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Mature retinal pigment epithelium cells are retained in the cell
cycle and proliferate in vivo
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Purpose: To investigate the capacity of mature retinal pigment epithelium (RPE) cells to enter the cell cycle in vivo using
arange of RPE-specific and proliferative specific markers in both pigmented and albino rats.

Methods: Whole-mounted retinas of both Dark Agouti and albino rats were immunolabeled with cell cycle markers Ki67
or PCNA and double labeled with RPE cell marker RPE65 or CRALBP. The number and distribution of these cells was
mapped. An additional group of Dark Agouti rats were given repeated intraperitoneal injections of Bromodeoxyuridine
(BrdU )for 20 days and then sacrificed 30 days later. The retinas were then processed for BrdU detection and Otx, a RPE
cell-specific marker. For comparison, human RPE tissue from a postmortem donor was also labeled for Ki67.

Results: In both pigmentation phenotypes, a subpopulation of mature RPE cells in the periphery were positive for both
cell cycle markers. These cells were negative for Caspase 3, hence were not apoptotic. Ki67-positive cells were also seen
in human RPE. Further, many cells positive for BrdU were identified in similar retinal regions, confirming that RPE cells
not only enter the cell cycle but also divide, albeit at a slow cell cycle rate. There was a ten fold increase in the number
of RPE cells positive for cell cycle markers in albino (approximately 200 cells) compared to pigmented rats (approximately
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20 cells).

Conclusions: Peripheral RPE cells in rats have the capacity to enter the cell cycle and complete cellular division.

In the mature mammalian retina, cells such as neurons
[1-4] and retinal pigment epithelium (RPE) [5,6] are lost with
age. While there is no evidence of cell proliferation, an ocular
stem cell population has been identified in the ciliary body
[7]. Another ocular pigmented tissue that has the latent
capacity to replicate is the RPE. The RPE is an integral part
of the retina and plays a critical role in both neural retinal
development and retinal function. The mature RPE is held in
a state of senescence by the adjacent neural retina, because
when the retina is detached, RPE cells proliferate [8]. In the
amphibian, removal of the neural retina results in RPE cell
proliferation as in mammals, but these cells then
transdifferentiate to produce a completely new functional
retina. In amphibians, the mature, but not the developing, RPE
expresses the tissue specific marker RPE65. Following retinal
removal RPE cells downregulate RPE65  while
transdifferentiating, and it is only upregulated when retinal
production is complete and transdifferentiation ceases [9].
Hence, it appears that, like the amphibian RPE, the
mammalian RPE has the capacity to proliferate but not to
transdifferentiate into the diverse cell types found in the retina.

Here we use three independent RPE cell markers, RPE65,
Cellular retinaldehyde-binding protein (CRALBP), and Otx,
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making identification of these cells unambiguous. RPE6S is a
key element in normal RPE function. It plays an important
role in the visual cycle and in vitamin A metabolism. RPE65
is also associated with retinol binding protein and 11-cis-
retinol dehydrogenase [10]. CRALBP binds to 11-cis-retinal
in the visual cycle, and its function is associated with normal
dark adaptation [11]. Otx2 is a specific marker for RPE cells
an important in their specification [12]. There is an anecdotal
evidence for cell cycle events in mature albino RPE [13].
Hence, here we examine the RPE in mature rats and human
using three independent proliferative markers, Ki67,
proliferating cell nuclear antigen (PCNA), and BrdU, to assess
the latent capacity of this tissue to proliferate while the retina
is in place. Both pigmented and albino rats are used, as during
development albino retinas are abnormally proliferative due
to the absence of L-dopa, a key cell cycle regulator and an
upstream element in melanin synthesis [14,15].

METHODS
Tissue source: Pairs of eyes were obtained from 2-month-old
Dark Agouti (DA) rats (n=14) and albino Wistar rats (n=10)
Pairs of eyes were also obtained from 1-year-old DA rats
(n=5) and albino Wistar rats (n=5). DA rats were also taken
at the following embryonic (E) and postnatal (P) days: E18
(n=3), PO (n=5), PS5 (n=4), P10 (n=5), P15 (n=6), P20 (n=5),
P25 (n=5), and P45 (n=6). Four additional rats were taken at
P90 and P150. Animals were euthanized by carbon dioxide
inhalation. When rats were collected at E18, the mother was
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euthanized by carbon dioxide inhalation and the pups
removed. The eyes from pups were enucleated and fixed in
4% paraformaldehyde overnight, and the anterior segment,
vitreous, and retina removed leaving the eye cup with the RPE
exposed. All procedures were performed under UK
Government (Home Office) and local animal ethics
committee approval.

