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Abstract
Laboratory mouse plays important role in our understanding of early mammalian development and
provides invaluable model for human early embryos, which are difficult to study for ethical and
technical reasons. Comprehensive collection of cDNA clones, their sequences, and complete
genome sequence information, which have been accumulated over last two decades, have provided
even more advantages to mouse models. Here the progress in global gene expression profiling in
early mouse embryos and, to some extent, stem cells are reviewed and the future directions and
challenges are discussed. The discussions include the restatement of global gene expression
profiles as snapshot of cellular status, and subsequent distinction between the differentiation state
and physiological state of the cells. The discussions then extend to the biological problems that
can be addressed only through global expression profiling, which include: bird’s-eye view of
global gene expression changes, molecular index for developmental potency, cell lineage
trajectory, microarray-guided cell manipulation, and the possibility of delineating gene regulatory
cascades and networks.

Keywords
Expression profiling; Microarray; stem cells; preimplantation embryos; embryogenomics; large-
scale analysis

INTRODUCTION
Global gene expression profiling is to measure the expression levels of all genes and is a
part of the modern trends towards analyzing biological systems as a whole in a systematic
manner. It should therefore be understood from a global framework, including other
technologies, such as gene targeting and siRNA technologies. All the functional aspects of
mouse embryology are discussed in other articles in this issue, and thus, this review will
focus primarily on the gene expression profiling with the emphasis on the problems and
challenges that are unique to the analysis of early embryos.

ADVANTAGES OF MOUSE MODEL
Laboratory mouse plays an important role in our understanding of early mammalian
embryogenesis. Rather unique developmental feature of mammals, such as the first
differentiation into trophectoderm and imprinting, makes it difficult to use other model
organisms, such as yeast, worm, fly, frog, and zebrafish in some areas of investigation.
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Mouse is an especially important model organism for human biology, because human
embryos during preimplantation development and implantation are scarce and difficult to
obtain for both ethical and technical reasons. The problem has been alleviated by the
derivation of human embryonic stem (ES) cells from blastocysts (Thomson et al., 1998),
which can provide an excellent in vitro model system to study early differentiation events in
human cells. However, the study of in vivo embryos is still difficult and the advantage of
mouse system that allow the injection of ES cells into blastocysts to examine further
development cannot be achieved in human.

Mouse advantages have been enhanced by the accumulation of molecular reagents and
information in this model organism. For example, the majority of cDNA sequences (ESTs)
from preimplantation embryos is derived from mouse (reviewed in (Ko, 2005)). The scarcity
of materials and small size of early embryos have made the molecular analysis very difficult
even for mouse, but genes and their alternatively spliced transcripts, which function
primarily in the early embryos, can only be discovered by working on these tissues. Based
on the materials and resources generated in this pursuit, global expression profiling became
possible. For example, the microarray cannot be built without cDNA clones or cDNA
sequences. Similarly, bits of sequences obtained from other expression profiling
technologies cannot be identified otherwise. In addition to cDNA/ESTs, the full-length
cDNA sequence information (Gerhard et al., 2004;Carninci et al., 2005) and the nearly
completed mouse genome sequence (Waterston et al., 2002) have almost completed this
particular phase of study, that is, to identify the majority of genes, their structures, and
alternative transcripts on the mouse genome. However, the annotation of genes is not
complete and the recent discovery of microRNAs (reviewed in (Sevignani et al., 2006)),
non-coding RNAs (Ravasi et al., 2006), many pseudogenes, and some truncated form of
proteins remains to be understood. The impact of these new discoveries to overall biology is
yet to be determined, but definitely one of the areas needs to be studied in the future.

GLOBAL EXPRESSION PROFILING - SNAPSHOT OF CELLULAR STATUS
Ultimate goal of the global expression profiling is to take a snapshot of a cell state and to
capture the total activity of a cell at the moment (Ko, 2001). This can be achieved at
different levels (Fig. 1). The epigenotype is the first level, which represents the different
genome-wide patterns of DNA methylation and histone modifications such as methylation
and acetylation according to individual cell types, e.g., ES cells, neurons, and T cells. It has
recently become possible to examine epigenomes, but the technology is still labor intensive
and not suited to the study of a large number of cell types and conditions (Roh et al., 2005).
Specific sets of RNAs are transcribed from cell-specific epigenome and their steady-state
levels form a transcript profile, i.e., gene expression profiles at RNA level. This is probably
the most accessible, easiest, and cost-effective way to do a global expression profiling. It
certainly reflects the status of the whole epigenomes. Protein is, obviously, the molecule that
carries out the most function, and thus, is sometimes regarded as the better indicator of the
cellular status. It has also been reported that although the expression profiles at RNA levels
correlate well with those at protein level, there are some discrepancies between them (Tian
et al., 2004). However, the expression profiling of entire protein cohorts in the cells have not
been achieved and obviously is not cost-effective at this point. Perhaps the most effective
application is to identify proteins expressed differentially among samples by 2D-PAGE and
to identify the limited number of proteins by mass spectroscopy (e.g., (Hudelist et al.,
2006)). Global protein profiles are also more complex than RNA profiles, because they
require not only the measurement of abundance of individual molecules, but also account for
a variety of modifications of proteins, such as phosphorylation and glycosylation.
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It is important to point out that the expressions of RNAs or proteins do not necessary mean
that they have functions in the cells. Similarly, the changes of gene expression do not
necessary mean significance of these changes. It is conceivable that the future technology
advancement will make it possible to use the global profiles of proteins, signaling
molecules, and metabolites as a snapshot of cell state. However, the expression profiles at
RNA levels will continue to be the method of choice for some time, and thus, the following
discussion will focus on RNA profiling.

