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Abstract
OBJECTIVE—Although the incidence of stroke after carotid endarterectomy (CEA) is low (1–3%),
approximately 25% of patients experience subtle declines in postoperative neuropsychometric
function. No studies have investigated the risk factors for this neurocognitive change. We sought to
identify predictors of postoperative neurocognitive dysfunction.

METHODS—We enrolled 186 CEA patients, with both symptomatic and asymptomatic stenosis,
to undergo a battery of neuropsychometric tests preoperatively and on postoperative Days 1 and 30.
Neurocognitive dysfunction was defined as a two standard deviation decline in performance
compared with a similarly aged control group of lumbar laminectomy patients. Univariate logistic
regression was performed for age, sex, obesity, smoking, symptomatology, diabetes mellitus,
hypertension, hypercholesterolemia, use of statin medication, previous myocardial infarction,
previous CEA, operative side, duration of surgery, duration of carotid cross-clamp, and weight-
adjusted doses of midazolam and fentanyl. Variables achieving univariate P < 0.10 were included in
a multivariate analysis. Data is presented as (odds ratio, 95% confidence interval, P-value).
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RESULTS—Eighteen and 9% of CEA patients were injured on postoperative Days 1 and 30,
respectively. Advanced age predicted neurocognitive dysfunction on Days 1 and 30 (1.93 per decade,
1.15–3.25, 0.01; and 2.57 per decade, 1.01–6.51, 0.049, respectively). Additionally, diabetes
independently predicted injury on Day 30 (4.26, 1.15–15.79, 0.03).

CONCLUSIONS—Advanced age and diabetes predispose to neurocognitive dysfunction after
CEA. These results are consistent with risk factors for neurocognitive dysfunction after coronary
bypass and major stroke after CEA, supporting an underlying ischemic pathophysiology. Further
work is necessary to determine the role these neurocognitive deficits may play in appropriately
selecting patients for CEA.
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Carotid endarterectomy (CEA) reduces the risk of future stroke in patients with high-grade
stenosis (5,10,15,25). However, approximately 25% of CEA patients experience declines in
postoperative neurocognitive function that are detected by a battery of neuropsychometric tests
(NPMTs) (12,13). Although the mechanism of post-CEA neurocognitive decline is poorly
understood, it is thought to be ischemic in nature, and may be owing to hypoperfusion during
carotid artery cross-clamping or the dislodgement of microemboli during vessel dissection and
plaque removal.

To date, no studies have thoroughly investigated the risk factors for these neurocognitive
changes after CEA. With nearly 100,000 CEAs performed annually (5,25), many for borderline
indications with small absolute benefit (11,35), understanding the variables that predispose to
subtle changes in cerebral function is crucial in appropriate patient selection. We sought to
identify factors that predict postoperative neurocognitive dysfunction.

PATIENTS AND METHODS
Study Population

One hundred and eighty six consecutive patients undergoing elective CEA for both
symptomatic and asymptomatic carotid artery stenosis were prospectively enrolled in this
institutional review board-approved study. All CEA patients had 60% or greater stenosis of
the operative carotid artery. After obtaining written informed consent, patients were evaluated
with a battery of five neuropsychometric tests before surgery, 1 day after CEA, and at a follow-
up examination 30 days postoperatively. As previously described (13), to account for effects
of general anesthesia on NPMT performance, a control group of 67 contemporaneous patients
undergoing lumbar laminectomy (LL) with a similar anesthetic regimen was included. All tests
were performed more than 3 hours after administration of any analgesic or sedative medication.
We excluded patients who reported pain greater than five on a zero to ten scale during testing,
in both the CEA group and the LL control group, as severe pain confounds NPMT performance
(14).

Anesthesia and Surgery
All patients received general anesthesia with routine hemodynamic and temperature
monitoring, as previously described (13). CEA patients underwent continuous blood pressure
monitoring with a radial artery catheter, and an eight-channel encephalographic monitor was
used during the course of surgery (Neurotrac II; Moberg Medical, Inc., Ambler, PA). Fentanyl
and midazolam were administered for preinduction sedation. General anesthesia was induced
with fentanyl, midazolam, and either vecuronium or rocuronium and maintained with
isoflurane. Five patients required shunt placement owing to electroencephalographic changes

Mocco et al. Page 2

Neurosurgery. Author manuscript; available in PMC 2008 October 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



consistent with ischemia. All CEAs were performed by members of the neurovascular or
vascular service. Surgical times averaged 153.6 ± 42 minutes. All patients were extubated in
the operating room and recovered in a postoperative care or neurological intensive care unit.

