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Terrestrial animals with rigid shells face imminent danger when turned upside down. A rich variety of

righting strategies of beetle and turtle species have been described, but the exact role of the shell’s geometry

in righting is so far unknown. These strategies are often based on active mechanisms, e.g. most beetles self-

right via motion of their legs or wings; flat, aquatic turtles use their muscular neck to flip back. On the other

hand, highly domed, terrestrial turtles with short limbs and necks have virtually no active control: here

shape itself may serve as a fundamental tool. Based on field data gathered on a broad spectrum of aquatic

and terrestrial turtle species we develop a geometric model of the shell. Inspired by recent mathematical

results, we demonstrate that a simple mechanical classification of the model is closely linked to the animals’

righting strategy. Specifically, we show that the exact geometry of highly domed terrestrial species is close

to optimal for self-righting, and the shell’s shape is the predominant factor of their ability to flip back. Our

study illustrates how evolution solved a far-from-trivial geometrical problem and equipped some turtles

with monostatic shells: beautiful forms, which rarely appear in nature otherwise.
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1. INTRODUCTION
The ability of self-righting is crucial for animals with hard

shells (Frantsevich & Mokrushov 1980; Faisal & Matheson

2001; Frantsevich 2004; Uhrin et al. 2005), e.g. beetles

and turtles. It is often used as a measure of individual fitness

(Burger et al. 1998; Steyermark & Spotila 2001; Ashmore &

Janzen 2003; Freedberg et al. 2004), although it is

also influenced by the environment, e.g. temperature

(Elnitsky & Claussen 2006). Both righting behaviour

(Ashe 1970; Wassersug & Izumi-Kurotani 1993; Rivera

et al. 2004; Stancher et al. 2006) and the evolution of shell

morphology (Rouault & Blanc 1978; Claude et al. 2003;

Myers et al. 2006) of turtles have been studied recently. An

example of their interaction is the sexual dimorphism of

species where males are often overturned during combats

(Bonnet et al. 2001; Willemsen & Hailey 2003; Mann et al.

2006), and their shell has adapted to facilitate righting.

Here we develop a geometric shell model based on field

data to uncover systematically the connections between

righting strategies and turtle shell morphology.

Righting is always performed via a transversal roll

around the turtle’s longitudinal axis, along the perimeter

of the ‘main’ transversal cross-section at the middle of the

body. Thus, the roll’s geometry is essentially planar and

can be readily illustrated (figure 1), suggesting a planar

model: a convex, homogeneous disc rolling under gravity

on a horizontal surface. Although turtles are neither

exactly convex nor exactly homogeneous, these seem to be

plausible first approximations. The difficulty of righting

originates in the ‘potential hill’ (represented by the

unstable equilibrium at the side); the turtle has to produce

biomechanical energy to overcome this obstacle. An
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obvious question is whether a contour without this obstacle

exists; such a hypothetical shape would have just one

stable and one unstable equilibrium point and, according

to the planar model, turtles with this contour could

perform righting effortlessly. Nevertheless, one can prove

(Domokos et al. 1994) that each homogeneous, convex

disc has at least two stable equilibria (like an ellipse). This

appears to be bad news for turtles. However, as we are

about to show, the planar model proves to be an

oversimplified approach.

Although the geometry of the roll can be illustrated in

two dimensions, the mechanics is fundamentally three

dimensional: the centre of gravity G is determined not just

by the main cross-section but by the complete body. For

example, in a long, solid cylinder with ends chopped off

diagonally in opposite directions, G is off-centre from the

longitudinal axis of the cylinder, and thus the cylinder

tends to self-right. V. I. Arnold suggested (Domokos 2006)

that, in contrast to planar discs, convex, homogenous

three-dimensional objects with just one stable and one

unstable equilibrium may exist. The conjecture turned out

to be correct and led to the classification of three-

dimensional bodies with respect to the number of stable

and unstable equilibria (Várkonyi & Domokos 2006a,b).