Methods for gene expression profiling
A variety of methods have been developed and applied to global gene expression profiling
in mouse early embryos. Large number of cDNA/EST sequences that have been
accumulated in the public database have been used extensively to identify genes specifically
expressed in ovary and oocytes (Stanton et al., 2002), preimplantation embryos (Ko et al.,
2000; Evsikov et al., 2004), and germ cells (Rajkovic et al., 2001; Yan et al., 2002; Lin and
Matzuk, 2005), various stem cells (Bortvin et al., 2003; Mitsui et al., 2003; Sharov et al.,
2003). One of the goals for EST project is to discover genes and help the proper annotation
of the genome sequences ((Marra et al., 1999)). Although it is a short stretch of sequences,
the ESTs can provide important experimental evidences to the coding regions of the genome
sequences and their alternative start sites and spliced forms (e.g., (Sharov et al., 2005a)).
Recent discovery that many transcripts in mouse oocytes start from the repetitive sequences
is another good example of the usage of ESTs (Peaston et al., 2004). EST/cDNA sequences
can also be served to identify a potential full-length cDNA clone, which can then be
sequenced entirely to produce the full-length cDNA sequence information (Gerhard et al.,
2004; Carninci et al., 2005). Physical cDNA clones have also been used as a molecular
probe for Northern blotting and in situ hybridization (Lennon et al., 1996). EST/cDNA
sequencing project was required to develop the infrastructure that allows the gene
expression profiling, including the development of DNA microarray platform (e.g., (Carter
et al., 2003)). The existing datasets will continue to provide useful tools to the research
community. However, it should be pointed out that EST project can only be justified as a
part of initial gene discovery project, because EST projects are not cost-effective as a way to
do expression profiling.

PCR-based differential display techniques (Liang and Pardee, 1992) have been applied to
the analysis of mouse ES cells (Hollnagel et al., 1999) and parthenogenetic blastocysts
(Brown and Kay, 1999). Suppression Subtractive Hybridization (SSH) (Diatchenko et al.,
1996) has been used to identify mouse oocyte-specific genes (Zeng and Schultz, 2003).
However, these technologies are not suited to do comprehensive profiling. In contrast, serial
analysis of gene expression (SAGE) (Velculescu et al., 1995) has been applied to identify
genes expressed in mouse ES cells (Anisimov et al., 2002). Another technology for
sequence-based expression analysis is massively parallel signature sequencing (MPSS)
(Brenner et al., 2000), which has identified a number of genes expressed differentially
between human and mouse ES cells (Wei et al., 2005). These sequencing-based technologies
are relatively expensive, and thus, SAGE and other methods have been often used to
examine samples without biological replications (Ruijter et al., 2002). SAGE’s advantage
for greater number of tags compared to ESTs can only add more statistical accuracy and
depth within the sample, but the lack of biological replications provide indeed less statistical
powers overall. Besides, unlike the cDNA/EST projects, SAGE does not provide any
additional resources to justify the costs.

As of today, DNA microarray technologies are the most cost-effective way to obtain a
comprehensive genome-wide gene expression profiles. And indeed, a large number of
literatures have been published using the microarray technology. Three main platforms for
DNA microarrays are currently available. First is a cDNA clone-spotted microarray (mostly

Ko Page 3

Dev Dyn. Author manuscript; available in PMC 2008 October 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



homemade microarrays). A notable earlier work with this type of microarray is the
expression profiling of three germ layers from gastrulating mouse embryos (Harrison et al.,
1995). Second is short oligonucleotide microarray (e.g., Affymetrix). Third is the long
oligonucleotide microarray (e.g, Agilent and Illumina).

