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Abstract
Circulating estrogens are associated with breast cancer risk in postmenopausal women. Given that
estrogen metabolites are potentially both mitogenic and genotoxic, it is possible that plasma levels
of estrogen metabolites are related to breast cancer risk. We conducted a prospective, nested case-
control study within the Nurses' Health Study. Blood samples, collected in 1989-1990, were assayed
for 2-OH estrone and 16α-OH estrone among 340 cases and 677 matched controls not taking
postmenopausal hormones. Multivariate relative risks (RR) and 95% confidence intervals (CI) were
calculated by conditional logistic regression, adjusting for breast cancer risk factors. Neither 2-OH
estrone nor 16α-OH estrone concentrations were significantly associated with breast cancer risk
overall (top vs. bottom quartile RR=1.19, 95% CI (0.80-1.79), p-trend=0.40 for 2-OH estrone and
RR=1.04, 95% CI (0.71-1.53), p-trend=0.81 for 16α-OH estrone). The ratio between the two
metabolites (2:16α-OH estrone) was similarly unrelated to risk overall (1.30, 95% CI (0.87-1.95), p-
trend=0.35). While no associations were detected among women with ER+/PR+ tumors, significant
positive associations were observed for 2-OH estrone and the 2:16α-OH estrone ratio among women
with ER-/PR- tumors (2-OH estrone RR=3.65 95% CI (1.23-10.81), p-trend=0.01, p-
heterogeneity=0.02; 2:16α-OH estrone RR=3.70, 95% CI (1.24-11.09), p-trend=0.004, p-
heterogeneity=0.005). These data do not support the hypothesized inverse associations with 2-OH
estrone and the 2:16α-OH estrone ratio nor the hypothesized positive association with 16α-OH
estrone. The significant positive associations with 2-OH estrone and the 2:16 OH estrone ratio among
women with ER-/PR- tumors needs to be replicated in future studies.
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Introduction
Circulating estrogens, including estradiol, estrone, and estrone sulfate are positively associated
with breast cancer risk in postmenopausal women (1-4). The metabolism of these estrogens
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yields products that are potentially both estrogenic and genotoxic (5-10). It is possible that
circulating levels of estrogen metabolites are related to breast cancer risk.

Oxidation of estrogens occurs at the C-2 and C-4 positions to yield 2- and 4-hydroxy (2-OH,
4-OH) estrogens and at the C-16 position to yield 16α-OH estrone (5,11). The estrogenic and
genotoxic potential varies by metabolite. Although 2-OH estrogens bind to the estrogen
receptor (ER) with affinity equivalent to or greater than estradiol (12,13), they may act as only
weak mitogens (14,15), or as inhibitors of proliferation (16,17). While 16α-OH estrone binds
to the ER with lower affinity than estradiol, it binds covalently (18-20) and once bound, fails
to down-regulate the receptor (21). Thus, 16α-OH estrone stimulates cell proliferation in a
manner comparable to estradiol in ER+ breast cancer cell lines (6,22,23) and may have stronger
estrogenic properties than 2-OH estrone. Animal and in vitro studies have shown that hydroxy
estrogens can induce DNA damage either directly, through the formation of quinones and DNA
adducts, or indirectly, through redox cycling and the generation of reactive oxygen species
(11). Although 2-OH estrogens are capable of redox cycling, the semiquinones and quinones
(i.e., the oxidized forms) form stable DNA adducts that are reversible without DNA destruction
(24-26). 16α-OH estrone increases unscheduled DNA synthesis in mouse mammary cells
(27) and hence also may be genotoxic. Given the different potential for estrogenic and
genotoxic activity by these metabolites, it has been hypothesized that metabolism favoring the
2-OH over the 16α-OH pathway may be inversely associated with breast cancer risk (28).

To date, several epidemiologic studies have examined the association between the 2-OH and
16α-OH estrogen metabolites and breast cancer risk with inconclusive results. Five prospective
studies of either urinary (29-31) or serum (32,33) estrogen metabolites among postmenopausal
women have been published to date. No significant associations have been observed between
2-OH estrone, 16α-OH estrone, or the 2:16α-OH estrone ratio and breast cancer risk and the
direction of the estimates is not consistent across studies.