Here we apply a simplified classification, referring only to

stable balance points (unstable ones are less relevant for

turtles). Stability class Si (iZ1, 2, 3, .) contains all

objects with i stable equilibria when resting on a horizontal

surface. Of particular interest are objects in class S1 also

called monostatic (Conway & Guy 1969; Dawson &

Finbow 1999). Turtles in S1 can self-right without any

effort. Monostatic bodies are rare in nature: systematic

experiments with 2000 pebbles identified no such object

(Várkonyi & Domokos 2006a). Even rarer are monostatic

bodies with two equilibria altogether (satisfying Arnold’s

above-mentioned conjecture); nevertheless, the shape of
This journal is q 2007 The Royal Society
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Figure 1. Rigid disc (representing the main transversal section
of the turtle shell) rolling on a horizontal line. The thick
dashed line denotes the orbit of the centre of gravity (G)
during rolling. The peaks/valleys of the orbit correspond to
local extrema of the potential energy, i.e. unstable/stable
equilibria of the rigid body. For convex, homogenous two-
dimensional discs, there are always at least two stable points
(Domokos et al. 1994).
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some highly domed terrestrial turtles is strongly reminis-

cent of them (Várkonyi & Domokos 2006b).

The goal of this paper is to identify equilibrium classes

Si of real turtles and the relation of these equilibrium

classes to righting behaviour. In particular, we are

interested in whether monostatic shell shapes exist or

not. We develop a simple geometric model of the shell, and

fit model parameters to real measured shapes. The

equilibrium class of the fitted model is numerically

determined and compared with known data about the

righting behaviour of turtles.
Figure 2. Turtle shell model. (a) Frontal view of shell
(Stigmochelys pardalis) and three-parameter transversal model
K (a, R, p, k) of main cross-section. The plastron is
approximated by straight line P (equation (2.1)). The
carapace is approximated by curve C (equations (2.2)–
(2.4)); smooth transition between plastron and carapace
achieved by merging function (equation (2.5)). (b) Carapace
shape at various values of parameter p. (c) Longitudinal
model: schematic side- and top-view contours are circular
arcs obtained as averages from measurements; sizes are
normalized. (d ) Visual comparison of digitized shell image
and model surface.
2. METHODS: THE GEOMETRIC SHELL MODEL
Here we summarize the construction of the shell model in

three steps (transversal, longitudinal and three-dimensional

models). We also describe the method of fitting the model

parameters to individual measured turtle shapes, and the

technique to determine the equilibrium class of the three-

dimensional model.

In the shell model (figure 2), a planar curve represents the

approximate transversal contour of the shell (transversal

model, see figure 2a). This curve has three parameters

(figure 3): p, controlling the shape of the carapace; R,

defining the height/width ratio of the contour (or alternatively

the relative positions of the carapace and the plastron); and k,

determining the transition between plastron and carapace.

The transversal model (figure 2a) is constructed in a polar

coordinate system, with origin at the middle of the contour,

both horizontally and vertically. Height and width of the

cross-section are scaled to 2R and 2, respectively. The

contour K of the cross-section is achieved from the curves

of the plastron (P) and the carapace (C ). The plastron is

approximated by a straight line given in our polar coordinate

system by

Pða;R; kÞZ
p0=cos a if Kp=2%a%p=2

ðnot defined otherwiseÞ
;

(
ð2:1Þ

where p0 is a scaling factor. The shape of the carapace is first

approximated in an orthogonal u–v coordinate system by the

curve (figure 2b)

u ZGðKvKpv2Þ1=2: ð2:2Þ

This curve is either an ellipse ( pO0) or a hyperbola ( p!0).

Next, the curve is expressed in the polar coordinate system of

figure 2a by substituting

u Z c0C sin a; ð2:3Þ

v ZKc0½C cos aCR�; ð2:4Þ
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into (2.2) and solving it for C; c0 is again a scaling factor. The

final contour K(a, R, p, k) is constructed as

K Z ½C1=k CP1=k�k; ð2:5Þ

where the negative parameter 0OkOK1 determines the

roundedness of the transition between the plastron and the

carapace. The factors c0 and p0 are determined numerically

from the respective constraints that the lowest point of the

final contour is at distance R and the widest points are at

distance 1 from the origin of the polar coordinate system. The

highest point of the carapace is automatically at distance R

above the origin (since the point (u, v)Z(0, 0) of the curve

corresponds to (C, a)Z(R, p), cf. (2.3) and (2.4)). At some

values of a, the curves P (for p/2!a%3p/2) and C (in an

interval around aZ0 if p!0) are not defined. Here (2.5) is

replaced by KhC and KhP, respectively.

