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Geometry and self-righting of turtles

Gabor Domokos'-? and Péter L. Varkonyi'*

' Department of Mechanics, Materials and Structures and 2Center for Applied Mathematics and Computational Physics,

Budapest University of Technology and Economics, Muegyetem rkp. 3, K242, Budapest 1111, Hungary

Terrestrial animals with rigid shells face imminent danger when turned upside down. A rich variety of
righting strategies of beetle and turtle species have been described, but the exact role of the shell’s geometry
in righting is so far unknown. These strategies are often based on active mechanisms, e.g. most beetles self-
right via motion of their legs or wings; flat, aquatic turtles use their muscular neck to flip back. On the other
hand, highly domed, terrestrial turtles with short limbs and necks have virtually no active control: here
shape itself may serve as a fundamental tool. Based on field data gathered on a broad spectrum of aquatic
and terrestrial turtle species we develop a geometric model of the shell. Inspired by recent mathematical
results, we demonstrate that a simple mechanical classification of the model is closely linked to the animals’
righting strategy. Specifically, we show that the exact geometry of highly domed terrestrial species is close
to optimal for self-righting, and the shell’s shape is the predominant factor of their ability to flip back. Our
study illustrates how evolution solved a far-from-trivial geometrical problem and equipped some turtles

with monostatic shells: beautiful forms, which rarely appear in nature otherwise.
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1. INTRODUCTION

The ability of self-righting is crucial for animals with hard
shells (Frantsevich & Mokrushov 1980; Faisal & Matheson
2001; Frantsevich 2004; Uhrin ez al. 2005), e.g. beetles
and turtles. It is often used as a measure of individual fitness
(Burger eral. 1998; Steyermark & Spotila 2001; Ashmore &
Janzen 2003; Freedberg er al. 2004), although it is
also influenced by the environment, e.g. temperature
(Elnitsky & Claussen 2006). Both righting behaviour
(Ashe 1970; Wassersug & Izumi-Kurotani 1993; Rivera
et al. 2004; Stancher ez al. 2006) and the evolution of shell
morphology (Rouault & Blanc 1978; Claude et al. 2003;
Myers et al. 2006) of turtles have been studied recently. An
example of their interaction is the sexual dimorphism of
species where males are often overturned during combats
(Bonnet et al. 2001; Willemsen & Hailey 2003; Mann ez al.
2006), and their shell has adapted to facilitate righting.
Here we develop a geometric shell model based on field
data to uncover systematically the connections between
righting strategies and turtle shell morphology.

Righting is always performed via a transversal roll
around the turtle’s longitudinal axis, along the perimeter
of the ‘main’ transversal cross-section at the middle of the
body. Thus, the roll’s geometry is essentially planar and
can be readily illustrated (figure 1), suggesting a planar
model: a convex, homogeneous disc rolling under gravity
on a horizontal surface. Although turtles are neither
exactly convex nor exactly homogeneous, these seem to be
plausible first approximations. The difficulty of righting
originates in the ‘potential hill’ (represented by the
unstable equilibrium at the side); the turtle has to produce
biomechanical energy to overcome this obstacle. An
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obvious question is whether a contour without this obstacle
exists; such a hypothetical shape would have just one
stable and one unstable equilibrium point and, according
to the planar model, turtles with this contour could
perform righting effortlessly. Nevertheless, one can prove
(Domokos et al. 1994) that each homogeneous, convex
disc has at least two stable equilibria (like an ellipse). This
appears to be bad news for turtles. However, as we are
about to show, the planar model proves to be an
oversimplified approach.

