
NEUROIMAGING EVIDENCE FOR OBJECT MODEL VERIFICATION
THEORY: ROLE OF PREFRONTAL CONTROL IN VISUAL OBJECT
CATEGORIZATION

Giorgio Ganis1,2,3, Haline E. Schendan2,4,5, and Stephen M. Kosslyn3,6
1 Department of Radiology, Harvard Medical School, Boston, MA 02115

2 Massachusetts General Hospital, Martinos Center, Charlestown, MA 02129

3 Department of Psychology, Harvard University, Cambridge, MA 02138

4 Department of Psychology, Tufts University, Medford, MA 02155

5 Department of Psychology, Boston University, Boston MA 02215 USA

6 Department of Neurology, Massachusetts General Hospital, Boston, MA 02142

Abstract
Although the visual system rapidly categorizes objects seen under optimal viewing conditions, the
categorization of objects seen under impoverished viewing conditions not only requires more time
but also may depend more on top-down processing, as hypothesized by object model verification
theory. Two studies, one with functional magnetic resonance imaging (fMRI) and one behavioral
with the same stimuli, tested this hypothesis. FMRI data were acquired while people categorized
more impoverished (MI) and less impoverished (LI) line drawings of objects. FMRI results revealed
stronger activation during the MI than LI condition in brain regions involved in top-down control
(inferior and medial prefrontal cortex, intraparietal sulcus), and in posterior, object-sensitive, brain
regions (ventral and dorsal occipitotemporal, and occipitoparietal cortex). The behavioral study
indicated that taxing visuospatial working memory, a key component of top-down control processes
during visual tasks, interferes more with the categorization of MI stimuli (but not LI stimuli) than
does taxing verbal working memory. Together, these findings provide evidence for object model
verification theory and implicate greater prefrontal cortex involvement in top-down control of
posterior visual processes during the categorization of more impoverished images of objects.

Introduction
The visual system can rapidly categorize clearly perceived, single objects into a known class.
For instance, the human brain responds differently to images of any common object versus any
face within 125 ms and to specific instances of correctly classified common objects versus
unidentified objects within 200-300 ms (Schendan et al., 1998; Schendan and Kutas, 2002).
This remarkable speed of processing has led many theorists to focus on fast bottom-up
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processes during object categorization, thought to be implemented in neural structures of the
ventral visual pathway (Biederman, 1987; Grill-Spector and Malach, 2004; Perrett and Oram,
1993; Poggio and Edelman, 1990; Riesenhuber and Poggio, 2002; Rousselet et al., 2003; Wallis
and Rolls, 1997). Nevertheless, in ordinary environments, objects are often not clearly
perceived because of shadows, partial occlusion by other objects, poor lighting, and so forth.
In these situations, object categorization is markedly slower (Schendan and Kutas, 2002). In
two studies, we examined categorization of common objects at the basic-level (e.g., dog, cat,
car, or chair), which is the main focus of most theories of visual object categorization (e.g.,
Biederman, 1987), as opposed to a broader superordinate level of categorization (e.g.,
mammals, vehicles, or furniture) or a more specific subordinate level (e.g., collie dog, Siamese
cat, Prius car, or Windsor chair) or identification of a particular unique item (e.g., an individual
person, my dog or cat, your car, or grandfather's chair) (Rosch et al., 1976; Smith and Medin,
1981).

To explain how objects can be categorized even when the image is impoverished, some
theorists hypothesize that top-down control processes augment bottom-up processes. Top-
down control processes direct a sequence of operations in other brain regions, such as during
the engagement of voluntary attention or voluntary retrieval of stored information (Ganis and
Kosslyn, in press; Miller and Cohen, 2001; Miller and D'Esposito, 2005). According to these
theories, top-down control processes play a crucial role after an initial bottom-up pass through
the visual system. If the input image is impoverished, this first pass may provide only weak
candidate “object models” (i.e., structural representations stored in long-term memory) for the
match with the input (Kosslyn et al., 1994; Lowe, 1985). Some theorists have proposed that
top-down processes drive object model verification (Lowe, 2000), a process that determines
which one of the object models stored in long-term memory best accounts for the visual input.
This verification process is engaged during the categorization of any image. However, it only
runs to completion when bottom-up processes produce partial or weak matches between the
input and stored object models, which is more often the case with more impoverished images.

In our view, top-down processes are recruited to evaluate stored models (Kosslyn et al.,
1994). To date, researchers have reported only sparse neurocognitive evidence for the role of
top-down control processes in object categorization (for recent reviews see, Miller and
D'Esposito, 2005; Ganis and Kosslyn, in press). This is surprising because the role of top-down
processing is a core issue that must be addressed to develop a comprehensive theory of visual
object categorization.