We investigated the associations of the 2-OH and 16α-OH estrone metabolites and the 2:16α-
OH estrone ratio with breast cancer risk in a nested case-control study among postmenopausal
women within the Nurses' Health Study (NHS). A total of 340 cases and 677 controls were
included, which is a subset of our previous breast cancer case-control study of estradiol and
estrone sulfate (4).

Methods
Study Population

In 1976, 121,700 female, married, registered nurses, ages 30 to 55 years, were enrolled in the
NHS. Biennially, participants have completed mailed questionnaires that collect information
on various exposures, including many breast cancer risk factors, and new disease diagnoses.

During 1989-1990, blood samples were collected from 32,826 cohort members aged 43 to 69
years. Details regarding the blood collection methods have been published previously (34,
35). Briefly, each woman arranged to have her blood drawn and shipped, via overnight courier
and with an ice-pack, to our laboratory, where it was processed; 97% of samples arrived at our
laboratory within 26 hours of being drawn. The stability of estrogens in whole blood for 24 to
48 hours has been documented previously (36). Samples have been stored in continuously
monitored liquid nitrogen freezers since collection. As of 2000, the follow-up rate among the
blood cohort was 99%. The study was approved by the Committee on the Use of Human
Subjects in Research at the Brigham and Women's Hospital.

Cases and controls are women who, at blood collection, were postmenopausal (defined as
having a natural menopause (no periods in previous 12 months) or bilateral oophorectomy, or
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a hysterectomy with at least one ovary remaining if they were at least 56 years old (if a non-
smoker) or 54 years old (if a current smoker), ages at which natural menopause had occurred
in 90% of these groups in the overall cohort) and had not used postmenopausal hormones
(PMH) for at least three months. Cases had no reported cancer diagnosis (other than non-
melanoma skin cancer) before blood collection and were diagnosed with breast cancer between
June 1, 1992 and May 30, 2000. Overall, 340 cases of breast cancer were reported (n=277
invasive) and confirmed by medical record review (n=334) or by verbal confirmation of the
diagnosis by the nurse (n=6). Median time from blood collection to diagnosis was 80 months.
Two controls (total n=677) were matched per case by age (±2 years), and month (±1 month),
time of day (±2 hours), and fasting status at blood collection (≥10 hours since a meal, <10
hours or unknown). Ten controls from earlier follow-up cycles became cases in later follow-
up cycles; these women serve as both cases and controls in this analysis, as is appropriate in
incidence density sampling.

Laboratory Analyses
Estrogen metabolites were measured by a monoclonal antibody-based enzyme assay
(ESTRAMET™2/16, Immuna Care Corp., Blue Bell, PA). The assays for 2-OHE1 and 16α-
OHE1 in serum/plasma were developed from reagents and methods for measuring the
metabolites in urine (37-39). The assays for urinary estrogen metabolites have been validated
against gas chromatography-mass spectroscopy (GC-MS) methods (37,40). Serum assays were
then validated against urine assays by adding known amounts of urinary metabolites to serum
samples and then performing the serum assay. Assays for estrone were conducted in three
batches (for cases diagnosed through June 1998 (n=249) and their matched controls) and
estrone sulfate and estradiol were conducted in four batches (all cases and controls) at Quest
Diagnostic's Nichols Institute (San Juan Capistrano, CA). Assay methods have been described
previously in detail (2,34). In brief, samples were assayed by radioimmunoassay following
extraction and celite chromatography (41-45). After extraction of estrone, estrone sulfate was
assayed by radioimmunoassay of estrone, after enzyme hydrolysis, extraction, and column
chromatography (46).