An additional group of 18 P25 DA rats were given
intraperitoneal injections of 50 pg/kg BrdU in 0.007 NaOH/
phosphate buffered saline (PBS). This additional group was
divided into six groups of three animals each. The first group
of 3 was given a single injection and euthanized 3 h later. The
second group of animals were injected at 3 h intervals and
given a total of 4 injections before being euthanized. The third
group was given a single injection and was euthanized 12 h
later. The fourth group were given 4 injections separated by
12 h and euthanized 12 h after the last injection. The fifth
group was given 5 injections separated by 24 h in a similar
way and euthanized. The final group was injected once each
day for 20 days and then euthanized one month after the last
dose of BrdU. All animals were euthanized with carbon
dioxide and the eyecups were fixed in 4% paraformaldehyde
for 30 min. These experiments were undertaken to confirm
that cell addition was taking place and cast limited light on the
length of the cell cycle.

Healthy eyes from an 83-year-old postmortem donor
were obtained from the Eye Bank at Moorfields Eye Hospital.
Full Local Research Ethic Committee approval and
appropriate consent were obtained under The Human Tissue
Act. Consent is given prior to death or from the relatives
following death. The eyes was approximately 36 h
postmortem. The eyecups were fixed in 4% paraformaldehyde
for 30 min, and the RPE and the underlying choroid removed
as a single tissue sheet. Approximately one-third of this large
sheet was trimmed to span the equatorial to peripheral retina
so it could be used for analysis.

Tissue staining: The rat eye cups containing the RPE were
washed four times in 0.1 M PBS (pH 7.4), then blocked with
5% normal donkey serum (NDS) in 3% Triton X-100 in PBS
for 2 h. Primary antibody incubation with 1:2,000 dilution of
rabbit anti-Ki67 (Novocastra, Newcastle, UK) and 1:500
dilution of rabbit antiproliferative cell nuclear antigen
(PCNA; Abcam, Cambridge, UK) in 1% NDS in 3% Triton X
—100 in PBS was performed overnight at room temperature.
Primary analysis was undertaken on tissue stained with Ki67,
and PCNA was used in a confirmatory role. In most of the
albino Wistar rats and approximately half of the DA rats, RPE
cells were labeled with a second primary monoclonal
antibody; we used a 1:500 dilution of either mouse anti-
RPE65 (Chemicon, Hampshire, UK) or mouse anti-CRALBP
(Affinity BioReagents, Cambridge, UK). Without this second
monoclonal antibody, albino RPE was impossible to image.
Following four washes in PBS the tissue was incubated for 2
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2 hin a secondary antibody that consisted of a 1:200 dilution
of TRITC donkey antimouse and FITC donkey antirabbit
(Jackson ImmunoResearch laboratories, West Grove, PA) in
1% NDS in 0.3% Triton X-100. A 1:2,500 dilution of DAPI
in PBS was added to the tissue for one min to label the nuclei
of cells in the tissue. The eyecups were then washed
extensively in 0.05 M Tris buffer (pH 7.4), mounted flat RPE
up with Vecta shield, and examined under fluorescent
microscopy. The same protocol of labeling was used for the
RPE sheet taken from human tissue; however, only Ki67 and
not RPE65 was used. As a negative control, some RPE cups
were processed in the absence of primary antibodies.

Cell cycle proteins can be upregulated in mature cells
when they initiate caspase-related apoptosis [16,17]. To
control for this, we used caspase staining to determine if it
would colocalize with cells positive for Ki67. For this we
labeled with rabbit polyclonal anti-Caspase 3 (Abcam).
Retinas were blocked as described in the last section and
incubated overnight with a 1:500 dilution of Active Caspase
3 and 1:500 dilution of goat polyclonal anti-Ki67 (Santa Cruz
Biotechnology, Santa Cruz, CA). Following four washes in
PBS the tissue was incubated for 2 h in a 1:200 dilution of
TRITC donkey antirabbit and FITC donkey antigoat (Jackson
ImmunoResearch Laboratories,) in 1% NDS in 0.3% Triton
X-100. DAPI was added, and the tissue was washed and
flatmounted as described in the previous paragraph.