Contours (cf. figure 2a) of 30 turtles belonging to 17

species have been digitized and the three parameters p, R and

k of the transversal model were fitted to these contours by

considering nz1000 equidistant angles aiZ2ip/n (iZ1,

2, ., n) in our polar coordinate system and by minimizing
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Figure 3. Main cross-sections at various parameter values. (a) Parameter p determines the shape of the carapace (RZ1,
kZK0.1), (b) R determines the relative positions of the carapace and the plastron (pZ0.5, kZK0.25) and (c) k determines the
roundedness at the carapace–plastron transition (RZ0.7, pZ0.5).
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the mean square radial error

e Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
i

½K ðaiÞKQðaiÞ�
2

s
: ð2:6Þ

Here K(ai) and Q(ai) denote points of the model and the

measured contour, respectively. The results of the parameter

fitting are summarized in the electronic supplementary

material, table 1. Electronic supplementary material, figure 7

compares the measured contours to optimally fitted model

contours.

The longitudinal model describing side- and top-view

contours of the shell (figure 2c) has been constructed using

averaged data from the above-mentioned 30 individuals.

Needless to say, the circular and straight contours and the

parameter values of figure 2c do not represent a precise fit to

real animals. However, the mechanical behaviour is much less

sensitive to these curves than to the shape of the transversal

model: turtles always roll transversally along the perimeter of

the main cross-section. The only significant effect of the

longitudinal model is to modify the height of the centre of

gravity. Slightly modified longitudinal curves have been tested

and showed identical qualitative behaviour.

Finally, the three-dimensional model surface emerges as a

series of horizontally and vertically scaled versions of the main

transversal section, fitting the longitudinal contours (figure 2d

and electronic supplementary material, figure 8).

To determine the equilibrium class of the model at given

values of p, R and k, the centre of gravity G of the model was

integrated numerically (due to the two planes of reflection

symmetry, only the y-coordinate of G needs to be computed).

Equilibrium points of the three-dimensional model surface

can be conveniently identified by considering the radius r

pointing from the centre of gravity G to the model surface, as

a scalar function of two coordinates, e.g. a and z (cf.

figure 2a,c). As it was shown in Domokos et al. (1994)

mechanical equilibria coincide with stationary points of

r(a, z), i.e. points where the gradient vector vr=va vr=vz
� �

is zero. Specifically, stable equilibria occur at local minima of

r(a, z), unstable equilibria occur at saddle points and local

maxima. All these stationary points can be readily computed

for the given, three-dimensional model surface r(a, z) with

fitted p, R and k parameter values; the equilibrium class Si is

identified simply by counting the minima.

Our three-dimensional model leaves the rostral and caudal

ends of the shell undefined; we assume that the turtle has only

unstable equilibrium points in these domains, in accordance

with the facts that the real shells are somewhat elongated and

turtles do not tend to get stuck in head- or tail-down

positions.
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3. RESULTS: EQUILIBRIUM CLASSES, ENERGY

BALANCE AND RIGHTING STRATEGIES

The previously described procedure identifies the fitted

shape parameters R, p and k corresponding to any shell

and the complete algorithm to determine the equilibrium

class of any individual turtle (as given in the electronic

supplementary material, table 1). In order to analyse global

trends, we introduce simplified, lower dimensional (two

parameter and one parameter) models, trading accuracy

of individual predictions for visual and conceptual

simplicity.

As a first step we eliminate parameter k. We consider

the [R, k] projection of the [R, p, k] space (figure 4a).

Measured turtles are marked by squares; two dashed

lines kC(R) and kK(R) mark the approximate upper and

lower envelopes of the data points. Figure 4b shows the

[R, p] projection of the [R, p, k] space. In addition to

marking the measured turtles, we also determined the

equilibrium class of each [R, p] point by assuming for k

the extreme values kZkC(R) and kZkK(R). Dashed

lines depict the boundaries between equilibrium classes

S1, S2 and S3 for both cases. As we can observe in

figure 4b, not even these extreme changes of k have

substantial influence on the borders. Few marks appear

in the ambiguous grey zone between the two sets of

boundaries; the equilibrium class of the overwhelming

majority of individual turtles is unambiguously

determined by the simplified, two-parameter [R, p]

model, yielding the following observations:

(i) although class S1 is represented by a rather small

domain (small ranges both for R and p), never-

theless, tall turtles are remarkably close to S1, i.e.

they tend to be monostatic and

(ii) flat turtles fall into S2, the majority of medium

turtles falls into S3.