Although the geometry of the roll can be illustrated in
two dimensions, the mechanics is fundamentally three
dimensional: the centre of gravity G is determined not just
by the main cross-section but by the complete body. For
example, in a long, solid cylinder with ends chopped off
diagonally in opposite directions, G is off-centre from the
longitudinal axis of the cylinder, and thus the cylinder
tends to self-right. V. I. Arnold suggested (Domokos 2006)
that, in contrast to planar discs, convex, homogenous
three-dimensional objects with just one stable and one
unstable equilibrium may exist. The conjecture turned out
to be correct and led to the classification of three-
dimensional bodies with respect to the number of stable
and unstable equilibria (Varkonyi & Domokos 2006a,b).
Here we apply a simplified classification, referring only to
stable balance points (unstable ones are less relevant for
turtles). Stability class S; (=1, 2, 3,...) contains all
objects with 7 stable equilibria when resting on a horizontal
surface. Of particular interest are objects in class S; also
called monostatic (Conway & Guy 1969; Dawson &
Finbow 1999). Turtles in S; can self-right without any
effort. Monostatic bodies are rare in nature: systematic
experiments with 2000 pebbles identified no such object
(Varkonyi & Domokos 2006a). Even rarer are monostatic
bodies with two equilibria altogether (satisfying Arnold’s
above-mentioned conjecture); nevertheless, the shape of
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Figure 1. Rigid disc (representing the main transversal section
of the turtle shell) rolling on a horizontal line. The thick
dashed line denotes the orbit of the centre of gravity (G)
during rolling. The peaks/valleys of the orbit correspond to
local extrema of the potential energy, i.e. unstable/stable
equilibria of the rigid body. For convex, homogenous two-
dimensional discs, there are always at least two stable points
(Domokos et al. 1994).

some highly domed terrestrial turtles is strongly reminis-
cent of them (Varkonyi & Domokos 20065).

The goal of this paper is to identify equilibrium classes
S; of real turtles and the relation of these equilibrium
classes to righting behaviour. In particular, we are
interested in whether monostatic shell shapes exist or
not. We develop a simple geometric model of the shell, and
fit model parameters to real measured shapes. The
equilibrium class of the fitted model is numerically
determined and compared with known data about the
righting behaviour of turtles.

2. METHODS: THE GEOMETRIC SHELL MODEL
Here we summarize the construction of the shell model in
three steps (transversal, longitudinal and three-dimensional
models). We also describe the method of fitting the model
parameters to individual measured turtle shapes, and the
technique to determine the equilibrium class of the three-
dimensional model.

In the shell model (figure 2), a planar curve represents the
approximate transversal contour of the shell (zransversal
model, see figure 2a). This curve has three parameters
(figure 3): p, controlling the shape of the carapace; R,
defining the height/width ratio of the contour (or alternatively
the relative positions of the carapace and the plastron); and &,
determining the transition between plastron and carapace.

The transversal model (figure 2a) is constructed in a polar
coordinate system, with origin at the middle of the contour,
both horizontally and vertically. Height and width of the
cross-section are scaled to 2R and 2, respectively. The
contour K of the cross-section is achieved from the curves
of the plastron (P) and the carapace (C). The plastron is
approximated by a straight line given in our polar coordinate
system by

polcosa if —m2<La<7/2

P(a,R, k) = { 2.1

(not defined otherwise)

where py is a scaling factor. The shape of the carapace is first
approximated in an orthogonal u—v coordinate system by the
curve (figure 2b)

u=t(—v—po*)" (2.2)

This curve is either an ellipse (p>0) or a hyperbola (p<0).
Next, the curve is expressed in the polar coordinate system of
figure 2a by substituting

u = ¢yC sin a, (2.3)

v = —¢y[C cos o + R], (2.4)
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Figure 2. Turtle shell model. (a) Frontal view of shell
(Sugmochelys pardalis) and three-parameter transversal model
K (a, R, p, k) of main cross-section. The plastron is
approximated by straight line P (equation (2.1)). The
carapace is approximated by curve C (equations (2.2)—
(2.4)); smooth transition between plastron and carapace
achieved by merging function (equation (2.5)). (b) Carapace
shape at various values of parameter p. (¢) Longitudinal
model: schematic side- and top-view contours are circular
arcs obtained as averages from measurements; sizes are
normalized. (d) Visual comparison of digitized shell image
and model surface.