From the six rats injected with BrdU, one eye was
processed for BrdU detection and the other one was double
processed for BrdU detection and Ki67 or for BrdU and Otx.
The eyes, which were double labeled, were first incubated
overnight with either a 1:1,000 dilution of Ki67 or Otx (Santa
Cruz Biotechnology) in 1% NDS in 3% Triton X-100 in PBS.
The tissue was then incubated in the secondary antibody and
fixed in 4% paraformaldehyde for 10 min.

Antigen retrieval was necessary for detection of BrdU in
RPE cells. This was undertaken by placing the tissue in 6 M
hydrochloric acid in 1% Triton X-100 in PBS for 30 min.
Before incubation in BrdU the tissue was washed extensively
with PBS to equilibrate the tissue to a normal pH. The tissue
was then blocked with normal donkey serum for 2 h. An
overnight incubation of 1:5 dilution of BrdU in 1% NDS in
3% Triton X-100 in PBS was performed at room temperature.
Following four washes in PBS, the tissue was incubated for 2
h in a 1:200 dilution of TRITC donkey antimouse (Jackson
ImmunoResearch Laboratories) in 1% NDS in 0.3% Triton
X-100. The tissue was then washed once with PBS and
extensively with Tris buffer, mounted flat, RPE up with vector
shield, and examined under fluorescent microscope.

Analysis: The number and distribution of Ki67-positive cells
was mapped in the RPE flat mounts. The position of each cell
was marked on a composite map, created using Adobe
Photoshop CS version 8. RPE6S is a tissue-specific marker
normally expressed in all RPE cells. Hence, only the variation
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in RPE65 expression was determined in cells positive for
Ki67. When cells were positive for both Ki67 and RPE65 their
position was plotted. Tissue processed for BrdU detection was
mapped in a similar way with the relative location of BrdU
and Ki67 plotted on schematic drawings. Human tissue was
examined to see if Ki67 cells were detectable in the RPE.
Because of the relatively large size of the human RPE tissue
sheet it was necessary to process it in strips. This resulted in
a loss of relative location of the positive cells, and
consequently these were not plotted in relation to one another
or other major land marks. Here, the primary aim was only to
determine if they were present.

Many rodent RPE cells are binucleated [18]. To
determine the relative distribution of these cells in relation to
cell positive for cell cycle markers, we divided rodent RPE
into three regions of approximately equivalent areas: central,
equatorial, and peripheral. In each of these regions, three areas
were analyzed measuring 150x150 um. These were separated
by approximately 120 degrees in relation to the optic nerve
head, like three spokes of a wheel. Binucleated and
mononucleated cells were counted within the defined areas.
Cells with more than two nuclei were rarely encountered and
were not recorded for the purpose of this study.

One-way ANOVA was used to analyze the statistical
significance of Ki67 labeling in each experiment and was
followed by post hoc Newman-Keuls multiple comparison
test when appropriate.

RESULTS

RPE cells positively identified with RPE65 and CRALBP
were apparent in all rat retinas examined. These cells had a
clear hexagonal morphology. In the pigmented animals, all of
the cells were packed with melanin granules. In both
pigmented phenotypes, the size was consistent with RPE cells
in a single hexagonal matrix in a single plane (Figure 1). Some
of these cells were clearly labeled with the proliferative
marker, Ki67 (Figure 1A,D); similar cells were also labeled
with PCNA, the other proliferative marker used (Figure
1K,L). However, fewer cells were labeled with PCNA
because Ki67 labels cells in all phases of the cell cycle except
Go, while PCNA labels cells in S phase alone. Labeling with
RPE65 and CRALBP clearly defined RPE cells in both
pigmented (Figure 1) and albino rats (not shown), and
confirmed that the cells in the cell cycle were truly RPE cells.
However, some RPE cells that were Ki67 positive expressed
low levels of RPE6S, although the levels of expression were
still greater than in negative controls (Figure 1D-F).