One promise that still needs to be fulfilled is the accumulation of the available data in the
public database so that researchers can do data mining on their own, as it happened to EST
database. To facilitate this, the Microarray Gene Expression Data (MGED) Society has
proposed the guideline of minimum information required for microarray experiments
(MIAME) (Brazma et al., 2001). It has become the journal’s mandatory that any publication
reporting the microarray needs to accompany with the submission of the entire data sets to at
least one of the MIAME-compliant microarray datasets, such as Gene Expression Omnibus
(GEO) (Edgar et al., 2002), ArrayExpress (Brazma et al., 2003) and CIBEX (Ikeo et al.,
2003). Although the MIAME ensured the availability of all the detailed information about
how samples are collected and how experiments are done, this does not address the issue of
platform-to-platform differences. Some have observed concordance between results
obtained with different platforms (Yuen et al., 2002; Park et al., 2004; Yauk et al., 2004;
Larkin et al., 2005), whereas others have reported disagreement (Kuo et al., 2002; Tan et al.,
2003; Mah et al., 2004). Very recent studies have examined variability not only across
platforms (e.g,, Affymetrix GeneChips, Agilent 60-mer oligonucleotide arrays, and spotted
cDNA arrays), but also across laboratories (Bammler et al., 2005; Irizarry et al., 2005). They
have shown that there are large differences between laboratories using the same platform,
but the results from the best-performing labs agree well. This indicates that microarray
results are reliable and comparable, when performed appropriately.

Differentiation state and physiological state
It is important to point out that the identical cell can have different expression profiles.
When one sees that the expression profile of certain cells, e.g., ES cells, one normally
assumes that the expression profile is unique and equal to the character of the cells. So the
comparison between the different cell types, e.g, ES cells versus trophoblast stem (TS) cells,
will be literally interpreted as the difference between ES cells and TS cells (Tanaka et al.,
2002). However, what one can actually measure is the global gene expression patterns of a
specific state of ES cells (denoted as ES1, ES2, …, ESn in Fig. 2). ES cells at different cell
cycle phase will definitely show very different expression patterns. Another example is the
stimulation of proliferation or secretion of certain proteins by the stimulation of some
factors, e.g., growth hormones. Let’s assume that this does not cause the differentiation of
ES cells, which remains undifferentiated ES cells. The expression profiles of
undifferentiated ES cells in the presence or absence of this growth factor will probably very
different.

There seems to be no appropriate term to distinguish these cell types. It is tempting to use
the analogy to Plato’s “eidos,” “idea,” or “form,” since the situation is somewhat similar to
Plato’s argument that there is a single form (e.g., the horse) representing variety types of the
object (e.g., individual horses) in reality. However, it would be perhaps better to call the
cell’s identity tentatively “differentiation state of cell,” whereas many different transient
forms will be called “physiological state of cell.” In the example discussed above, the
expression profile of ES cells that can be obtained experimentally represents one of the
physiological states of ES cells (e.g., ES1), but does not directly represent the differentiation
state of ES cells. The comparison of the expression profiles between ES and TS in the
literature may thus actually mean the comparison of those between ES1 and TS2 or the
comparison of those between ES2 and TS3.
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This new paradigm provides an explanation to the problem that has been raised about the
experiments of “stemness.” Recently, gene expression profiling using several stem cell
types, such as ES cells, hematopoietic stem cells, and neural stem cells, was carried out to
find a molecular signature of stemness (Ivanova et al., 2002; Ramalho-Santos et al., 2002).
Both groups independently identified more than 200 genes involved in stemness, but other
groups pointed out that the comparison between their stemness gene lists revealed only six
genes in common, even though they used identical microarray chips and the same cell types
(Evsikov and Solter, 2003; Fortunel et al., 2003; Pyle et al., 2004; Mikkers and Frisen,
2005). This has often been attributed to the inaccuracy or immaturity of the microarray
technology. But at least a part of the problem comes from the misconception that the
identical cells or same cell types should have very similar global expression profiles.
Distinction of physiological cell state and differentiation cell state will help to understand
these discrepancies. These problems are probably more acute in the cultured cells such as ES
cells than in the organs.

BIOLOGICAL PROBLEMS THAT CAN BE ADDRESSED ONLY THROUGH
GLOBAL EXPRESSION PROFILING

Traditional way of doing profiling is to look at a small number of genes, which are often
selected based on the biological relevance, e.g., marker genes involved in apoptosis
pathways. Global gene expression profiling has been often seen as an extension of this type
of profiling. Indeed, most microarray literatures present and discuss only a small number of
specific genes or pathways, even if all the genes are profiled. Therefore, some argues that
specialized microarray that contains smaller, but defined sets of genes is more appropriate
for most applications, considering a high cost of running a whole genome microarray.
However, the power of the comprehensive or the whole-genome analysis lies in the ability to
look at global picture so that any important gene expression changes will not be missed.
Furthermore, a possibility of retrospective analysis of many genes, which did not receive
any attention by the authors at the time of experiments, provides the authors and the research
community with strong incentives to do comprehensive genome-wide microarray analysis.
Perhaps this will be even more important, if RNA samples from patients or animal models
are limited and are not available for later reanalysis. Finally, DNA microarray should not be
limited to use for the screening of genes of interest, but should also be used to address
biological problems that can be addressed only through global expression profiling. Some of
these examples will be discussed below.