into (2.2) and solving it for C; ¢ is again a scaling factor. The
final contour K(a, R, p, k) is constructed as
K = [CY* + PYF), (2.5)
where the negative parameter 0>k> —1 determines the
roundedness of the transition between the plastron and the
carapace. The factors ¢y and py are determined numerically
from the respective constraints that the lowest point of the
final contour is at distance R and the widest points are at
distance 1 from the origin of the polar coordinate system. The
highest point of the carapace is automatically at distance R
above the origin (since the point (u, v) =(0, 0) of the curve
corresponds to (C, o) = (R, m), cf. (2.3) and (2.4)). At some
values of «, the curves P (for n/2<a<3n/2) and C (in an
interval around a=0 if p<0) are not defined. Here (2.5) is
replaced by K=C and K= P, respectively.

Contours (cf. figure 2a) of 30 turtles belonging to 17
species have been digitized and the three parameters p, R and
k of the transversal model were fitted to these contours by
considering #=1000 equidistant angles «;=2in/n (=1,
2, ..., n) in our polar coordinate system and by minimizing
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Figure 3. Main cross-sections at various parameter values. (a) Parameter p determines the shape of the carapace (R=1,
k= —0.1), (b) R determines the relative positions of the carapace and the plastron (p=0.5, k&= —0.25) and (c¢) k determines the
roundedness at the carapace—plastron transition (R=0.7, p=0.5).

the mean square radial error

_ 1 N O( 2
e_\/nZ[K<al) O(a)]?.

Here K(;) and Q(«;) denote points of the model and the
measured contour, respectively. The results of the parameter
fitting are summarized in the electronic supplementary
material, table 1. Electronic supplementary material, figure 7
compares the measured contours to optimally fitted model
contours.

The longitudinal model describing side- and top-view
contours of the shell (figure 2¢) has been constructed using
averaged data from the above-mentioned 30 individuals.
Needless to say, the circular and straight contours and the
parameter values of figure 2¢ do not represent a precise fit to
real animals. However, the mechanical behaviour is much less
sensitive to these curves than to the shape of the transversal
model: turtles always roll transversally along the perimeter of
the main cross-section. The only significant effect of the
longitudinal model is to modify the height of the centre of
gravity. Slightly modified longitudinal curves have been tested
and showed identical qualitative behaviour.

Finally, the three-dimensional model surface emerges as a
series of horizontally and vertically scaled versions of the main
transversal section, fitting the longitudinal contours (figure 2d
and electronic supplementary material, figure 8).

To determine the equilibrium class of the model at given
values of p, R and k&, the centre of gravity G of the model was
integrated numerically (due to the two planes of reflection
symmetry, only the y-coordinate of G needs to be computed).
Equilibrium points of the three-dimensional model surface
can be conveniently identified by considering the radius p
pointing from the centre of gravity G to the model surface, as
a scalar function of two coordinates, e.g. « and z (cf.
figure 2a,c). As it was shown in Domokos er al. (1994)
mechanical equilibria coincide with stationary points of
p(a, 2), i.e. points where the gradient vector [6;)/604 6p/62]
is zero. Specifically, stable equilibria occur at local minima of
p(a, 2), unstable equilibria occur at saddle points and local
maxima. All these stationary points can be readily computed
for the given, three-dimensional model surface p(«, 2) with
fitted p, R and % parameter values; the equilibrium class S; is
identified simply by counting the minima.

Our three-dimensional model leaves the rostral and caudal
ends of the shell undefined; we assume that the turtle has only
unstable equilibrium points in these domains, in accordance
with the facts that the real shells are somewhat elongated and
turtles do not tend to get stuck in head- or tail-down
positions.

(2.6)
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3. RESULTS: EQUILIBRIUM CLASSES, ENERGY
BALANCE AND RIGHTING STRATEGIES

The previously described procedure identifies the fitted
shape parameters R, p and % corresponding to any shell
and the complete algorithm to determine the equilibrium
class of any individual turtle (as given in the electronic
supplementary material, table 1). In order to analyse global
trends, we introduce simplified, lower dimensional (two
parameter and one parameter) models, trading accuracy
of individual predictions for visual and conceptual
simplicity.

