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Abstract
Background—Systemic steroids have been advocated in addition to antimicrobial therapy for
severe Mycoplasma pneumoniae pneumonia. We evaluated the efficacy of clarithromycin,
dexamethasone, or combination therapy for M. pneumoniae respiratory infection.

Methods—Mice infected with M. pneumoniae were treated with clarithromycin, dexamethasone,
combined clarithromycin/dexamethasone, or placebo daily; mice were evaluated at baseline and after
1, 3, and 6 days of therapy. Outcome variables included M. pneumoniae culture; lung histopathologic
score (HPS); bronchoalveolar lavage cytokine, chemokine and growth factor concentrations.

Results—Clarithromycin monotherapy resulted in the greatest reductions in M. pneumoniae
concentrations. After 3 days of treatment, combination therapy significantly reduced lung HPS
compared with placebo, clarithromycin, and dexamethasone alone; while after 6 days of therapy,
clarithromycin alone and combination therapy significantly reduced lung HPS compared with
placebo. IL-12 p40, RANTES, MCP-1, and KC were significantly lower in mice treated with
clarithromycin alone and/or combination therapy compared with dexamethasone alone and/or
placebo; combination therapy resulted in a significantly greater reduction than clarithromycin alone
for IL-12 p40 and RANTES.

Conclusions—While monotherapy with clarithromycin had the greatest effect on reducing
concentrations of M. pneumoniae, combination therapy had the greatest effect on decreasing
cytokines and chemokines, as well as pulmonary histologic inflammation.
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Introduction
Mycoplasma pneumoniae is a common etiology of pediatric and adult community-acquired
pneumonia, causing 10−40% of cases [1] [2] [3] [4]. Treating M. pneumoniae pneumonia with
appropriate antibiotics, such as macrolides, has been found to significantly improve the course
of disease in both animal models and human investigations [5] [6] [7] [8] [9] [10] [11] [12].
Observational data in both children and adults indicate that the addition of systemic steroids
to antimicrobial therapy may improve the outcome of severe M. pneumoniae pneumonia. As
a result of this clinical observation, systemic steroids have been advocated in addition to
antibiotic therapy for severe M. pneumoniae pneumonia [13] [14] [15] [16]. Steroid therapy
has been found to be of possible benefit for the treatment of inflammation related to some
infectious diseases, such as certain types of bacterial meningitis [17] [18]. Alternatively, steroid
therapy has been shown to be of no value for other infectious diseases, such as bronchiolitis,
and may potentially be harmful [19] [20].

In addition, evidence of acute M. pneumoniae infection is found in up to 20% of acute asthma
exacerbations in adolescents and adults [21] [22] [23] [24] [25]. For more severe asthma
exacerbations, systemic steroids are given while antibiotics are not routinely administered, as
the microbiological etiology of asthma exacerbations is not frequently determined in routine
practice. Some evidence does suggest that appropriate antimicrobial therapy may be of value
in the treatment of M. pneumoniae associated exacerbations of wheezing; however, more
definitive data is needed [21] [26] [27]. Additionally, evidence suggests that macrolides may
have anti-inflammatory properties independent of their antimicrobial effect [5].

The specific and comparative effects of treatment with macrolides, systemic steroids, or the
combination of these on M. pneumoniae respiratory tract infection has not been fully
investigated. The effect of systemic steroids on infection-induced airway inflammation and
airway function is incompletely understood, in particular as related to infectious asthma. In the
present study, we investigated the effect of clarithromycin, systemic dexamethasone, and
combination clarithromycin/dexamethasone therapy on M. pneumoniae -induced airway
inflammation in a murine model. In particular, we evaluated pulmonary histopathological
inflammation, bronchoalveolar lavage (BAL) cytokine / chemokine / growth factor
concentrations, markers of airway function, and M. pneumoniae quantification during the
course of these therapies.

Materials and Methods
Organism and growth conditions

M. pneumoniae (ATCC 29342) was reconstituted in SP4 broth and subcultured after 24−48
hours in a flask containing 20 mL of SP4 media at 37°C. When the broth turned an orange hue
(approximately 72 hours), the supernatant was decanted, and 2mL of fresh SP4 broth was added
to the flask. A cell scraper was used to harvest the adherent mycoplasmas from the bottom of
the flask. This achieved an M. pneumoniae concentration in the range of 108 colony forming
units (CFU)/mL. Aliquots were stored at −80°C. All SP4 media contained nystatin (50 units/
mL) and ampicillin (1.0 mg/mL) to inhibit growth of potential contaminants.