Neuropsychometric Evaluation
Patients were assessed with a battery of five NPMTs, chosen to represent a range of cognitive
domains, before surgery and on postoperative Days 1 and 30. All NPMTs were administered
by one of three research assistants, each trained and supervised by a neuropsychologist. The
Boston Naming Test evaluated the patients’ ability to verbally identify objects pictured on a
series of cards. Halstead-Reitan Trails Parts A and B evaluated visual conceptual and
visuomotor tracking by timing how long it took a subject to connect consecutively numbered
circles with a single line (Part A) and then connect the same number of consecutively numbered
and lettered circles by alternating between the two sequences (Part B). The Controlled Oral
Word Association test assessed verbal fluency, providing information on dominant hemisphere
function. Patients were asked to generate as many words as possible that begin with a certain
letter within 60 seconds. Three separate trials were performed as each testing session, one each
with the letters C, F, and L. The copy portion of the Rey Complex Figure test evaluated
visuospatial organization, providing insight into the functioning of the non-dominant
hemisphere. Patients were asked to copy the figure and a standardized scoring system was used
to evaluate the presence of design-specific features and the accuracy of their locations (20).

Statistical Analysis
Each NPMT was scored individually for both the CEA patients and the LL control group. As
previously described (13), the change in individual test scores from baseline to postoperative
Days 1 and 30 were each converted to z-scores relative to the change within the control group,
as follows:

Z-scores were converted into a point system quantifying the degree of cognitive dysfunction
associated with each NPMT at Days 1 and 30, as described previously (13). For each CEA
patient, these deficit points were summed to generate a total deficit score (TDS) that measures
the global level of cognitive decline of each patient at Days 1 and 30. By definition, a patient
is determined to have neurocognitive dysfunction when the TDS exceeds that mean total
change score of the control group by two standard deviations. Using this method,
neurocognitive outcome is expressed as a dichotomous variable (“injured” or “uninjured”).

Univariate logistic regression was performed for age, sex, obesity (body mass index [BMI] ≥
30), history of smoking, symptomatology (previous stoke or transient ischemic attack),
diabetes mellitus, hypertension, hypercholesterolemia, use of statin medication, previous
myocardial infarction, previous contralateral CEA, operative side, duration of surgery, duration
of carotid artery cross-clamp, and doses of midazolam and fentanyl adjusted by body weight.
Variables with P values less than 0.10 in the univariate analysis were included in a multivariate
model. Risk factors for cognitive dysfunction at Days 1 and 30 were analyzed separately. The
patients were then divided into symptomatic and asymptomatic populations and evaluated for
potential subgroup analysis. The logistic regression results of age are expressed as the odds
ratio (OR) per each decade increase in age. Results for fentanyl and midazolam are expressed
as the OR per each μg/kg or.01 mg/kg increase in weight-adjusted dose, respectively. The
remaining risk factors are presented as categorical variables, with ORs that represent the risk
associated with having the condition. All data is expressed as mean ± standard deviation, or
(OR, 95% confidence interval, P-value), with P values less than 0.05 considered significant.
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RESULTS
Cohort Characteristics

The demographic and intraoperative variables for all CEA patients are presented in Table 1.
One hundred eighty-six CEA patients completed the NPMT battery on postoperative Day 1
(59% symptomatic, 41% asymptomatic), and 153 completed testing on Day 30 (59%
symptomatic, 41% symptomatic). Thirty-three (18%) patients were either lost to follow-up or
refused to complete the battery on Day 30. On postoperative Day 1, 33 (18%) patients
experienced neurocognitive dysfunction. Fourteen patients (9%) demonstrated cognitive injury
on Day 30. Mean TDS scores in the CEA and LL groups were 3.80 ± 3.95 and 2.60 ± 2.27 at
Day 1, respectively, and 2.64 ± 2.93 and 2.66 ± 1.99 at Day 30.