Next, we further simplify our model to better under-

stand global trends: strong linear correlation between the

parameters (corrhR, piZ0.73; corrhR, kiZ0.64) suggests

that a one-parameter (R) model family is sufficient to

approximate the geometry. From the biological point of

view, this implies that a single, visually significant

parameter (the height/width ratio R) basically determines,

as we will see soon, the righting strategy. Figure 4c

illustrates the angular location of equilibria as R is varied in

this one-parameter model and reveals a classical pitchfork

bifurcation. This simple one-parameter model illustrates

the transition between three different types of turtles:
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Figure 4. Measured turtles and equilibrium classes. (a,b) Squares show the fitted model parameters corresponding to individual
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section (near head and tail) are not indicated. (d ) Fitted R value and contour of some measured individuals.
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(i) flat individuals tend to have two stable equilibria,

one on the plastron and one opposite, on the

carapace,

(ii) as R increases, two additional stable equilibria

emerge on the back and their distance grows

monotonically, and

(iii) the additional stable equilibria vanish for high R

values, here monostatic turtles appear.

A closer look at an actual shell (figure 2d ) explains why

monostatic bodies may exist in three dimensions in

contrast to two dimensions: the front and back parts of

the shell are lower than the main cross-section, thus the

centre of gravity G of a complete turtle body is closer to

the plastron than the centre of its main cross-section. The

lower position of G makes self-righting easier than
Proc. R. Soc. B (2008)
predicted by the planar model of §1. While this simple

qualitative observation is intuitively helpful, it certainly

does not account for the quantitative agreement between

model parameters of highly domed turtle shells and

monostatic bodies (cf. figure 4b; electronic supplementary

material, table 1).

The energy balance of righting on a horizontal surface

reveals a close relationship between the equilibrium class

and the righting strategy (for the latter, see Ashe 1970 and

Rivera et al. 2004). Non-monostatic turtles have to

overcome a primary potential barrier ( primary energy

deficit Dp, figure 5a) due to the unstable equilibrium at the

turtle’s side. Additionally, secondary deficit (Ds) results

from shell imperfections (figure 5a). Turtles with high

energy barriers use primarily their necks for righting

(Rivera et al. 2004), thus the excess neck length N (figure 5b)
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(a) Flat turtles (R!w0.6 inside class S2, photo:
Hydromedusa tectifera): high primary energy barrier between
stable and unstable equilibria is overcome by primary
biomechanical energy resulting from vertical push with
neck. Righting fitness is determined by primary geometric
parameters (height/width ratio R, excess neck length N ).
(b) Tall turtles (ROw0.8, inside or close to monostatic
class S1, photo: Geochelone elegans): small, secondary
energy barriers (resulting mainly from shell imperfections)
are overcome by secondary sources of biomechanical
energy: head- and foot-bobbing, push by feet. (c) Medium
turtles (w0.6!R!0.8, inside or close to class S3, photo:
Terrapene carolina): in the first phase of roll, secondary
barriers are overcome by dynamic (secondary) energy; in
the second phase, the primary energy barrier is overcome
by primary energy (push with neck, feet).
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is the dominant factor of primary available biomechanical

energy (Ap). Additionally, secondary energy (As) is

generated by limb- and head bobbing, ventral orientation

of the head or feet (to move centre of gravity), and nearly

horizontal pushing with the legs (using friction; Ashe

1970). The latter often results in rotation around a vertical

axis during righting efforts, helping the feet find support.

Here we perform a qualitative, theoretical analysis of the

energy balance based on two simple assumptions: Dp(R)

decreases monotonically with R and vanishes for monostatic

(S1) turtles (figure 5c); Ap(N ) increases monotonically with

N if NO0 and ApZ0 for N%0 (figure 5d ).