Animals and inoculation
Mice were obtained from commercial vendors (Jackson Labs), who confirmed their
mycoplasma- and murine virus-free status. The Animal Resource Center at UT Southwestern
Medical Center performed quarterly health surveillance on sentinel mice housed in the mouse
storage room. Antibodies against mouse hepatitis virus, Sendai virus, pneumonia virus of mice,
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reo-3 virus, mouse encephalitis virus (GD-7), mouse rotavirus (EDIM), minute virus of mice,
and Mycoplasma pulmonis were analyzed for in sentinel mice. Sentinel mice were also screened
for pinworm and mites. The sentinel mice tested negative for these pathogens. Mice were
housed in filter-top cages and allowed to acclimate to their new environment for 1 week.
Isoflurane, an inhaled anesthetic, was used for inoculum sedation. Nine to 12 week-old female
BALB/c mice were intranasally inoculated once with 107 CFU of M. pneumoniae in 50 μL of
SP4 broth. All mice were housed in the same animal room and received identical daily care.
Animal guidelines were followed in accordance with the Institutional Animal Care and
Research Advisory Committee at the University of Texas Southwestern Medical Center at
Dallas.

Treatment regimen
Treatment was initiated 1 day after M. pneumoniae inoculation. Clarithromycin (25 mg/kg)
was administered subcutaneously (SQ) once daily [5]. Dexamethasone (0.5mg/kg) was
administered intraperitoneally (IP) once daily ([28] [29] [30]. For the combined therapy, mice
received clarithromycin (25 mg/kg) SQ and dexamethasone (0.5mg/kg) IP once daily.
Clarithromycin and dexamethasone were reconstituted in sterile 5% dextrose water. Placebo
groups received sterile 5% dextrose water administered SQ once daily.

Experimental Design and Sample Collection
Mice were evaluated after 1, 3, and 6 days of therapy. Samples were obtained from 7 to 10
mice per treatment group (4 groups: clarithromycin monotherapy, dexamethasone
monotherapy, combined therapy, and placebo therapy) at each time point from repeated
experiments. Mice were anesthetized with an intraperitoneal injection of 75 mg/kg ketamine
and 5 mg/kg acepromazine before cardiac puncture. Blood was centrifuged at 3,500 × g for 10
min, and the serum was stored at −80°C. BAL specimens were obtained by instilling 500 μL
of SP4 broth through a 25-gauge needle into the lungs, via the trachea, followed by aspiration
of this fluid into a syringe. Lung specimens, including the trachea, were collected and fixed
for histologic evaluation.

Culture
Twenty-five μL of undiluted BAL sample and serial 10-fold dilutions of BAL in SP4 broth
(50 μL of undiluted BAL was used for the initial dilution) were immediately cultured on SP4
agar plates at 37°C, whereas the remaining undiluted BAL sample was stored at −80°C.
Quantification was performed by counting colonies on plated specimens and expressed as
log10 CFU/mL.

Histopathology
Histopathologic score (HPS) was determined by a single pathologist who was unaware of the
treatment status of the animals from which specimens were taken. HPS was based on grading
of peribronchiolar/ bronchial infiltrate, bronchiolar/bronchial luminal exudate, perivascular
infiltrate, and parenchymal pneumonia (neutrophilic alveolar infiltrate). This HPS system
assigned values from 0 to 26 (the greater the score the greater the inflammatory changes in the
lung) [31]. In our experience, the extent of variation in HPS when the same slide is scored by
the same pathologist on multiple times has been found to be 0 to 1.

Plethysmography
Whole-body, unrestrained, nonsedated plethysmography (Buxco, Troy, NY) was used to
monitor the respiratory dynamics of mice in a quantitative manner at baseline (airway
obstruction), and after methacholine exposure (airway hyperresponsiveness). Before
methacholine exposure, mice were allowed to acclimate to the chamber and then
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plethysmography readings were recorded to establish baseline values. Next, mice were exposed
once to aerosolized methacholine (25 mg/mouse); after exposure, plethysmography readings
were recorded. Enhanced pause (Penh) is a dimensionless value that represents a function of
the ratio of peak expiratory flow to peak inspiratory flow and a function of the timing of
expiration. Penh correlates with pulmonary airflow resistance or obstruction. Penh as measured
by plethysmography has been previously validated in animal models of AHR [32] [33] [34]
[35] [36].