Each case and her two matched controls were assayed together in the same batch; samples were
ordered randomly and labeled so that laboratories were masked to case-control status. The
inter-assay coefficient of variation (CV) from masked replicate plasma samples in each batch
6% (16α-OH estrone) and 15% (2-OH estrone); CVs for the other estrogens were within this
range. When plasma hormone values were reported as less than the detection limit (2-OH
estrone 20 pg/mL; 16α-OH estrone 10 pg/mL; estradiol, 2 pg/mL; estrone, 10 pg/mL; estrone
sulfate, 40 pg/mL), we set the value to half this limit (16α-OHE1 (n=9), estradiol (n=2), estrone
(n=21), and estrone sulfate (n=6)).

Reproducibility Study
A subset of 186 postmenopausal NHS participants who gave blood samples during the
1989-1990 collection also provided two additional samples during the following two years.
These women had not used postmenopausal hormones for at least three months and had no
previous diagnosis of cancer (except non-melanoma skin cancer) at the time of each blood
collection. Blood samples from 70 of these women, chosen randomly, were assayed for
estrogen metabolites at the same laboratory to assess hormone reproducibility over time, as
has been published previously for other hormones (47).

Covariate Data
We obtained breast cancer risk factor information from the biennial NHS questionnaires. Age
at menarche and height were queried in 1976. Age at first birth and parity were assessed in
1976 and updated until 1984. Family history of breast cancer was queried in 1976, 1982, 1988,
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1992, 1996, and 2000. Weight at age 18 years was queried in 1980; current weight was queried
at blood collection. Menopausal status, type of and age at menopause, PMH use, and history
of benign breast disease were assessed biennially. Alcohol consumption was assessed with a
semiquantitative food-frequency questionnaire in 1990.

Statistical Analysis
Using the log-transformed hormone values, we estimated between-person and within-person
variances from the three sets of metabolite measurements by random effects models.
Reproducibility of estrone metabolites over time was assessed by calculating intraclass
correlation coefficients (ICCs) by dividing the between-person variance by the sum of the
within- and between-person variances.

Plasma hormone levels were categorized into quartiles, with cut points based on the control
distribution. For estrone, estrone sulfate, and estradiol, the control distribution varied across
batches such that quartiles based on all controls combined resulted in uneven batch-specific
distributions. Because the mean value of quality-control replicates in each batch varied
similarly, much (if not all) of this difference was due to laboratory drift over time rather than
true differences between batches. Thus, we combined batches that had similar cut points but
otherwise used batch-specific cut points (4).

We removed one matched set from the analysis because the case's estrogen values were in the
premenopausal range. We used the Studentized deviate many-outlier procedure (48) to identify
and exclude statistical outliers (two 2-OH estrone values ≥626 pg/mL and three estradiol values
≥ 76 pg/mL).

We used a mixed-effects regression model to test the paired differences in log-transformed
hormone levels between cases and their matched controls. To estimate relative risks (RRs) and
95% confidence intervals (CIs), we used conditional logistic regression, controlling for breast
cancer risk factors (see Table 3 footnote). Estimates from age-adjusted regression models were
similar to those from multivariate models; therefore only multivariate results are presented.
We calculated tests for trend by modeling the medians of the quartiles as a continuous variable
and calculating a Wald statistic. Interactions, on the multiplicative scale, between hormone
levels and breast cancer risk factors were evaluated by adding an interaction term (log hormone
quartile medians X presence or absence of risk factor) to the logistic models and calculating a
Wald statistic. In stratified analyses, we used unconditional logistic regression, adjusting for
matching factors, since multivariate unconditional and conditional logistic regression models
were essentially identical. To test whether associations differed by estrogen and progesterone
receptor (ER/PR) status of the tumor, we used polychotomous logistic regression (49) with
three endpoints (ER+/PR+, ER-/PR-, and no breast cancer). We used a likelihood ratio test to
compare a model with separate metabolite slopes in each case group to a model with a common
slope. All analyses were conducted using SAS software, version 9 (SAS Institute, Cary, NC).

Results
Reproducibility of the estrone metabolites over three years was comparable to other steroid
hormones in this population (47), with ICCs of 0.63 for 2-OH estrone, 0.80 for 16α-OH estrone,
and 0.73 for the 2:16α-OH estrone ratio. Among controls, neither metabolite was strongly
correlated with circulating estrogen levels (e.g., the strongest correlation was r=0.20 (p<0.001)
between estrone and 16α-OH estrone) (Table 1). In addition, the two metabolites were only
modestly correlated with one another (r=0.26, p<0.001).