As a first step we eliminate parameter k. We consider
the [R, k] projection of the [R, p, k] space (figure 4a).
Measured turtles are marked by squares; two dashed
lines 2+ (R) and &~ (R) mark the approximate upper and
lower envelopes of the data points. Figure 45 shows the
[R, p] projection of the [R,p, k] space. In addition to
marking the measured turtles, we also determined the
equilibrium class of each [R, p] point by assuming for &
the extreme values k=k1(R) and k=% (R). Dashed
lines depict the boundaries between equilibrium classes
S1, S, and S5 for both cases. As we can observe in
figure 4b, not even these extreme changes of % have
substantial influence on the borders. Few marks appear
in the ambiguous grey zone between the two sets of
boundaries; the equilibrium class of the overwhelming
majority of individual turtles is unambiguously
determined by the simplified, two-parameter [R, p]
model, yielding the following observations:

(i) although class S; is represented by a rather small
domain (small ranges both for R and p), never-
theless, tall turtles are remarkably close to S;, i.e.
they tend to be monostaric and

(i) flat turtles fall into S,, the majority of medium
turtles falls into Ss.

Next, we further simplify our model to better under-
stand global trends: strong linear correlation between the
parameters (corr{R, p)=0.73; corr(R, k)=0.64) suggests
that a one-parameter (R) model family is sufficient to
approximate the geometry. From the biological point of
view, this implies that a single, visually significant
parameter (the height/width ratio R) basically determines,
as we will see soon, the righting strategy. Figure 4c
illustrates the angular location of equilibria as R is varied in
this one-parameter model and reveals a classical pitchfork
bifurcation. This simple one-parameter model illustrates
the transition between three different types of turtles:
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Figure 4. Measured turtles and equilibrium classes. (a,b) Squares show the fitted model parameters corresponding to individual
turtles in the [R, %] and [R, p] parameter planes. Linear regression (continuous lines) reveals 2(R)=0.90R —1.01 and
A(R)=2.59R — 1.51. (a) Dashed lines 2*(R) = min(0, 2(R)+ 0.2) mark the approximate upper and lower envelope of the data
points. (b) The equilibrium class of the model was determined for each point of the parameter space [R, p] under the
assumptions of k=% (R) and =% (R); boundaries of classes S;, S, and S; are shown by dashed lines in both cases. The grey
shading between the two sets of boundaries shows regions of the [R, p] space where the equilibrium class of an individual may
depend on k. Domain ‘X’ corresponds to parameter values not compatible with the model. (¢) Angular positions « of equilibria
on the main cross-section of the turtle shell as function of R under assumptions of 2 = 2(R) and p = p(R). Equilibria in all classes
marked on main transversal cross-section by black (stable) and grey (saddle point) circles. Unstable equilibria off the main cross-
section (near head and tail) are not indicated. (d) Fitted R value and contour of some measured individuals.

(i) flat individuals tend to have two stable equilibria,
one on the plastron and one opposite, on the
carapace,

(i) as R increases, two additional stable equilibria
emerge on the back and their distance grows
monotonically, and

(iii) the additional stable equilibria vanish for high R
values, here monostatic turtles appear.

A closer look at an actual shell (figure 2d) explains why
monostatic bodies may exist in three dimensions in
contrast to two dimensions: the front and back parts of
the shell are lower than the main cross-section, thus the
centre of gravity G of a complete turtle body is closer to
the plastron than the centre of its main cross-section. The
lower position of G makes self-righting easier than
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predicted by the planar model of §1. While this simple
qualitative observation is intuitively helpful, it certainly
does not account for the quantitarive agreement between
model parameters of highly domed turtle shells and
monostatic bodies (cf. figure 4b; electronic supplementary
material, table 1).