Bird’s-eye view of global gene expression changes
Dynamics of gene expression changes can now be reconstructed by linking a series of
snapshots of cell’s gene expression activity – global gene expression profiles. A good
example is DNA microarray analysis of mouse preimplantation embryos (Hamatani et al.,
2004; Wang et al., 2004; Zeng et al., 2004; Wang et al., 2005). Visualization of global
expression profiles over time provides for the first time a bird’s-eye view of global gene
expression changes during preimplantation embryo development (Fig. 3; (Hamatani et al.,
2004)). The view revealed a number of important aspects of preimplantation development.
First, the levels of maternal transcripts stored in oocytes are promptly reduced and many of
these maternal transcripts are not reactivated during preimplantation development. Second,
majority of genes at zygotic gene activation (ZGA) at 2- to 4-cell stage show transient
expressions. Third, another wave of gene expression, named mid-preimplantation gene
activation (MGA; (Hamatani et al., 2004)), is observed around 8-cell stage. Fourth, the
visualization of these transient gene expressions led to the proposal of “waves of activation
hypothesis,” which assumes domino effect-like chain reactions (Hamatani et al., 2004). The
bird’s-eye view, thus, allows one to see the overall picture of gene expression changes.
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Use of global gene expression patterns to define cell differentiation
Microarray studies comparing two different cell types often address the issue of how similar
or how different these two cell types are. People often use correlation coefficient, but
similarity or differences is all relative concept. Thus, one needs the third cell type or even
more cell types to use as standards. For example, in the case of ES vs. TS comparison,
mouse embryo fibroblast (MEF), E12.5 embryo, and E12.5 placenta, was used to satisfy this
requirement (Tanaka et al., 2002). Recent work showing the global gene expression
difference between the nuclear transfer-derived ES (ntES) cells and the fertilized egg-
derived ES (fES) cells used the mouse strain differences of ES cells as a standard
(Brambrink et al., 2006). The more the sample numbers are, the more informative the
comparison between the cells. However, the analysis and visualization of the data become
also a challenge.

The comparison of global gene expression profiles among many samples/cell types will be
facilitated by the Principal Component Analysis (PCA), which is a statistical technique to
reduce the dimensionality in the dataset and to identify major trends. The PCA can map
individual samples/cells in “multidimensional transcript profile space” according to their
global gene expression patterns (Fig. 4; (Sharov et al., 2003)). Two different cell types that
share similar gene expression patterns will be mapped closer to each other than two different
cell types whose gene expression patterns are very different. In this way, the degree of
similarity in the gene expression patterns between multiple cell types can be shown in a
multidimensional (often represented as three-dimensional) PCA figure. It is conceivable that
cells in the same differentiation state, but in the different physiological state will be mapped
closer to each other than cells in the different differentiation state in the multidimensional
transcript profile space. The PCA may indeed become a tool to distinguish the differences
between physiological states and differentiation states.

One difficulty that biologists often face is the interpretation of this PCA figure. The
projection of each cell type on PC axis is based on the mathematical transformation of the
global gene expression levels, and thus, it is not intuitively clear for many biologists what
the location of these cells represents. For any given axis in this transcript profile space, one
can derive a list of genes, whose average expression level increases or decreases along the
axis. Thus, the relative locations of cells on PC axis can be represented by the average
expression levels of these genes. In other words, one can use the average expression level of
these selected genes as an “Index” or “Scale,” which represents a major trend of global gene
expression changes.

This concept may be easier to understand, if one use the analogy to other indexes used in our
society. For example, the Dow Jones Industrial Average is the average value of 30 large,
industrial stocks in the US. Individual values of stocks usually do not reflect the global
status of the US economy, but average values of selected stocks can provide a global trend
of US economy from a certain perspective. The selection of these 30 stocks is made largely
arbitrarily. In contrast, the PCA identifies major trends of the global expression data without
prior knowledge about what kind of trends they are. The PC axis can then be used to extract
sets of genes, whose average expression levels represent the trend. Therefore, the set of
genes is not pre-selected arbitrarily to fit to one’s own hypothesis.

Three direct application of this method will be discussed below.

Molecular index for developmental potency
Fig. 4 shows preimplantation embryos, ES cells, adult stem cells, and newborn organs,
which are mapped in the 3D transcript profile space according to the global gene expression
profiles based on EST frequency (Sharov et al., 2003). The 3D picture is presented as
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Virtual Reality Modeling Language (VRML), which can be rotated and zoomed in and out
(Sharov et al., 2005b). This visualization of the global expression profile data clearly shows
the relative distance between embryos and/or cell types in terms of their similarity of gene
expression profiles. Furthermore, PC3 axis seems to capture a global trend that the gradual
loss of developmental potency from a totipotent fertilized eggs, to ES cells, and to the
differentiated cells in newborn organs, although there are a few exceptions. Correlation
analysis has identified 88 genes, whose expression levels are significantly associated with
the PC3 axis (Sharov et al., 2003). The average expression levels of these 88 genes for each
cell type are roughly proportional to the positions of these cells on the PC3 axis and can be
used as an index for developmental potency (Fig 5; (Sharov et al., 2003)). Unlike the
traditional definition of developmental potency, which requires the experimental
manipulation of a cell to see its ability to differentiate into multiple cell types, this index can
be obtained by measuring the expression levels of these 88 genes, and thus, may provide a
quantitative measure to elusive concept of developmental potency.