Cases were slightly heavier than controls (BMI=27.1 vs. 26.1), were more likely to be
nulliparous (9.4% vs. 5.3%), and had a higher prevalence of both benign breast disease (46.2%
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vs. 37.4%) and family history of breast cancer (19.7% vs. 14.0%) (Table 2). There were no
significant differences in estrogen metabolite concentrations or the 2:16α-OH estrone ratio
between cases and controls, but cases had significantly higher levels of estradiol, estrone, and
estrone sulfate compared with controls (p<0.001 for each) as previously published (2,4) (Table
3).

2-OH estrone was not significantly associated with breast cancer risk overall (top vs. bottom
quartile RR=1.19, 95% CI (0.80-1.79), p-trend=0.40) (Table 4). No association was observed
when cases were restricted to ER+/PR+ (n=164) (top vs. bottom quartile RR=1.00, 95% CI
(0.60-1.67), p-trend=0.95), but a significant positive association was observed among ER-/PR-
cases (n=41) (comparable RR=3.65 95% CI (1.23-10.81), p-trend=0.01) (p-
heterogeneity=0.02). No significant associations were observed for ER+/PR- cases (n=33)
(data not shown); there were too few cases of ER-/PR+ (n=6) to evaluate separately. When
invasive (n=277) and in situ (n=57) cases were evaluated separately, results were similar to
the overall results with both case types combined (data not shown).

No significant associations were observed between 16α-OH estrone and breast cancer risk
either overall (top vs. bottom quartile RR=1.04, 95% CI (0.71-1.53), p-trend=0.81) or by
hormone receptor status (comparable RR=1.05, 95% CI (0.63-1.73), p-trend=0.85 for ER+/PR
+ tumors (n=164) and RR=1.39, 95% CI (0.47-4.06), p-trend=0.78 for ER-/PR- tumors (n=41),
p-heterogeneity=0.81) (Table 4). Results were similar among invasive and in situ cases (data
not shown).

Similar to the association with 2-OH estrone, levels of 2:16α-OH estrone were not associated
with breast cancer risk overall (top vs. bottom quartile RR=1.30, 95% CI (0.87-1.95), p-
trend=0.35) or with ER+/PR+ tumors (n=164) (comparable RR=0.88, 95% CI (0.52-1.48), p-
trend=0.51). However, we observed a statistically significant positive association with ER-/
PR- tumors (n=41) (comparable RR=3.70, 95% CI (1.24-11.09), p-trend=0.004) and the
difference in the associations by tumor receptor status was statistically significant (p-
heterogeneity=0.005) (Table 4). Results did not differ from overall when stratified by invasive
and in situ tumors (data not shown).

When we adjusted for estrone, estrone sulfate, or estradiol, results were not substantially
different for either metabolite or their ratio (data not shown). In addition, results were
unchanged when stratified by estrogen levels (top two vs. bottom two quartiles). Stratification
by BMI (<25 vs. ≥25) resulted in similar observations for 2-OH estrone. Among leaner women
(BMI<25), levels of 16α-OH estrone were suggestively inversely associated with breast cancer
risk (top vs. bottom quartile RR=0.56, 95% CI (0.28-1.11); p-trend=0.06) while levels of the
2:16α-OH estrone ratio were significantly positively associated with risk (quartiles 2-4 RR
(95% CI)=2.11 (1.02-4.35), 2.43 (1.18-5.02), 2.68 (1.27-5.66); p-trend=0.02). However, the
interactions between BMI and either 16α-OH estrone levels or the 2:16α-OH estrone ratio were
not statistically significant (p=0.12, 0.08, respectively). Associations with both metabolites
and the ratio were unchanged when stratified by time since blood collection (<6 years vs. 6-10
years) or age at blood collection (<62 vs. ≥62 years). When analyses were restricted to women
with no family history of breast cancer or women who had never used postmenopausal
hormones, results were similar to those of the overall analysis (data not shown).