Ki67-labeled cells were only present in equatorial and
peripheral regions (Figure 2). None were seen centrally, close
to the optic nerve head. Negative controls in which all stages
of immune processing were undertaken, except the
application of the primary antibody, failed to show any label
in the RPE in either central or peripheral locations with either
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Ki67 or PCNA. With the exception of cell numbers there were
no geographic differences in the patterns of labeling found
using either Ki67 or PCNA.

Because Ki67 labels a larger proportion of cells in the cell
cycle, analysis focused on this proliferative marker. In 2-
month-old pigmented rats the number of Ki67-positive cells
found in the RPE was relatively small, being of the order of
20-30 in each retina (Figure 2C,D). Within the regions where

Figure 1. Labeling patterns in retinal pigment epithelium (RPE)
sheets in whole mount preparations taken from DA rats. A: RPE cells
positively labeled for Ki67. These appear to be in anaphase. B: This
is the same region as shown in A, but stained with RPE65, which is
an RPE specific marker in this tissue. C: This is the same region as
shown in A and B but stained with DAPI to reveal the nuclei of the
imaged cells. D-F: These are stained in the same way as A-C,
however here the cell positive for Ki67 shown in D has down-
regulated RPE65 as shown in E. F is the corresponding DAPI stained
image. G: This shows a Ki67 positive RPE cell which has also in
H been stained with CRALBP, which is a second RPE specific
marker in this tissue. I is the same region stained with DAPI to reveal
nuclei. J shows a Ki67 positive RPE cells. Taken in black and white
the melanin granules in the cell can be clearly identified (arrow),
which along with the RPE65 and CRALBP confirm that the tissue
sheet examined is RPE. K shows an RPE cell positive for a second
cell cell cycle marker PCNA, and L shows the same image stained
with DAPI. The scale bar represents 10 um.
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they were found there was no obvious pattern in their
distribution, other than their retinal location. The number of
cells in the cell cycle in albino retinas was approximately ten
fold greater than that found in pigmented animals (Figure 2D).
In spite of this significant increase in their number, their
distribution was similar to that found in pigmented animals
(Figure 2A,B). In 1-year-old rats these numbers declined. In
1 year old DA rats these numbers declined to only 8-10 Ki67
positive cells, which was significantly less than found at 2
months of age (p<0.0001), and only around 15 in albinos,
which again was a statistically significant age related
reduction (p<0.0001). In spite of this decline, the numbers
found in albino animals still remained significantly higher
than in age-matched pigmented animals (p<0.01). The
presence of Ki67-positive cells was also confirmed in human
tissue (Figure 3), however, given that only a small sheet of
human RPE was examined, it was only possible to confirm
cell presence but not determine their number or distribution.

Cell cycle proteins can be upregulated in mature cells
when they initiate Caspase related apoptosis [16,17]. To
determine whether the Ki67-positive cells revealed here were
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Figure 2. The distribution and number of Ki67 positive RPE cells in
the retinae of pigmented (black bars) and albino (blue bars) rats. A
and B show the relative distribution of Ki67 cells in retinae of
pigmented and albino rats. In both cases the largest percentage of the
total number of cells are located in the periphery with none in central
retina regions. The actual distribution of these cells in a pigmented
rat is given in C. D shows the absolute number of Ki67 positive RPE
cells in a pigmented and an albino animals. The differences shown
in A and B between the different retinal regions were statistically
significant (ANOVA p<0.0001). Differences between equatorial and
peripheral regions were also statistically significant (Newman
Keules p<0.001). While the relative differences in the distribution of
Ki67 cells within retinac was similar between pigmentation
phenotypes, there were always many more RPE cells labeled with
Ki67 in albinos compared with pigmented rats. This difference was
statistically significant (Newman-Keuls p<0.01).
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dying, we stained for Ki67 and Caspase 3 in the same RPE
tissue sheets. No Caspase 3 labeling was found in cells
positive for Ki67. Hence, they were unlikely to be apoptotic.