Cell lineage trajectory and the degree of cell commitment/differentiation
Fig. 4 also shows that the progress of embryo development, e.g., unfertilized eggs to
blastocysts, can be represented as a trajectory in multi-dimensional transcript profile space
(red arrow). Similarly, different cell lineages can be represented by corresponding trajectory,
i.e., “cell lineage trajectory,” in the transcript profile space. For example, the global
expression profiling of mouse ES cells, embryonal carcinoma (EC) cells, adult neural stem/
progenitor (NS) cells, TS cells, and placenta has mapped individual cell types in the specific
coordinates in transcript profile space (Fig. 6; (Aiba et al., 2005)). One cell lineage
trajectory seems to represent the lineage of trophoblast differentiation, whereas the other
seems to represent the lineage of neural differentiation (Fig. 6). When transcript profiles of
ES cells during neural differentiation in the monolayer culture for 6 days (Ying et al., 2003)
are mapped to this transcript profile space, the differentiating ES cells are positioned along
the trajectory of neural lineage and are progressively shifted toward adult neural stem/
progenitor cells from undifferentiated ES cells (Fig. 6B, (Aiba et al., 2005)). This supports
the notion that the neural lineage trajectory reflects the neural commitment and
differentiation from ES cells and a specific direction from ES to neural fate. A set of genes
that correspond to this trajectory can also be extracted. For example, the lineage trajectory
for neural differentiation represents the average expression of ~4,000 genes whose
expression increased with neural commitment/differentiation. This lineage trajectory, thus,
not only defines a path to neural fate, but also provides an index for the extent of
commitment/differentiation. Thus, these results support the conceptual drawing of well-
known “epigenetic landscape” and the concept of “chreod” – the permitted or necessary path
taken by cells in development - by Conrad H. Waddington (Waddington, 1957;Slack, 2002).

Microarray-guided cell manipulation
A single-gene paradigm, which prevails in cell and developmental biology for many years,
provides researchers the confidence that if a proper cell assay system can be established, a
gene that cause an important function can be found by transfecting a cDNA expression
library. In this functional cloning strategy, a cell that received a gene of this particular
function by chance will be identified for its phenotype, and the gene will be subsequently
isolated. Many genes, including oncogenes and MyoD (Lassar et al., 1986; Tapscott, 2005),
have been successfully isolated in this manner. The recent discovery of Nanog gene, which
plays a pivotal role in the maintenance of pluripotent ES cells without LIF (Chambers et al.,
2003), has provided further assurance about the utility of functional cloning approach.

Although this single-gene paradigm has been and will continue to be successful, it is
conceivable that there will be biological problems that require multi-gene paradigm, which
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requires cooperation of multiple genes for the conversion or alteration of the cell phenotype.
In this case, the strategy of transfecting cDNA library into cells will not work, because, as
with third-order enzyme kinetics, the chances that proper combination of more than two
genes will be co-transfected into the same cell are extremely rare. Identification of such
genes may be greatly facilitated by the multi-step cell conversion strategy using the global
expression profiling (Ko, 2001). Let’s consider one of the major current interests in the stem
cell biology, which is to convert the differentiated cells, such as fibroblast cells, to more
potent undifferentiated cells, such as ES cells. First, the global gene expression profiles will
map both fibroblast cells and ES cells in multi-dimensional transcript profile space.
Fibroblast cells will then be manipulated by either overexpressing or reducing a possible
candidate gene. If the position of the manipulated cells is shifted closer to that of ES cells,
this cell will be further modified by the overexpression or reduction of another gene. It is
conceivable that the cells can be altered to different cell types through such multi-step gene
modifications. Similarly, the principle of the microarray-guided cell manipulation can also
be applied to the cell conversion by environmental and nutritional manipulation.

TOWARDS THE COMPREHENSIVE UNDERSTANDING OF GENOMIC
PROGRAM OF EARLY DEVELOPMENT

As discussed in earlier section, the global gene expression profiling can provide a
comprehensive snapshot of cellular state. For example, analysis of different time point or
time-course of developing tissues/organs can reveal the developmental program that governs
that transition (e.g., (Buttitta et al., 2003)). Analysis of embryos manipulated
environmentally or embryos with a specific gene mutated or disrupted can identify candidate
downstream genes (e.g., (Zakin et al., 2000; Cui et al., 2002; Okubo et al., 2005; Williams et
al., 2005)). Analysis of mouse embryos mutagenized with ENU and other reagents can help
to understand the nature of mutation and functions of the affected genes (Seltmann et al.,
2005). Despite many such examples of successful application of global gene expression
profiles to the analysis of normal and mutant embryos, there are many challenges to be
addressed. Three main challenges will be discussed below.