Discussion
In this large prospective study of 2-OH and 16α-OH estrone metabolites and breast cancer risk,
we did not observe any significant associations overall with either individual metabolite or
with the ratio of the two metabolites. Although we observed significant positive associations
of both 2-OH estrone and the 2:16α-OH estrone ratio with ER-/PR-tumors, these results should
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be interpreted with caution given the small number of ER-/PR- tumors and that we are the first,
to our knowledge, to report such an association. In addition, though we observed a significant
positive association between the 2:16α-OH estrone ratio and breast cancer risk among lean
women, the differences observed by BMI were not statistically significant.

The reproducibility of these estrogen metabolites is comparable to or better than other
biomarkers with well established relationships to disease outcomes in epidemiologic studies,
such as cholesterol (ICC=0.65) (50) and blood pressure (ICC=0.60-0.64) (51), as well as
estradiol (0.68), estrone (0.74), and estrone sulfate (0.75) (47) which have been consistently
associated with breast cancer risk in this and other populations (1-4). Thus, the lack of observed
associations likely is not a result of poor reproducibility of a single measure of these
metabolites.

To date, several epidemiologic studies have examined the association between 2-OH estrone
and 16α-OH estrone and breast cancer risk. Several retrospective case-control studies have
produced conflicting results, though the analysis of hormone levels after diagnosis, which may
reflect tumor-driven activity, is a limitation of these studies (52-59). Five prospective studies
of eithaer urinary (29-31) or serum (32,33) estrogen metabolites among postmenopausal
women have been published to date, with case numbers ranging from 42 (29) to 272 (32) among
women who were not using postmenopausal hormones. No significant associations have been
observed between 2-OH estrone and breast cancer risk, with RRs ranging from 0.80 (33) to
1.61 (30) for the top vs. bottom quartile or quintile or a doubling of 2-OH estrone concentration
(comparable to our top vs. bottom quartile comparison). Three (30,32,33) of four (30-33)
studies observed RRs above 1 for the association between 16α-OH estrone and breast cancer
risk (range of RRs=1.23-2.47); none of the point estimates was statistically significant though
one trend was suggestive (top vs. bottom quartile RR=2.47, 95% CI (0.90-6.80), p=0.06)
(33). No significant associations have been observed with the 2:16α-OH estrone ratio, with
two studies reporting point estimates below 1 and two reporting estimates above 1 (range of
RRs=0.71-1.31) (29-32). Thus, similar to our overall findings, previous prospective studies
have not observed any significant associations with either 2-OH or 16α-OH estrone or the ratio
of the two metabolites and breast cancer risk overall.

Including our study, there have been a few reports of significant associations among subgroups
of women. However, the specific subgroup is not consistent across studies, nor do the
subgroups follow a predicted pattern. For example, we observed a suggestive inverse
association with 16α-OH estrone and a significant positive association with the 2:16α-OH
estrone ratio among lean women, suggesting possible associations in a low estrogen
environment. However, significant associations with both metabolites have been observed in
two other studies in environments suggestive of higher estrogen levels, namely high BMI and
among women on PMH. Specifically, Modugno et al (33) observed a combined effect of high
BMI and high 16α-OH estrone (RR=3.51, 95% CI (1.34-9.16) for women in the top tertile of
BMI and top half of 16α-OH estrone compared with lean women with lower 16α-OH estrone)
and Wellejus et al (31) observed significant positive associations among PMH users with 2-
OH estrone (RR for doubling=1.28, 95% CI (1.04-1.56)) and 2:16α-OH estrone ratio (RR for
doubling=1.25, 95% CI (1.02-1.53)).