Statistical Analysis
Sex, obesity, smoking, symptomatology, diabetes, hypertension, hypercholesterolemia, use of
a statin, previous myocardial infarction, previous contralateral CEA, operative side, duration
of surgery, cross-clamp time, shunt placement and weight adjusted doses of fentanyl and
midazolam were not associated with neurocognitive dysfunction on Day 1. Each decade
increase in patient age was associated with a 93% increase in the risk of neurocognitive decline
on postoperative Day 1 (1.93, 1.15–3.25, 0.01; Table 2). Of patients younger than 65 years of
age, 9.3% experienced neurocognitive dysfunction on Day 1, compared with 14.9% of 65 to
74 year-old patients, and 28.6% of patients older than 74 years (Fig. 1, analysis of variance
[ANOVA] P = 0.03). Aside from age, no other variables met our P value less than 0.10 criteria
for inclusion in multivariate analysis.

Thirty days after CEA, each decade increase in age elevated the risk of neurocognitive
dysfunction more than 2.5 times (2.57, 1.01–6.51, 0.049) and diabetes increased the risk more
than four times (4.26, 1.15–15.79, 0.03), in a multivariate analysis that also included obesity
and dose of midazolam (Table 3). The neurocognitive injury rate at Day 30 was 21.1% for
diabetics and 5.3% for non-diabetics (Fig. 2, P = 0.007). Sex, smoking, hypertension,
hypercholesterolemia, statin medication, previous myocardial infarction, previous
contralateral CEA, operative side, duration of surgery, cross-clamp time, shunt placement, and
weight-adjusted dose of fentanyl all failed to reach P value less than 0.10 in univariate analysis.

Subgroup analysis at postoperative Day 1 demonstrated that age was the only significant
predictor of neurocognitive injury in the asymptomatic population (2.84, 1.22–6.19, 0.01).
Among symptomatic patients, increasing weight-adjusted doses of midazolam reduced the risk
of neurocognitive dysfunction in a multivariate analysis that also included duration of surgery
and prior contralateral CEA (0.53, 0.31–0.92, 0.02). Owing to the limited number of injured
patients at Day 30 (symptomatic cohort, five; asymptomatic cohort, nine), a subgroup analysis
of symptomatic and asymptomatic patients was underpowered to provide meaningful results.

DISCUSSION
Although CEA is considered a safe procedure, with low incidence of perioperative stroke, the
prevalence of subtle neurocognitive dysfunction after CEA is being increasingly recognized.
Cognitive dysfunction after CEA is detected by a battery of NPMTs designed to offer a more
detailed assessment of higher cortical function than traditional neurological exam. Previously,
we demonstrated that approximately 25% of CEA patients experience a decline in
neurocognitive performance on a battery of NPMTs administered 1 day postoperatively, in
comparison with a similarly aged population exposed to a comparable anesthetic regimen
(12,13). However, this is the first study to investigate the risk factors that predispose to this
neurocognitive decline.
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Although the precise mechanism of post-CEA neurocognitive dysfunction is unknown,
evidence points to an ischemic etiology. Declines in cognitive function after CEA have been
associated with serum elevations of protein S100b, a marker of glial cell death, indicating the
occurrence of cerebral injury (3). Ischemia may be owing to transient hypoperfusion during
carotid cross-clamping or the dislodgement of microemboli. The latter mechanism is supported
by recent work using Doppler high-intensity transient signals analysis demonstrating that
microemboli are frequently detected in the cerebral circulation during CEA (7,36).

The association of age and diabetes with neurocognitive decline at different time points is
consistent with previous studies demonstrating that these factors variably increase the risk of
major stroke owing to CEA. In a retrospective review of more than 6000 CEA patients in the
Ontario Carotid Endarterectomy Registry, Tu et al. (32) found that diabetes, among other
factors, independently predicts stroke or death within 30 days of surgery (OR 1.28, P = 0.04).
Kragsterman et al. (16) confirmed this association in a Swedish cohort (risk ratio 1.41, P =
0.02), whereas Rothwell et al. (28) demonstrated, in a meta-analysis of available literature, that
age greater than 75 years confers a 36% increase in the risk of stroke or death owing to CEA.
Although the concept of a high-risk CEA population remains controversial (6,21,26), our
findings raise the possibility that post-CEA stroke and neurocognitive decline share related
risk factors and etiologies.

Our findings are also consistent with studies of neurocognitive injury after coronary artery
bypass surgery. Postoperative declines in NPMT performance are a well-recognized
consequence of coronary artery bypass surgery, occurring in as many as 47% of patients, and
are though to be ischemic in nature (2,33). Similar to our findings, advanced age and diabetes
have been identified as independent predictors of cognitive dysfunction after coronary artery
bypass surgery (23,24,29–31).