BAL cytokines/chemokines
Concentrations of cytokines and chemokines in BAL specimens were assessed using Multiplex
Bead Immunoassays (Bio-Rad Laboratories) in conjunction with the Luminex LabMAP
system, following the manufacturer's instructions. Assay limits of detection per Bio-Rad
Laboratories is as follows: IL-1β 0.8 pg/ml, IL-2 1.1 pg/ml, IL-4 0.5 pg/ml, IL-5 0.8 pg/ml,
IL-6 1.1 pg/ml, IL-8 0.5 pg/ml, IL-9 0.7 pg/ml, IL-10 0.9 pg/ml, IL-12p70 0.5 pg/ml, IL-13
2.1 pg/ml, IL-17 0.2 pg/ml, EOTAXIN 14.6 pg/ml, G-CSF 1.1 pg/ml, GM-CSF 4.5 pg/ml,
IFN-γ 19.3 pg/ml, MCP-1 6.7 pg/ml, MIP-1α 1.1 pg/ml, MIP-1β 1.1 pg/ml, PDGF 1.0 pg/ml,
RANTES 1.2 pg/ml, TNFα 3.0 pg/ml, VEGF 0.5 pg/ml. For statistical analysis, samples with
readings below the limit of the standard curve of the assay were assigned a value one-half that
of the lowest detectable value.

Statistics
One Way ANOVA was used to compare treatment groups at each time point, if the data were
normally distributed. In the instances where the data were not normally distributed, the
Kruskal-Wallis test was used for comparisons. If a difference was found between groups, then
a pairwise multiple comparison procedure was performed. A comparison was considered
statistically significant if the p value was ≤ 0.05.

Results
Culture

Quantitative M. pneumoniae BAL cultures in mice treated with clarithromycin alone were
significantly reduced compared with mice treated with placebo after 3 days of therapy; while
after 6 days of therapy, M. pneumoniae cultures in mice treated with clarithromycin alone and
combined therapy were both significantly reduced compared with mice treated with placebo
or dexamethasone alone (Figure 1).

Lung histopathology
Lung HPS in mice treated with combined therapy was significantly reduced after 3 days
compared with placebo, clarithromycin alone, and dexamethasone alone (Figure 2). After 6
days of therapy, HPS was significantly lower with clarithromycin monotherapy and with
combined therapy compared with the placebo treated mice; in addition, combined therapy
significantly reduced HPS compared with dexamethasone alone (Figure 2). Figure 3
demonstrates the histopathologic appearance of representative lungs after three days of therapy
for all treatment groups.

Plethysmography
For airway obstruction, as measured by baseline plethysmography prior to methacholine
exposure, there were no significant differences found between the treatment groups. Airway
hyperresponsiveness, as measured post methacholine exposure, was significantly lower after
3 days of therapy in all treatment groups compared with placebo (Figure 4).
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Cytokines / chemokines / growth factors
BAL concentrations of IL-12 p40, RANTES, MCP-1, and KC were significantly lower in mice
treated with clarithromycin monotherapy and/or combined therapy compared with mice treated
with dexamethasone alone and/or placebo, as depicted in Figure 5. No significant differences
were found for the other 21 cytokines / chemokines / growth factors investigated.

Discussion
M. pneumoniae is generally associated with mild to moderate community-acquired
pneumoniae that is self-limited and/or responds well to appropriate antimicrobial therapy.
However, M. pneumoniae pneumonia may also be severe with accompanying acute respiratory
failure that may not respond promptly to appropriate antimicrobial therapy [13] [14]. Severe
pulmonary injury with M. pneumoniae pneumonia has been hypothesized to be due to an
exuberant host immune response, rather than from direct microbial damage [37] [38] [39].
Immunopathogenic investigations in M. pneumoniae pneumonia animal models support this
supposition [36] [39] [40] [41] [42]. The use of systemic steroids, in addition to antimicrobial
therapy, to diminish the host response in severe M. pneumoniae pneumonia is supported by
observational case series in both children and adults [13] [14] [15] [16]. While many
observational to placebo-controlled, double blind, randomized investigations have
demonstrated the beneficial role of antimicrobial therapy for M. pneumoniae respiratory tract
infection in adults, the role of systemic steroids in the treatment of severe M. pneumoniae
respiratory illness is not well defined [9] [10] [11]. Furthermore, systemic steroids are often
proposed for the treatment of extrapulmonary manifestations of M. pneumoniae infection,
particularly central nervous system manifestations, without clear data indicating the effect of
steroid therapy on these manifestations.