To our knowledge, the study by Wellejus et al (31) is the only other prospective study to
examine these associations by hormone receptor status, although their results were not
consistent with ours. In our population of PMH nonusers, we observed no associations with
ER+/PR+ tumors, but significant positive associations with 2-OH estrone and the 2:16α-OH
estrone ratio among women with ER-/PR- tumors. In the Danish study, no associations were
observed with either ER+ or ER- tumors among PMH nonusers but significant positive
associations with 2-OH estrone and the 2:16α-OH estrone ratio were observed among PMH
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users with ER+, but not ER-, tumors. In a retrospective case-control study, Kabat et al (59)
observed a stronger inverse association of the 2:16α-OH estrone ratio with ER- tumors than
with ER+ tumors among postmenopausal women. Because circulating estrogen levels have
been associated more strongly with ER+/PR+ tumors than with ER-/PR- tumors (2), it seems
contrary that estrogen metabolites may be associated with ER-/PR- tumors. In addition, based
on animal studies, 2-OH estrone and the 2:16α-OH estrone ratio have been hypothesized to be
inversely associated with breast cancer risk (28), rather than positively associated as we
observed. Given that there are two different, though not necessarily mutually exclusive,
hypotheses of the mechanism by which estrogen metabolites may affect breast cancer risk, it
is possible that the genotoxicity of 2-OH estrone plays a role in hormone receptor negative
tumors (60). This study has several strengths, including that it is the largest study to date among
postmenopausal women not using PMH. Blood samples and risk factor information were
collected prior to diagnosis, minimizing the possibility of reverse causality or recall bias. Only
one blood sample per woman is a potential limitation, although our reproducibility data suggest
that one sample is an adequate representation of these metabolites over at least a few years.
Another limitation is the selectivity of estrogen metabolites, with no data on other potentially
important metabolites including 4-OH estrone. 4-OH estrogens have a greater estrogenic
potential than 2-OH estrogens, given the lower dissociation rate from estrogen receptors
compared with estradiol (61), and are potentially more genotoxic since the quinones form
unstable adducts, leading to depurination and mutation in vitro and in vivo (10,25,62-64).
Furthermore, the balance between the catechol (i.e., 2-OH and 4-OH) and methoxy (i.e., 2-Me
and 4-Me) estrogens may impact risk. Thus, the investigation of just 2-OH and 16α-OH estrone
may be inadequate to rule out the importance of estrogen metabolites on breast cancer risk.

In conclusion, our results do not support the hypothesis that metabolism favoring the 2-OH
estrone pathway is more beneficial to breast cancer risk than that favoring the 16α-OH estrone
pathway. Though we observed positive associations with 2-OH estrone and the 2:16α-OH
estrone ratio among women with lower BMI and women with ER-/PR-tumors, these results
were unexpected and require replication. Future studies should include a broader panel of
metabolites to investigate the estrogen metabolism pathway and its possible role in breast
cancer risk more thoroughly.
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Table 2
Characteristics (Mean (SD) or %) of breast cancer cases and matched controls, Nurses' Health Study

Characteristic Cases (N=340) Controls (N=677)

Age, yrs 61.5 (4.7) 61.5 (4.7)
Body mass index, kg/m2 27.1 (5.3) 26.1 (4.6)
Age at menarche, yrs 12.6 (1.4) 12.7 (1.5)
Parity, children 3.2 (1.8) 3.3 (1.8)
Age at first birth*, yrs 25.8 (3.5) 25.7 (3.5)
Age at menopause**, yrs 49.9 (4.0) 49.6 (4.6)
Nulliparous, % 9.4 5.3
History of benign breast disease, % 46.2 37.4
Family history of breast cancer, % 19.7 14.0

*
Among parous women only

**
Among women with natural menopause or bilateral oophorectomy only
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Table 3
Median (range*) of hormones among breast cancer cases and matched controls

Cases (N=340) Controls (N=677) p-value

2-OH estrone (pg/ml) 129 (86-209) 125 (82-195) 0.20
16α-OH estrone (pg/ml) 344 (262-473) 349 (254-466) 0.80
2:16α-OH estrone ratio 0.37 (0.24-0.60) 0.37 (0.23-0.59) 0.54
Estradiol (pg/ml) 8 (4-16) 6 (4-12) <0.001
Estrone (pg/ml) 26 (15-42) 22 (13-37) <0.001
Estrone sulfate (pg/ml) 272 (121-669) 207 (93-516) <0.001

*
From the median of the bottom quartile (12.5 percentile) to the median of the top quartile (87.5 percentile)
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