During the first two postnatal weeks, after cell production
in the rodent RPE is largely complete, some RPE cells
undergo nuclear division. This does not translate into full cell
division, leaving a cellular population that is largely
binucleated. The relative distribution of these cells has not
been recorded [18]. Figure 4 shows the distribution of
binucleated cells in pigmented and albino rat retinas that have
been divided into central, equatorial, and peripheral regions.
In both cases it is clear that the majority of binucleated cells
are located in the central retina, with many spilling over into
equatorial regions, but with relatively few in the periphery.
RPE cells in central regions could also contain more than two
nuclei. The small population of binucleated cells in the
periphery were not obviously biased toward areas within this
region adjacent to the equatorial sector. Hence, the
distribution of binucleated cells was separate, although partly
overlapping with that of the Ki67-positive cell population.

Are Ki67-positive cells in the periphery dividing or
undergoing only nuclear division to become binucleated?
Three lines of evidence support the notion that at least some
of these cells are going through full cell division. First, if the
nuclei of RPE cells are dividing but not the cell, then the
number of binucleated cells should increase with age in the
periphery. When the number of RPE binucleated cells at P20
and P60 were compared in the periphery, no significant
difference was found in their number between the two ages
(p>0.5). Second, there were cells identified that were Ki67
positive that possessed two labeled nuclei and appeared to be

Figure 3. Ki67-positive cells in the sample of human eye tissue. Only
a small strip of tissue, spanning from the equatorial to peripheral
regions, was examined. While Ki67-positive cells were clearly
present, it was not possible to estimate the number of these cells or
map their retinal location. Scale bar equals 10 pm.
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passing through full cell division, establishing a cytoplasmic
membrane between their nuclei. These cells also appeared to
be irregular within the geometric configuration of the regular
RPE (Figure 5). Ki67 and PCNA are only associated with
proliferation as they are simply cell cycle. However, the
critical factor in favor of this resulting in cell division is that
BrdU was detected in peripheral retinal cells. These were a

>
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Figure 4. The percentage of binucleated RPE cells in different retinal
regions in pigmented (black bars) and albino (blue bars) rats. In adult
rodent retinas, many of the RPE cells were binucleated. The
proportion of these have been determined in both pigmented (A) and
albino (B) retinas. The retinas were divided into three roughly equal
geographic regions: central, equatorial, and peripheral. In both
pigmentation phenotypes the majority of the binucleated cells were
located toward the central retina, although many were also found in
equatorial regions. The distribution of these cells is the reverse
pattern of that found for Ki67-positive cells shown in Figure 2. The
differences in A and B are statistically significant (ANOVA,
p<0.001). In both cases, the differences between the percentage of
binucleated RPE cells between central and equatorial regions were
not statistically significant. However, differences in the percentage
of binucleated RPE cells found central and peripheral regions were
significantly different (Newman-Keuls p<0.01). The differences
between equatorial and peripheral regions were also statistically
significant (Newman-Keuls p<0.01).
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mixed population with some having a single nucleus and
others being binucleated. Cells with a single nucleus were
commonly in adjacent pairs (Figure 6). Multiple injections of
BrdU given at 3 and 12 h intervals failed to significantly
increase the size of this population compared with animals
given a single pulse. However, those given at 24 h intervals
over 5 days did significantly expand the number of positive
cells compared with all other groups (ANOVA=0.0001,
Dunnett's Multiple Comparison Test=0.001, Figure 7).
Hence, it is likely that the cell cycle rate is very slow.

As the retina develops with a center to periphery gradient,
such that late cell division occurs in the peripheral retina
[19], it is natural to ask whether the relatively peripheral
patterns of Ki67 labeling found in the mature RPE are not
simply a reflection of those patterns present during late
development, or whether they represent a distinct and separate
event. We labeled RPE flat mounts from pigmented animals
at progressive stages from E18 through the postnatal period
and into maturity with Ki67. Unfortunately, it was not possible
to generate retinal whole-mounts of sufficient quality before
E18 without inducing some damage to the periphery that
resulted in loss of labeled cells. At E18, approximately 50
Ki67-positive cells could be identified in the RPE sheet.
However, three days later on the day of birth, there was a large
increase in the number of positive cells found, from around
50 to approximately 260, which is statistically significant
compared to the earlier time point (Newman-Keuls, p<0.001;
Figure 8). From this point onward the number of positive cells
declined gradually until around p20—P25 when their number
reached comparable levels to those found in older animals. At
all of these stages of development, few if any Ki67-positive
cells were identified in central regions, rather they were
confined to equatorial and peripheral retinal regions similar
to that shown in Figure 2 for the adult. These patterns of Ki67
labeling through postnatal development were similar in