Small size and heterogeneity of embryonic materials
One major technical challenge of the global gene expression profiles of mouse embryos is
that their size is very small and cannot provide enough materials to work with. For example,
the analysis of early embryonic lethal caused by a gene mutation requires the global gene
expression profiling of mouse preimplantation embryos. Unlike the work done previously by
pooling embryos from the same state (e.g., (Hamatani et al., 2004)), the analysis of the
mutant embryo should ideally be done on individual embryos. When a mutant embryo (e.g.,
Gene−/−) cannot be distinguished visually from a wild type embryo (e.g., Gene+/+), it is
usually impossible to pool embryos according to their genotype. Even for postimplantation
embryos or adult organs, the same problem will arise, when the cell heterogeneity in the
materials needs to be avoided. Indeed, the global gene expression profiles of the mixed cell
population are often problematic, because the critical changes of gene expression patterns in
a minor population of the cells would be diluted by the presence of other cells without any
changes. This problem can be addressed either by doing microdissection or FACS-sorting
the desired cell population, which can be identified morphologically, by immunostaining
with a specific antibody, or by cell/tissue-specific promoter-driven GFP (e.g., (Abe et al.,
1998; Hubner et al., 2003)).

Performing the global gene expression profiles of small samples, such as a single embryo
and a single cell, are still difficult, but the recent improvement of probe-amplification
technology seems to provide solutions to this problem (Van Gelder et al., 1990; Ginsberg,
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2005; Kurimoto et al., 2006; Nygaard and Hovig, 2006). However, the results are usually
noisy with the random fluctuation of individual gene expression levels. Because gene
expression levels at a single cell level show intrinsic stochastic variations (Ko, 1992; Kaern
et al., 2005; Raser and O’Shea, 2005), such an intrinsic variation of gene expression
regulation is difficult to distinguish from the technical noise of the gene expression levels
caused by the probe-amplification procedures. Therefore, the global gene expression profiles
obtained from a small amount of materials have to be interpreted with extra cautions.

The problem of cell heterogeneity can also be addressed to some extent by using in situ
(ISH) or whole-mount in situ (WISH) hybridization technique. Although large-scale ISH/
WISH methods have been applied to mouse intestine (Komiya et al., 1997), E9.5 embryos
(Neidhardt et al., 2000; Gitton et al., 2002), and E9.5 and E10.5 embryos (Reymond et al.,
2002), it has been difficult to apply this method to early embryos, because of their small size
(~60 μm diameter in the case of preimplantation embryos) and fragility. This has been
recently overcome by a chamber system that utilizes both transwell inserts for parallel
processing and capillary action for gentle buffer exchanges (Yoshikawa et al., 2006).

Delineating gene regulatory pathways/cascades
One of the most desirable applications of the global gene expression profiling is to identify
downstream genes affected by the mutation, overexpression, or repression of primary gene.
Although there are some successful examples (e.g, (Zakin et al., 2000; Cui et al., 2002;
Okubo et al., 2005; Williams et al., 2005)), such an application of global gene expression
profiles is still difficult for the following reasons. First, it is possible that a defect of primary
gene is compensated by other genes, and thus, the alteration of global gene expression
patterns is not necessary caused by the primary gene. This problem can be addressed by
examining earlier embryos, whose gene expression patterns are not yet fully compensated.
Second, genes encoding transcription factors often form a cascade of regulatory chain,
where ‘gene 1’ regulates ‘gene 2’, which regulates ‘gene 3’, and so on. In this case, global
expression profiling will detect the expression changes of not only ‘gene 2’ – direct
downstream of ‘gene 1’, but also ‘gene 3’. In other words, global expression profiling will
capture not only the primary changes of gene expressions, but also the secondary and
tertiary changes of gene expressions. This problem can be addressed by examining the direct
binding of the transcription factor to the regulatory sequences of target genes. As such,
chromatin immunoprecipitation (ChIP) microarray (ChIP-on-chip) has been used to identify
the downstream target genes by precipitating chromatin-bound DNA with antibody raised
against a specific transcription factor and then hybridizing the isolated DNA to microarrays
of probes for promoter regions of known genes. Boyer et al. examined the genome-wide
distributions of well-known ES cell transcription factors (OCT4, SOX2, and NANOG) in
human ES cells (Boyer et al., 2005). Similar technique, ChIP-PET, has been used to identify
the downstream of Oct4 and Nanog in mouse ES cells (Loh et al., 2006). Although the
validity of individual bindings has not been or cannot be tested, the data narrow down many
possible connections based on the analysis of TF-binding sites and possibly provide novel
binding sites.

