘depression-like’ behavior

– G816C SNP associated with
depression

Htr2a KO: decreased anxiety-like behavior
(rescued by expressing 5-HT2A-R in cortex)

– 102 T/C SNP, Tyr452 SNP
preliminary association with anxiety
and depression

Htr2c KO: decreased anxiety-like behavior, HPA-
axis response to serotonin, increased
antidepressant-like response

Lesser RNA splicing in
strains with increased
anxiety-like behavior and
stress reactivity

Htr3a KO: decreased anxiety-like behavior, HPA-
axis stress response, increased conditioned
fear, depression-like behavior (females)

– C178T SNP associated with trait
anxiety, reduced prefrontal-amygdala
response to threatening faces

Htr4 KO: decreased anxiety-like behavior,
attenuated gut motility and feeding response
to stress

– –

Htr5a KO: no change in anxiety-like behavior – –

Htr6 KO: increased anxiety-like behavior – –

Htr7 KO: decreased anxiety-like behavior,
‘depression-like’ behavior

– –

Maoa KO: increased anxiety-like behavior,
conditioned fear, aggression

– Rare loss-of-function variant
associated with impulsive aggression
in Dutch family Loss-expressing
VNTR associated with antisocial
personality in maltreated children,
abnormal prefrontal-amygdala
function and structure

Pet-1 KO: increased anxiety-like behavior,
aggression

– –

Slc6a4 KO: increased anxiety-like behavior, HPA-
axis stress response, ‘depression-like’
behavior, impaired fear extinction, reduced
aggression, abnormal prefrontal-amygdala
neuronal morphology

– Low-expressing ‘s allele’ associated
with increases harm avoidance,
depression after trauma, lesser
antidepressant efficacy, abnormal
prefrontal-amygdala function and
structure

Overexpression: decreased anxiety-like
behavior

Rare I425V associated with obsessive
compulsive disorder

Slc18a2 KO: increased ‘depression-like’ behavior Slc18a2 in QTL associated
with antidepressant
efficacy

–

Tph1 KO dams bear offspring with gross brain
abnormality

– –

Tph2 – Low functioning C1473G
SNP present in strains with
increased anxiety-like
behavior and stress
reactivity

Uncommon G1463A SNP associated
with increased depression

G(-844)T SNP associated with
increased amygdala reactivity to
threatening faces 218A/C SNP
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Gene Mouse gene mutation Mouse gene variant Human gene variant

associated with increased anxiety and
depression

Htr1a = 5-HT1A receptor; Htr2a = 5-HT2A receptor; Htr2c = 5-HT2C receptor; Htr3a = 5-HT3A receptor; Htr4 = 5-HT4 receptor; Htr5a = 5-HT5A
receptor; Htr6 = 5-HT6 receptor; Htr7 = 5-HT7 receptor; KO = knockout; Maoa = monoamine oxidase A; QTL = quantitative trait locus; Slc6a4 =
serotonin transporter; Slc18a2 = vesicular monoamine transporter 2 (Vmat2); Tph1 = tryptophan hydroxylase 1; Tph2 = tryptophan hydroxylase 2.
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