The difference in incidence of neurocognitive injury after CEA at Day 1 (18%) and Day 30
(9%) suggests that postoperative changes in cognition vary over time, with patients gradually
regaining cognitive abilities after surgery. The finding that age predicts injury at both time
points, whereas diabetes becomes a significant risk factor only 1 month after surgery, suggests
that cognitive decline at these time points may represent heterogenous entities with distinct
underlying causes. Cognitive dysfunction on postoperative day one is age-dependent, and may
be owing to age-related changes in cerebral autoregulation and oxygenation (2,10,27). It is
likely that these changes in cognition are particular to CEA, as all scores were generated in
comparison to a similarly aged control population that underwent a comparable anesthetic
regimen. The CEA-specific nature of this neurocognitive decline is supported by the
consistency of the mean TDS scores within the LL control group at Days 1 and 30 (2.60 ± 2.27
and 2.66 ±1.99, respectively), whereas the CEA scores improved over time (3.80 ± 3.95 and
2.64 ± 2.93, respectively). Cognitive decline on Day 30 remains age-dependent, with diabetes
also predisposing to injury at this time point. This may represent an impaired ability of older
and diabetic patients to adequately recover from neuropsychometric injury, and is consistent
with prior studies identifying age and diabetes as predictors of poor functional recovery after
stroke (17,22,23,34).

Owing to small absolute surgical benefits, the role of CEA in asymptomatic patients is
particularly controversial (1,4). This has led a number of investigators to hypothesize that
symptomatic and asymptomatic carotid stenosis are distinct pathological entities (9,18). In an
effort to evaluate potential differences between symptomatic and asymptomatic patients, we
attempted to perform subgroup analyses by symptomatology on Day 1 and Day 30. On
postoperative Day 1, advanced age was the only significant risk factor for neurocognitive
dysfunction among asymptomatic patients (2.84, 1.22–6.19, 0.01). In symptomatic patients,
increasing weight-adjusted doses of midazolam reduced the risk of NPMT decline (0.53, 0.31–
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0.92, 0.2). Although the relevance of this finding is uncertain, previous investigations in animal
stroke models have suggested a potential neuroprotective effect of midazolam (8,37). Subgroup
analysis at Day 30 was obviated by the limited number of injured patients (five in symptomatic
cohort, nine in asymptomatic cohort). Currently, these findings are underpowered to draw firm
conclusions regarding the nature of subtle neurocognitive decline in symptomatic versus
asymptomatic patients.

We demonstrate that advanced age predisposes to neurocognitive decline after CEA on Days
1 and 30. For each decade increase in age, the risk of injury is elevated 93 and 157%,
respectively. Additionally, diabetes increases the risk of neurocognitive dysfunction more than
fourfold on postoperative Day 30. In the calculus of weighing the risks and benefits of CEA,
the perioperative complication rate is crucial in choosing the optimal treatment. Small increases
in operative risk may negate the benefits of CEA. Further work is necessary to determine the
role these neurocognitive deficits may play in appropriately selecting patients for CEA.
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FIGURE 1.
Incidence of neurocognitive decline on postoperative Day 1 by age. The rates of neurocognitive
decline on Day 1 for patients younger than 65 years, 65 to 74 years, and older than 74 years of
age are 9.3, 14.9, and 28.6%, respectively (Kruskal-Wallis ANOVA P = 0.03).
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FIGURE 2.
Incidence of neurocognitive decline at Day 30 by diabetes status. On Day 30, 21.1% of diabetics
and 5.3% of non-diabetics experienced significant declines in NPMT performance (Fisher P
= 0.007). DM, diabetes mellitus.
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TABLE 1
Demographic and intraoperative parameters of carotid endarterectomy patientsa

CEA patients (%)
No. of patients 186
Age (yr) 69.8 ± 8.5
Male 129 (69%)
BMI ≥ 30 39 (21%)
Smoker 102 (55%)
Diabetes mellitus 47 (25%)
Hypertensionb 118 (63%)
Hypercholesterolemiac 99 (53%)
Statin medication 97 (52%)
Previous MI 53 (28%)
Symptomatic 77 (41%)
Previous contralateral CEA 25 (13%)
Right operative side 97 (52%)
Duration of surgery (min) 153.6 ± 42.4
Cross-clamp time (min) 45.6 ± 18.8
Shunt placement 5 (3%)
Fentanyl (μg/kg) 2.2 ± 1.2
Midazolam (mg/kg) 0.03 ± 0.01
a
CEA, carotid endarterectomy; BMI, body mass index; MI, myocardial infarction. Continuous data is presented as mean ± standard deviation.

b
Hypertension is defined as systolic blood pressure greater than 140 or use of antihypertensive medication.

c
Hypercholesterolemia is defined as blood cholesterol greater than 200 or use of anticholesterol medication.