Complexity, stochasticity, and nonlinearity of a gene regulatory network
Early mouse embryos and ES cells will provide an excellent model system to study the
structure and dynamics of a gene regulatory network, because the involvement of limited
number of cell types makes the complex cell-to-cell interactions less prominent.
Nonetheless, even considering a single cell we begin to realize that a gene regulatory
network is much more complex than appreciated and the straightforward logic of gene
activation cascades may not be relevant. A gene, particularly a transcription factor, regulates
a large number of genes, which in turn regulate many other genes. The regulation includes
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positive- and negative-feedback loops. Here it is important to distinguish the structure, i.e.,
connections or wiring of the gene regulatory network and the dynamics, i.e., behavior or
kinetics of the gene regulatory network. An analysis of this complex network structure is
difficult, but an analysis of this nonlinear dynamics will be even more daunting. However,
ultimately the embryo development has to be understood and explained as the dynamics of
the gene regulatory network (Davidson and Erwin, 2006). To this end, at least the following
steps have to be taken as future research directions.

First, genome-wide analysis of all potential regulatory sites has to be carried out. This will
be achieved first by mapping computationally the consensus regulatory sequences of all
known transcription factors (~3,000 genes). Ideally, binding sites of all these transcription
factors should be identified experimentally by using ChIP-on-chip or ChIP-PET assays, as it
has been done for Oct3/4, Nanog, and Sox2 (Boyer et al., 2005; Loh et al., 2006). The
information will include many false-positives and false-negatives, but these computational
and experimental approaches will dramatically reduce the number of possible connection/
wiring among genes. The work will elucidate a possible global structure of gene regulatory
network.

Second, global expression profiling has to be carried out on a variety of cell types in
embryos and ES cells (“differentiation state of a cell”), cells manipulated environmentally,
e.g., in different culture conditions (“physiological state of a cell”), cells with the
manipulation of individual genes – one gene at a time. Changes of gene expression patterns
have to be followed over the course of time. The work will provide the information on both
the structure (though indirectly) and dynamics of the gene regulatory network.

Third, a virtual gene regulatory network, which represent both the structure and dynamics
information obtained as mentioned above, has to be built in the computer system. The model
should incorporate an inherently stochastic nature of gene expression regulation (Ko,
1992;Kaern et al., 2005;Raser and O’Shea, 2005). The model has to be tested and improved
by repeating the cycle of computer simulations and experiments on gene- or
environmentally-manipulated cells. That is, the changes of global gene expression profiles
obtained by computer simulations will be compared to those obtained by the experiments.
The discrepancy can be fed into to the global gene regulatory network model so that the
results of computer simulation will follow more closely the experimental results. Such an
approach has already begun to apply to a small scale network (e.g., (Kastner et al., 2002),
and (Kaern et al., 2005;Raser and O’Shea, 2005) for reviews), but the genome-wide analysis
and modeling will face enormous complexity of a gene regulatory network.