Energy balance curves, i.e. solutions of Ap(CAs)Z
Dp(CDs) can be plotted in the plane of geometric

parameters R and N (figure 5e). Turtles represented by

points to the right of the curves stand a good chance of

righting themselves. Turtles to the left of the curves are

expected to have serious difficulty. Our assumptions lead

to the following qualitative conclusions:

(i) For flat turtles (R under approx. 0.6, figure 6a)

inside S2, the curves form a narrow band, indicating

that the primary parameters R and N dominate
Proc. R. Soc. B (2008)
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righting fitness. The associated righting strategy is

based on primary energies: righting is accomplished

via a strong vertical push with the neck and lifting

the turtle sufficiently to overcome the primary

energy barrier. Most aquatic and semi-aquatic

turtles, e.g. side-necked turtles (Pleurodira), snap-

ping turtles (Chelydridae), mud turtles (Kinoster-

nidae) follow this strategy:

(ii) Tall turtles (R above approx. 0.8, figure 6b) inside

or close to the monostatic class S1, usually have

shorter necks than their carapace heights, i.e. N!0.

Thus, their R and N values are in the wide grey

zone between the curves of figure 5e, indicating

the dominance of secondary effects in righting

fitness. The associated righting strategy is based

on secondary energies: righting either starts

spontaneously (Ashe 1970) or it is accomplished

by dynamic motion of the limbs, to overcome small

shell imperfections. Subsequently, when the plas-

tron is already close to vertical and the legs reach the

surface, horizontal pushing with the legs (using

friction) produces additional moments to overcome

secondary energy barriers. This is the primary

strategy of highly domed terrestrial tortoises with

short necks and rounded cross-sections, such as

Geochelone, Stigmochelys, Astrochelys, and some

Terrapene and Testudo species.

(iii) For medium turtles (w0.6!R!w0.8, figure 6c), in

or close to S3, the energy diagram shows regions of

both types: the three curves initially form a narrow

band and subsequently diverge. The associated right-

ing strategy is composed as a mixture of the previous

two: if placed on the middle of the back, the turtle

starts rolling spontaneously, assisted by dynamic

limb and head motion to overcome shell irregularities

(similar to class S1) until it reaches stable equili-

brium. From there, the successful righting strategy is

basedonavertical pushwith the neck (similar to class

S2), accompanied by pushing with the legs.

Many tortoises (e.g. Psammobates, many Testudo

and Terrapene species) belong to this group.

Due to the strong correlation between model par-

ameters, by measuring the RZheight/width ratio one can

often correctly predict the righting strategy (figure 4b,d ).

Quantitative analysis of the individual’s energy balance

would require more detail about the neck, the shell

imperfections and other ingredients.
4. DISCUSSION
Many factors have been identified that affect the shape of

turtles. Flat shells with sharp and smooth edges are

advantageous, respectively, for swimming (Claude et al.

2003), and for digging (Willemsen & Hailey 2003). On

the other hand, increased shell height was found to offer

better protection against the snapping jaws of predators

(Pritchard 1979); it also protects from desiccation and

improves thermoregulation (Carr 1952). While these

factors indicate qualitatively that higher shells might be

of advantage, they can neither be applied for quantitative

prediction, nor do they determine the optimal height/

width ratio. Our study is much more specific: it not only

shows that there exists a narrow optimal (monostatic)
Proc. R. Soc. B (2008)
range of the height/width ratio for self-righting in a

terrestrial environment, but also predicts the exact

optimal geometry.

The height/width ratio of highly domed species

(Geochelone elegans, Geochelone radiata) is near the

minimum for monostatic shapes (Rz0.9), indicating an

optimal trade-off between self-righting ability and other

factors penalizing increased height (e.g. decreased

stability). The shape parameter p is also in the optimal

range for these species (0.8!p!1.1). Thus, the advan-

tage of being close to monostatic not only determines the

height/width ratio, but the exact shape (e.g.

roundedness).

It would be worth exploring how other morphological

differences between aquatic and terrestrial turtles

(Acuna-Mesen 1994; Mann et al. 2006) affect their

righting fitness. Another observation of particular

interest is that bad nourishment often produces shell

imperfections (Highfield 1989; Wiesner & Iben 2003),

decreasing the chances of successful righting, according

to the presented theory.

The experiments comply with all relevant local and
institutional guidelines.
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