The energy balance of righting on a horizontal surface
reveals a close relationship between the equilibrium class
and the righting strategy (for the latter, see Ashe 1970 and
Rivera er al. 2004). Non-monostatic turtles have to
overcome a primary potential barrier (primary energy
deficit Dy, figure 5a) due to the unstable equilibrium at the
turtle’s side. Additionally, secondary deficit (D) results
from shell imperfections (figure 5a). Turtles with high
energy barriers use primarily their necks for righting
(Rivera et al. 2004), thus the excess neck length N (figure 5b)
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Figure 5. Energy balance of righting. (@) Illustration of
primary (D,) and secondary (D) energy deficit of rolling
turtle due to potential energy barrier between stable
equilibria. Continuous/dashed line denotes potential energy
U of perfect/imperfect shell normalized by body size. (b)
Schematic frontal view of a righting turtle. The neck’s excess
length is defined as N=(H,— Hpyin)/Hmin, 1.e. scaled
difference between the neck’s length (H,) and the distance
(Hpin) from the neck’s base to the top of the carapace. (¢)
Primary (D,) and secondary (D;) energy deficit as functions
of R. Dy(R) is decreasing and vanishes for monostatic (R>
0.92) turtles. (d) Available biomechanical energy as function
of the excess neck length N: primary (4,) due to excess neck
length N (4,=0 for N<O0; A,(N) increasing for N>0),
secondary (A4;) due to dynamical effects, head and limb
bobbing, horizontal push by leg, etc. (¢) Energy balance
curves in the [R, N] plane. In the grey region, secondary
components (Ds, A) determine righting success. To the right
of the grey region, righting is successful even in the presence
of secondary deficits (shell irregularities). To the left, righting
is unsuccessful even if secondary available energy (from head-
bobbing, etc.) is used. Observe characteristic behaviour in the
three principal equilibrium classes: narrow grey band in S5,
wide region in S; and mixed in S3.

is the dominant factor of primary available biomechanical
energy (Ap). Additionally, secondary energy (4;) is
generated by limb- and head bobbing, ventral orientation
of the head or feet (to move centre of gravity), and nearly
horizontal pushing with the legs (using friction; Ashe
1970). The latter often results in rotation around a vertical
axis during righting efforts, helping the feet find support.

Here we perform a qualitative, theoretical analysis of the
energy balance based on two simple assumptions: D,(R)
decreases monotonically with R and vanishes for monostatic
(81) turtles (figure 5¢); A, (N ) increases monotonically with
Nif N>0and 4,=0 for N<O (figure 5d).

Energy balance curves, i.e. solutions of A,(+A4,)=
D,(+D,) can be plotted in the plane of geometric
parameters R and N (figure 5¢). Turtles represented by
points to the right of the curves stand a good chance of
righting themselves. Turtles to the left of the curves are
expected to have serious difficulty. Our assumptions lead
to the following qualitative conclusions:

(i) For flat turtles (R under approx. 0.6, figure 6a)
inside S, the curves form a narrow band, indicating
that the primary parameters R and N dominate
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Figure 6. Righting strategies. Each strategy is characterized
by the typical shape of the rolling main cross-section (grey
contours) as well as the orbit (dashed line) of the centre of
gravity G. Arrows denote key elements of righting, dashed
arrows apply in presence of secondary energy barriers.
(a) Flat turtles (R<~0.6 inside class S,, photo:
Hydromedusa tectifera): high primary energy barrier between
stable and unstable equilibria is overcome by primary
biomechanical energy resulting from vertical push with
neck. Righting fitness is determined by primary geometric
parameters (height/width ratio R, excess neck length N).
(b) Tall turtles (R> ~0.8, inside or close to monostatic
class Sy, photo: Geochelone elegans): small, secondary
energy barriers (resulting mainly from shell imperfections)
are overcome by secondary sources of biomechanical
energy: head- and foot-bobbing, push by feet. (¢) Medium
turtles (~0.6<R<0.8, inside or close to class Sz, photo:
Terrapene carolina): in the first phase of roll, secondary
barriers are overcome by dynamic (secondary) energy; in
the second phase, the primary energy barrier is overcome
by primary energy (push with neck, feet).
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righting fitness. The associated righting strategy is
based on primary energies: righting is accomplished
via a strong vertical push with the neck and lifting
the turtle sufficiently to overcome the primary
energy barrier. Most aquatic and semi-aquatic
turtles, e.g. side-necked turtles (Pleurodira), snap-
ping turtles (Chelydridae), mud turtles (Kinoster-
nidae) follow this strategy:

@i1) Tall turtles (R above approx. 0.8, figure 65) inside
or close to the monostatic class S;, usually have
shorter necks than their carapace heights, i.e. N<O0.
Thus, their R and N values are in the wide grey
zone between the curves of figure 5e, indicating
the dominance of secondary effects in righting
fitness. The associated righting strategy is based
on secondary energies: righting either starts
spontaneously (Ashe 1970) or it is accomplished
by dynamic motion of the limbs, to overcome small
shell imperfections. Subsequently, when the plas-
tron is already close to vertical and the legs reach the
surface, horizontal pushing with the legs (using
friction) produces additional moments to overcome
secondary energy barriers. This is the primary
strategy of highly domed terrestrial tortoises with
short necks and rounded cross-sections, such as
Geochelone, Stigmochelys, Astrochelys, and some
Terrapene and Testudo species.

(iii) For medium turtles (~0.6 <R < ~0.8, figure 6¢), in
or close to S3, the energy diagram shows regions of
both types: the three curves initially form a narrow
band and subsequently diverge. The associated right-
ing strategy is composed as a mixture of the previous
two: if placed on the middle of the back, the turtle
starts rolling spontaneously, assisted by dynamic
limb and head motion to overcome shell irregularities
(similar to class S;) until it reaches stable equili-
brium. From there, the successful righting strategy is
based on a vertical push with the neck (similar to class
S,), accompanied by pushing with the legs.
Many tortoises (e.g. Psammobates, many 7Testudo
and Terrapene species) belong to this group.

Due to the strong correlation between model par-
ameters, by measuring the R=height/width ratio one can
often correctly predict the righting strategy (figure 4b,d).
Quantitative analysis of the individual’s energy balance
would require more detail about the neck, the shell
imperfections and other ingredients.

4. DISCUSSION

Many factors have been identified that affect the shape of
turtles. Flat shells with sharp and smooth edges are
advantageous, respectively, for swimming (Claude ez al.
2003), and for digging (Willemsen & Hailey 2003). On
the other hand, ncreased shell height was found to offer
better protection against the snapping jaws of predators
(Pritchard 1979); it also protects from desiccation and
improves thermoregulation (Carr 1952). While these
factors indicate qualitatively that higher shells might be
of advantage, they can neither be applied for quantitative
prediction, nor do they determine the optimal height/
width ratio. Our study is much more specific: it not only
shows that there exists a narrow optimal (monostatic)
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range of the height/width ratio for self-righting in a
terrestrial environment, but also predicts the exact
optimal geometry.

The height/width ratio of highly domed species
(Geochelone elegans, Geochelone radiata) is near the
minimum for monostatic shapes (R=0.9), indicating an
optimal trade-off between self-righting ability and other
factors penalizing increased height (e.g. decreased
stability). The shape parameter p is also in the optimal
range for these species (0.8 <p<1.1). Thus, the advan-
tage of being close to monostatic not only determines the
height/width ratio, but the exact shape (e.g.
roundedness).

It would be worth exploring how other morphological
differences between aquatic and terrestrial turtles
(Acuna-Mesen 1994; Mann et al. 2006) affect their
righting fitness. Another observation of particular
interest is that bad nourishment often produces shell
imperfections (Highfield 1989; Wiesner & Iben 2003),
decreasing the chances of successful righting, according
to the presented theory.

The experiments comply with all relevant local and
institutional guidelines.
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