In an experimental model of M. pneumoniae respiratory infection, we found that combination
therapy consisting of clarithromycin with dexamethasone significantly reduced pulmonary
histologic inflammation compared with placebo, as well as compared with clarithromycin
alone and with dexamethasone alone after 3 days of therapy. After 6 days of the therapy the
combination treatment group again had the lowest mean lung HPS; however, this was not
significantly lower than that of clarithromycin alone. This may suggest that combined therapy
is most beneficial in the early stages of inflammation or is most beneficial when lung
inflammation is greatest, as the HPS for placebo peaked after 3 days of therapy (4 days after
M. pneumoniae inoculation).

Of note, dexamethasone alone did not significantly reduce histologic pulmonary inflammation.
In contrast to our steroid monotherapy results, Chu et al. found that the administration of daily
inhaled fluticasone propionate for 5 days, beginning 2 days prior to M. pneumoniae inoculation,
significantly decreased pulmonary histologic inflammation in a mouse model [43]. Bowden et
al. found that in a Mycoplasma pulmonis chronic respiratory infection mouse model the
administration of intraperitoneal dexamethasone for 2 weeks significantly reduced the
thickness of tracheal mucosa, as a marker of tissue inflammation [28]. The differences in
experimental methodology utilized in these investigations compared with the current
investigation likely explain the differing results. Our steroid monotherapy results may be
applicable to acute untreated M. pneumoniae infection.

Microbiologically, as expected, therapies that included clarithromycin significantly reduced
quantitative M. pneumoniae cultures compared to therapies without clarithromycin.
Dexamethasone monotherapy did not increase or decrease M. pneumoniae concentrations in
the BAL. Bowden et al. compared treatment with dexamethasone to the antimicrobial agent
oxytetracycline in the chronic M. pulmonis mouse model. Their group found that
oxytetracycline significantly reduced quantitative mycoplasma cultures in lung tissue, while
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dexamethasone did not compared to placebo. In tracheal tissue, they found that both
dexamethasone and oxytetracycline significantly reduced quantitative cultures [28]. Chu et al.
found that inhaled fluticasone propionate appeared to significantly reduce lung concentrations
of M. pneumoniae compared to placebo, while not reducing BAL M. pneumoniae
concentrations [43]. As a whole, these results seem to indicate that antimicrobials with in vitro
activity against M. pneumoniae are effective in reducing concentrations of M. pneumoniae in
vivo, while steroid monotherapy does not increase concentrations of M. pneumoniae during
active infection and may actually decrease concentrations of M. pneumoniae in some instances.

In contrast to the findings for M. pneumoniae culture and pulmonary histopathology, all three
treatment regimens investigated significantly reduced methacholine airway
hyperresponsiveness compared with placebo after 3 days of treatment, without significant
differences found between the regimens. However, it must be noted that many authorities
regard the measurement of the parameter enhanced pause (Penh), as performed in this
investigation, as a limited screening of overall lung function rather than a rigorous evaluation
of pulmonary mechanics. In addition, Penh may correlate with airflow in the whole airway,
rather than solely with pulmonary airflow. Chu et al. noted that inhaled fluticasone propionate
initiated prior to M. pneumoniae infection also significantly reduced methacholine airway
hyperresponsiveness [43]. The pathogenic mechanisms involved in the reduction of airway
hyperresponsiveness may be different for clarithromycin and dexamethasone therapy, as the
effects on the other measured outcomes, especially cytokines and chemokines, did not parallel
the airway hyperresponsiveness results. Dakhama et al. previously noted distinct differences
in the in vitro adherence interactions of M. pneumoniae with cell culture after treatment with
either erythromycin or dexamethasone [44]. It also appears that clarithromycin and
dexamethasone therapy are not significantly additive or synergistic for decreasing airway
hyperresponsiveness. Speculatively, these findings may clinically translate to indicate that
macrolide therapy is as effective as steroid therapy for an asthma exacerbation due to M.
pneumoniae infection in terms of airway hyperresponsiveness. Macrolides have been
postulated to have host immunomodulating activity; however, past investigations in our
laboratory indicate that the beneficial activity of macrolides in the treatment of M.
pneumoniae respiratory infection is antimicrobial in nature, as opposed to a primary host
immunomodulation mechanism [5] [6].