Neurosurgery. Author manuscript; available in PMC 2008 October 7.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Mocco et al. Page 12

TABLE 2
Risk factors for neurocognitive decline on postoperative Day 1a

Injured (%) Uninjured (%) OR (95% CI) P value
No. of patients 33 (18) 153 (82) — —
Age (yr) 73.2 ± 7.7 69.1 ± 8.5 1.93 (1.15, 3.25) 0.01
Male 22 (67) 107 (70) — —
BMI ≥ 30 6 (18) 33 (22) — —
Smoker 19 (58) 83 (54) — —
Diabetes mellitus 11 (33) 36 (24) — —
Hypertensionb 21 (64) 97 (63) — —
Hypercholesterolemiac 16 (48) 83 (54) — —
Statin medication 13 (39) 84 (55) — —
Previous MI 10 (30) 43 (28) — —
Symptomatic 16 (48) 61 (40) — —
Previous contralateral CEA 6 (18) 19 (12) — —
Right operative side 21 (64) 76 (50) — —
Duration of surgery (min) 153.3 ± 46.6 153.7 ± 18.2 — —
Cross-clamp time (min) 47.5 ± 18.2 45.2 ± 19.0 — —
Shunt placement 2 (6) 3 (2) — —
Fentanyl (μg/kg) 2.2 ± 1.3 2.2 ± 1.2 — —
Midazolam (mg/kg) 0.03 ± 0.01 0.03 ± 0.01 — —
a
OR, odds ratio; CI, confidence interval; BMI, body mass index; MI, myocardial infarction; CEA, carotid endardectomy. OR is expressed in units of

decades for age. No other variables met univariate P value less than 0.10 for inclusion in multivariate analysis. Continuous data is presented as mean ±
standard deviation.

b
Hypertension is defined as systolic blood pressure greater than 140 or use of antihypertensive medication.

c
Hypercholesterolemia is defined as blood cholesterol greater than 200 or use of anticholesterol medication.
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TABLE 3
Risk factors for neurocognitive decline on postoperative Day 30a

Injured (%) Uninjured (%) OR (95% CI) P value
No. of patients 14 (9) 139 (91) — —
Age (yr) 73.2 ± 7.6 69.8 ± 8.2 2.57 (1.01, 6.51) <0.05
Male 12 (86) 92 (66) — —
BMI ≥ 30 5 (36) 21 (15) 2.27 (0.61, 8.40) NS
Smoker 6 (43) 73 (53) — —
Symptomatic 5 (36) 58 (42) — —
Diabetes mellitus 8 (57) 30 (22) 4.26 (1.15, 15.79) 0.03
Hypertension 7 (50) 92 (66) — —
Hypercholesterolemia 7 (50) 74 (53) — —
Statin medication 7 (50) 73 (53) — —
Previous MI 2 (14) 33 (24) — —
Previous contralateral CEA 3 (21) 13 (9) — —
Right operative side 7 (50) 80 (58) — —
Duration of surgery (min) 159.6 ± 45.8 155.0 ± 43.9 — —
Cross-clamp time (min) 44.1 ± 17.2 45.0 ± 19.1 — —
Shunt placement 0 (0) 3 (2) — —
Fentanyl (μg/kg) 1.78 ± 0.73 2.32 ± 1.27 — —
Midazolam (mg/kg) 0.03 ± 0.02 0.03 ± 0.01 0.73 (0.44, 1.24) NS
a
OR, odds ratio; CI, confidence interval; BMI, body mass index; NS, not significant; MI, myocardial infarction; CEA, carotid endarterectomy. OR for

age is per each decade increase. Diabetes and BMI ≥30 are categorical variables with ORs that represent the increased risk of having the condition. OR
for midazolam is per 0.01mg/kg increase. Remaining variables did not meet univariate P value of less than 0.10 for inclusion in multivariate analysis.
Continuous data is presented as mean ± standard deviation.

b
Hypertension is defined as systolic blood pressure greater than 140 or use of antihypertensive medication.

c
Hypercholesterolemia is defined as blood cholesterol greater than 200 or use of anticholesterol medication.
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