Figure 5. RPE cells were identified that appear to be going through
full cell division. In the peripheral retinal regions, a small number of
cells could be identified that appeared to be passing through full cell
division. In both pictures, arrows point to two labeled nuclei that
appear to be forming a plasma membrane between them. Both sets
of cells appear irregular in the RPE cell matrix. Taken together with
the finding that there was no increase in the number of binucleated
cells in the peripheral retina, these photographs demonstrate that at
least some of the cells in this region were undergoing full cell
division.
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albinos, although the absolute number of positive cells found
was markedly elevated (data not shown). These data are
consistent with the notion that the increase in cell labeling
found in the RPE around the time of birth may represent a
distinct and separate event from earlier patterns that start
centrally and end in the periphery.

DISCUSSION

Using three independent markers for proliferation and three
independent functional markers of RPE cells, we have
demonstrated that a proportion of mature RPE cells are
retained in or have the capacity to enter into the cell cycle and
divide in peripheral and equatorial retinal regions. The
number of these cells were significantly elevated when
pigment was absent. In pigmented animals multiple injections
of BrdU only elevated cell numbers at 24 h intervals over 5
days, indicating that the cell cycle rate is probably slow. It is
interesting in the light of this result that in an analysis of 50

A

Figure 6. BrdU labeling in mature RPE cells. A and B: Shows a
binucleated labeled cell with BrdU on red channel and Otx green
channel. C shows two adjacent mono-nucleated cells that are labeled
with BrdU. Scale bar equals 20 um. D shows an outline drawing on
which the location of RPE cells labeled with Ki67 and BrdU are
marked. The diagram shows the distribution of positive BrdU-
labeled binucleated (black dots) and mononucleated (black circle)
cells. Only a small number of the BrdU-labeled cells were more
centrally located than those labeled for Ki67. The mononucleated
cells were almost always found in pairs of close proximity. The red
dots represent the number and distribution of Ki67 positive RPE
cells. While these largely overlap with the BrdU labeled population
of RPE cells, they tend to occupy a slightly more peripheral location.
The scale bar represents 2.5 mm.
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of the most highly expressed retinal genes, 11 showed
differential expression between central and peripheral human
RPE. Of these, two were cell cycle genes that were
downregulated in the central retina compared to the periphery
[20].

Consideration of the relative distribution of binucleated
cells and those in the cell cycle could lead to the conclusion
that there might be a slow progressive wave of nuclear
division across the retina, starting in the center and ending in
the periphery. However, the presence of cells positive for
BrdU that contained only one nucleus argues against this.
Further, examination of data from younger and older animals
does not support this assertion, as at every stage of
development examined, the distribution of binucleated cells
was largely confined to central and equatorial regions alone,
and that of Ki67-positive cells to equatorial and peripheral
regions (data not shown).

There are marked differences between pigmentation
phenotypes in the number of Ki67 labeled cells found in their
respective RPE. There are two possible reasons for this. First,
during development albino retinas are more proliferative than
pigmented because they lack dopa, an upstream element in the
synthetic pathway of melanin, shown to encourage cell cycle
exit[14,21]. Itis possible that the absence or reduction of dopa
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Figure 7. The number of BrdU positive cells in the RPE following
multiple pulses at progressive times. BrdU was given as a single
pulse (50png/kg) or as multiple pulses in 2 month old DA rats. For
comparison animals were given 4 injections at 3 h intervals and
euthanized 3 h later. Similar experiments were undertaken at 12 h
intervals, with single pulse and euthanized 12 h later compared with
4 pulses separated by 12 h each and euthanized 12 h after the last
pulse. There was no statistically significant increase in labeled cells
following multiple injections compared with single injections.
However, when BrdU was pulsed at 24 h intervals over 5 days, there
was a significant increase in the number of RPE labeled cells
compared with labeling in any of the other groups (ANOVA,
p<0.0001. Dunnett’s Multiple Comparison Test p<0.001). Hence the
RPE population is proliferating, but with a cell cycle rate of
approximately 5 days.
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during development has a persistent impact upon their retinas
extending into maturity. Second, albinos have far fewer rod
photoreceptors than normally pigmented animals [22,23], and
hence the RPE phagocytotic workload is probably reduced.
As RPE proliferation is enhanced by retinal detachment [8],
it is possible that there is a relationship between photoreceptor
numbers and their contact with the RPE, and the probability
of RPE cells entering the cell cycle. However, this remains to
be proven. There are likely to be significant differences
between the rats used here other than their pigmentation
phenotype, and include variation in genetic background and
ocular light experience, among other difference. In light of
this, an analysis of the number and distribution of Ki67-
positive cells in mutant animals having photoreceptor
dystrophies would be of value.