The significant differences detected for IL-12 p40, RANTES, MCP-1, and KC lend insight
into the immunopathogenesis involved in M. pneumoniae respiratory disease and its treatment.
Combination therapy resulted in the greatest reductions of these cytokines and chemokines;
however, the absolute differences between combination therapy and clarithromycin alone were
minor. Dexamethasone monotherapy significantly increased RANTES and KC concentrations
compared to placebo. The significant differences noted for IL-12 p40 concentrations parallel
the pulmonary histopathologic results found with the investigated regimens, in contrast to
RANTES, MCP-1, and KC. IL-12 has been previously reported to play an important role in
the immunopathogenesis of M. pneumoniae respiratory infection with less lung disease present
in IL-12 knock out mice and more disease present with administration of exogenous IL-12
[36] [45] [46]. Conversely, the IL-12 p40, RANTES, MCP-1, and KC results did not parallel
the airway hyperresponsiveness outcomes. This may mean that other unmeasured factors are
more elemental in the pathogenesis of M. pneumoniae related airway hyperresponsiveness or
that overlapping pathways are involved in airway hyperresponsiveness that clarithromycin and
dexamethasone interact with through different mechanisms to achieve a similar outcome of
reduced airway hyperresponsiveness. These chemokines and others have been found to be
elevated and/or correlate with disease severity in mycoplasma infection [44] [6] [36] [47]
[48] [49] [50].
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In conclusion, combination therapy with clarithromycin and dexamethasone is more effective
in reducing M. pneumoniae induced pulmonary inflammation than either clarithromycin alone
or dexamethasone alone. This data lends support to the clinical observation that the addition
of systemic steroids to antimicrobials may be of value in severe M. pneumoniae pneumonia.
However, before final conclusions can be made on the role of adding steroids to antimicrobial
therapy for the treatment of M. pneumoniae pneumonia, controlled clinical investigations in
humans are necessary to determine the risks and benefits to patients, as this investigation has
the inherent limitation of being done in a murine model. Currently, antimicrobials alone remain
the primary therapy of M. pneumoniae pneumonia. Importantly, in our investigation
dexamethasone monotherapy was not found to reduce pulmonary inflammation. Of the
cytokines/chemokines evaluated, IL-12 concentrations appear to be the most closely linked
with pulmonary histologic inflammation. The possibility of treating M. pneumoniae associated
wheezing with clarithromycin without the addition of steroids should be further investigated.
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Figure 1.
Quantitative M. pneumoniae (Mp) cultures of bronchoalveolar lavage (BAL) fluid samples
from mice inoculated with Mp and treated with clarithromycin alone , dexamethasone alone,
combined therapy, or placebo for 6 days (treatment began 1 day after inoculation). Bars
represent results from seven to ten mice per treatment group at each time point from repeated
experiments. Values shown are the means ± standard deviations (error bars). *, p < 0.05
between the two specified treatment groups at the time point by One Way ANOVA followed
by pairwise multiple comparisons.
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Figure 2.
Lung histopathology score (HPS) from mice inoculated with M. pneumoniae (Mp) and treated
with clarithromycin alone, dexamethasone alone, combined therapy, or placebo for 6 days
(treatment began 1 day after inoculation). Bars represent results from seven to ten mice per
treatment group at each time point from repeated experiments. Values shown are the medians
and the 25th to 75th percentile (error bars). *, p < 0.05 between the two specified treatment
groups at the time point by Kruskal-Wallis test followed by pairwise multiple comparisons.
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Figure 3.
Comparative histopathological appearance of lungs from mice inoculated with M.
pneumoniae and treated with clarithromycin alone (A, HPS = 5), dexamethasone alone (B,
HPS = 5), combined therapy (C, HPS = 1), or placebo (D, HPS = 11) for 3 days (treatment
began 1 day after inoculation). Magnification × 20.
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Figure 4.
Airway hyperresponsiveness was assessed by whole-body plethysmography by measuring
Penh after methacholine exposure in mice inoculated with M. pneumoniae (Mp) and treated
with clarithromycin alone, dexamethasone alone, combined therapy, or placebo for 6 days
(treatment began 1 day after inoculation). Bars represent results from seven to ten mice per
treatment group at each time point from repeated experiments. Values shown are the means ±
standard deviations (error bars). *, p < 0.05 between the two specified treatment groups at the
time point by One Way ANOVA followed by pairwise multiple comparisons.
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Figure 5.
Cytokine and chemokine concentrations in bronchoalveolar lavage (BAL) fluid specimens in
mice inoculated with M. pneumoniae (Mp) and treated with clarithromycin alone,
dexamethasone alone, combined therapy, or placebo for 6 days (treatment began 1 day after
inoculation). Bars represent results from seven to ten mice per treatment group at each time
point from repeated experiments. Values shown are the medians and the 25th to 75th percentile
(error bars). *, p < 0.05 between the two specified treatment groups at the time point by Kruskal-
Wallis test followed by pairwise multiple comparisons.

TAGLIABUE et al. Page 14

J Infect Dis. Author manuscript; available in PMC 2008 October 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