CONCLUDING REMARKS
Efforts by many researchers for last two decades have established an infrastructure for large-
scale genomics methodologies for mouse embryology, including the global gene expression
profiling discussed in this review. Global expression profiling will continue to be used to
screen genes differentially expressed among different cell types or before and after the cell
or gene manipulation. However, its use will gradually shift from the gene discovery phase to
the gene expression monitoring phase. Systematic analysis of early embryos and stem cells
will not only enhance our understanding of animal development, but also provide means to
manipulate the cells, especially stem cells, at will for potential therapeutic applications to
dysfunctional and aging organs in regenerative medicine.
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Figure 1. Genome-wide profiling of a cell at different levels
A flow of information from genome/genotype to phenome/phenotype is shown: each step
represents one-to-many relationship. All the cells in individual mouse contains the same
whole set of DNAs – “genome” (with some exceptions), but individual cells can have
different “epigenomes” (Holliday, 2005; Murrell et al., 2005) depending on their state of
differentiation after the DNA methylation and the chromatin modifications. Specific sets of
genes are transcribed according to the status of “epigenome.” The “transcriptome” of
individual cells is the steady-state levels of all the RNA species (after taking the
modification and degradation into consideration). Expression profiling at the RNA level can
capture the whole or a part of the transcriptome of a cell, tissue, or organ. These RNAs are
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translated into proteins. The “proteome” of individual cells is the steady-state levels of all
the protein species (after taking the modification and degradation into consideration).
“Phenome” (Mahner and Kary, 1997; Paigen and Eppig, 2000) is the whole set of
phenotypes in a cell, tissue, or organ. Cells with the same proteome can have different
phenomes, because they can have different cell state, e.g., different metabolites and
signaling molecules. Expression profiling at RNA levels represents the status of epigenome
more closely than expression profiling at protein levels. On the other hand, expression
profiling at protein levels represents the phenome of a cell more closely than that at RNA
level.
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Figure 2. Distinction between the differentiation state of a cell and the physiological state of a cell
Embryonic stem (ES) cells and trophoblast stem (TS) cells are used here as examples. This
diagram shows that cells can have different RNA expression profiles/transcriptomes (e.g.,
ES1 and ES2), while maintaining their cell identity, i.e., differentiation state (e.g., ES).
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Figure 3. An example of bird’s-eye view of gene expression changes: mouse preimplantation
development
Signal intensities (log scale) (which represent relative RNA levels) of individual genes at
each developmental stage are shown as color-coded lines. The expression levels of about
22,000 genes were monitored, but only genes that showed statistically significant changes
are shown. Color codes are shown in a side bar: from a high expression level (red) to a low
expression level (blue). Figure adapted from (Hamatani et al., 2004) and reproduced from
(Ko, 2005).
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Figure 4. An example of multi-dimensional transcript profile space, which shows coordinates of
cells according to their global gene expression patterns
The global expression patterns (EST frequencies) of 2812 relatively abundant genes were
analyzed by the Principal Component Analysis (PCA). Each cell or embryo (red sphere) was
mapped to 3D space along with genes of significance (yellow dot) according to their values
of each principal component (PC2, PC3, and PC4). Red arrows indicate the progress of
embryos during preimplantation development: the stepwise transition from unfertilized egg
to blastocyst. Red circles indicate ES cells and newborn organs (heart and brain). Here the
distance between cells represents the degree of similarity in gene expression patterns. Cells
or embryos that are mapped closely have more similar overall gene expression patterns than
those mapped widely apart. Cells or embryos are labeled as follows (see also Fig. 5): 6.5 EP,
E6.5 whole embryo (embryo plus placenta); 7.5 EP, E7.5 whole embryo (embryo plus
placenta); 8.5 EP, E8.5 whole embryo (embryo plus placenta); 9.5 EP, E9.5 whole embryo
(embryo plus placenta); 7.5 E, E7.5 embryonic part only; 7.5 P, E7.5 extraembryonic part
only; NbOvary, newborn ovary; NbBrain, newborn brain; NbHeart, newborn heart;
NbKidney, newborn kidney; 13.5 VMB, E13.5 ventral midbrain dopamine cells; 12.5 Gonad
(F), E12.5 female gonad/mesonephros; 12.5 Gonad (M), E12.5 male gonad/mesonephros;
HS (Kit−, Sca1−), hematopoietic stem/progenitor cells (Lin−, Kit−, Sca1−); HS (Kit−,
Sca1+), hematopoietic stem/progenitor cells (Lin−, Kit−, Sca1+); HS (Kit+, Sca1−),
hematopoietic stem/progenitor cells (Lin−, Kit+, Sca1−); HS (Kit+, Sca1+), hematopoietic
stem/progenitor cells (Lin−, Kit+, Sca1+); and NS-D, differentiated NS cells. Figure adapted
from (Sharov et al., 2003).
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Figure 5. A possible molecular index for developmental potency
Coordinates of each cell or embryo on PC3 axis from Fig. 4 are mapped against the average
expression levels of 88 genes. These 88 genes include Birc2, Bmp15, Btg4, Cdc25a,
Cyp11a, Dtx2, E2f1, Fmn2, Folr4, Gdf9, Krt2–16, Mitc1, Oas1d, Oas1e, Obox3, Prkab2,
Rfpl4, Rgs2, Rnf35, Rnpc1, Slc21a11, Spin, Tcl1, Tclb1, and Tcl1b3. This figure shows that
the average expression levels of 88 genes (parameters that can be measured experimentally)
can be used as a surrogate for PC3 axis, which seems to capture the trend of losing
developmental potency of cells. See Fig. 4 for the labels for cells or embryos. Figure
reproduced from (Sharov et al., 2003).
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Figure 6. An example of cell lineage trajectories
Left Panel: 2D PCA plot of microarray-based global gene expression profiles. The
following cells were analyzed and mapped here: undifferentiated mouse ES cells (ES_129a,
ES_129b, and ES_R1), undifferentiated embryonal carcinoma cells (EC_P19 and EC_F9),
TS, placenta (PL), adult neural stem/progenitor cells (NS1 and NS2), and neural
differentiated (DC) cells. Two arrows indicate a trajectory from undifferentiated embryonic
cells to the trophoblast/placental lineage, and a trajectory from undifferentiated embryonic
cells to the neural lineage. This PC1 seems to define a path to neural fate, providing an index
for the degree of commitment/differentiation. Right Panel: 2D PCA plot of microarray-
based global gene expression profiles. The following cells were added to the PCA: EC cells
induced to neural lineage by all-trans-retinoic acid (EC_P19 RA4) and ES cells
differentiated into neural lineage (N2 d0, d1, d2, d3, d4, d5, and d6; ES cells cultured in the
N2B27 medium as monolayer culture for 1, 2, 3, 4, 5 or 6 days). These cells differentiating
into neural lineage are mapped on the PC1 axis, which supports the notion that PC1 defines
a path to neural fate. See the text for more details. Figure reproduced from (Aiba et al.,
2005).
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