Why has cell division in the mature RPE not been
identified before and why does it occur? Rodent RPE is rarely
viewed in whole-mount because it is difficult to remove as a
coherent tissue without becoming significantly damaged in
the process. For this reason it is commonly viewed in section,
where this important, but relatively sparse cell population
would be hard to identify. Examination of normal adult retinas
labeled with tritiated thymidine to mark dividing cells in cat
failed to produce positive label in the RPE [8]. However, Ts’o
et al. [13] noted two mitotic nuclei in mature albino retinas,
but these could have been dividing nuclei as opposed to
dividing cells, and were not noted in other retinas used in their
study. Another reason these cells may not have been identified
is simply that no investigation has used cell cycle markers,

200+

RPE cells Ki67 +

E18 O 5 10 15 20 25 45 60 150
Age (days)

Figure 8. The number of Ki67-positive cells found in the RPE flat
mounts of pigmented animals sampled from embryonic day 18 (E18)
through to postnatal day 150. Relatively few cells were in the cell
cycle at E18, which is when the normal patterns of cell division in
developing tissue end. However there was a marked increase
(ANOVA, p<0.0001) in the number of these cells on the day of birth
(0), which was statistically significant compared to E18 (Newman-
Keuls, p<0.001). From PO on, cell number gradually declined with
age.
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such as Ki67, on whole mount mature mammalian RPE
before. In spite of this, a proliferative zone in the neural retina
and the RPE at the retinal margin has been noted during early
stages in the hatched chick [24,25], and here the level of
proliferation is of sufficient magnitude to be obvious in
section, but it is unclear how long this is sustained for.

While we demonstrate that a population of cells in the
mature RPE divide, we have no data to indicate that the
number of RPE cells actually increases with age. In fact in a
recent study from this laboratory, a striking feature of rat RPE
is that it shows little age-related cell loss (unpublished).
Hence, if the peripheral RPE is undergoing gradual cell
addition, then it is probable that this is a process that
replenishes the tissue when it is subjected to normal age
related cell loss. However, as RPE cell loss is likely to be pan
retinal, the local addition of these cells toward the periphery
would require gradual shifts in the RPE toward the central
retina. Interestingly such a proposal has been made by Del
Priore et al. [6]. They found evidence for cell death in the
human RPE but no evidence for age-related changes in central
cell density. Interestingly, the data on age related changes in
the human RPE is mixed. Some studies find evidence for age-
related loss [5], some no change [6], and another
comprehensive analysis demonstrates an actual increase in
density with age [26]. Whichever study is examined, there is
a wide diversity in individual data. It is possible that a
fundamental mechanism exists to replenish the RPE through
peripheral division to balance cell loss, but that this balance
is easily disrupted leading to significant variation between
individuals.

The proliferative capacity of the RPE has an additional
dimension in that it is enhanced if the retina is removed [§],
although only in peripheral and not central regions [27]. Some
amphibians have the ability to take this a stage further and are
able to regenerate a new retina through transdifferentiation of
the proliferating RPE population [9]. Mammals seem to have
retained an element of this process in their ability to
proliferate, but appear to lack the regulatory elements
necessary to control RPE proliferation appropriately and
induce transdifferentiation. However, if their entry into the
cell cycle could be regulated, it would have very significant
implications for disease processes where the RPE is either lost
or damaged, such as age-related macular degeneration.
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