In the present article, we report two studies, one using neuroimaging and one using behavioral
interference methods, to evaluate this class of accounts of how objects are categorized when
seen under impoverished viewing conditions. To this end, we used line drawings of objects
that were impoverished by removing blocks of pixels, henceforth referred to as impoverished
objects (note, that the objects themselves were not impoverished, but rather it was the pictures
of the objects that were impoverished – but the present notation is more concise than detailing
the stimuli everytime). In the first study, fMRI was used to test specific predictions about the
categorization of more impoverished (MI) versus less impoverished (LI) objects. Top-down
control processes are thought to be implemented in a prefrontal and posterior parietal network
(e.g., Corbetta et al., 1993; Hopfinger et al., 2000; Kastner and Ungerleider, 2000; Kosslyn,
1994; Miller and D'Esposito, 2005; Wager et al., 2004; Wager and Smith, 2003). Thus, one
prediction is that categorizing MI objects should engage frontoparietal brain networks involved
in top-down control more strongly than does categorizing LI objects. We propose that the
specific processes that are engaged more by MI than LI objects include the following cognitive
control processes (cf., Kosslyn et al., 1994; Kosslyn et al., 1995): (a) Retrieving Distinctive
Perceptual Attributes, which involves activating perceptual knowledge stored in long-term
memory associated with a candidate object model, especially those perceptual attributes that

Ganis et al. Page 2

Neuroimage. Author manuscript; available in PMC 2008 October 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



are most distinctive for that object model (e.g., a section of a wing, if a candidate object is an
airplane); (b) Attribute Working Memory (WM), which maintains retrieved knowledge about
distinctive visual attributes of the candidate object model and compares it with the visual input;
(c) Covert Attention Shifting, which shifts attention to locations where such distinctive
attributes are likely to be found; and, (d) Attribute Biasing, which consists of biasing
representations of these attributes to facilitate detecting and encoding them. Information
obtained following top-down processing may reveal that expected attributes are indeed present
at the expected locations. This would constitute evidence that the candidate object is the one
being perceived.

We thus specifically predicted stronger activation in regions of prefrontal cortex (PFC) and
inferior and superior parietal regions that are involved in knowledge retrieval, WM and
attentional processes (e.g., Corbetta et al., 1993; de Fockert et al., 2001; Hopfinger et al.,
2000; Kastner and Ungerleider, 2000; Kosslyn et al., 1995; Petrides, 2005; Smith and Jonides,
1999; Oliver and Thompson-Schill, 2003; Wager et al., 2004; Wager and Smith, 2003). In
contrast, bottom-up processing accounts are essentially agnostic with regard to areas outside
of the ventral stream; for instance, although PFC engagement is thought to be task dependent,
any visual stimulus that is categorized (be it LI or MI) is assumed to be processed similarly at
the PFC stage. Thus, these accounts would not predict differences in activation in fronto-
parietal networks between successfully categorized MI and LI objects (Riesenhuber and
Poggio, 2002).

We also predicted that categorizing MI objects, relative to LI, should more strongly activate
regions of occipital, ventral temporal and inferior posterior parietal cortex that play key roles
in representing or processing information about visually perceived objects (Hasson et al.,
2003), hereafter referred to as object-sensitive regions. This is because the top-down control
processes recruited during object model verification (i.e., retrieving distinctive attributes,
holding them in working memory, shifting attention, and biasing relevant features) work in
concert with these posterior regions. Therefore, for MI objects (relative to LI ones), top-down
processing should recruit neuronal populations in posterior object-sensitive regions until
categorization is achieved, which would thereby result in more overall activation of these
regions for MI than LI objects.

In contrast, bottom-up processing accounts (Riesenhuber and Poggio, 2002) would predict no
difference or the opposite effect (i.e., MI activation should be weaker than LI activation)
because MI objects contain fewer visual features than LI objects. Bottom-up processing
accounts postulate categorization via populations of feature detectors that are organized
hierarchically along the ventral stream. On average, impoverished images with fewer visual
features should result in fewer units being activated, and each unit may be activated more
weakly. This would predict that categorizing MI objects, relative to LI, should activate these
regions less strongly.

In addition, we used two independent localizer tasks. One localizer task defined object-
sensitive regions, which allowed us to use our experimental results to test our hypotheses in
these regions. A second localizer allowed us to remove the contributions of eye movement
regions, adjacent to the prefrontal and parietal areas of interest, from the experimental analyses.

In the second study, we augmented the neuroimaging evidence, which is inherently
correlational in nature, with causal evidence. We used a behavioral interference paradigm to
investigate an additional prediction: If the categorization of impoverished objects relies upon
top-down control processes, then a concurrent task that engages some of these same processes
should interfere with the categorization of MI objects – and should do so more than it interferes
with the categorization of LI objects. The design and predictions of this study rest on the
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following assumptions: (a) Top-down control relies on WM processes (Smith and Jonides,
1999).(b) WM processes in dorsal versus ventral lateral PFC, respectively, may be
distinguished according to the content they operate upon, such as spatial versus nonspatial
(Romanski, 2004) or relations versus single items (Ranganath and D'Esposito, 2005), or
according to the processes performed, such as monitoring and manipulation versus
maintenance (Petrides, 2005). (c) WM and attentional processes share common neural
resources (Awh and Jonides, 2001; de Fockert et al., 2001; Wager et al., 2004). (d) During top-
down model verification, WM and attentional processes need to maintain, keep track of, and
manipulate visual representations of distinctive attributes of the candidate objects and their
probable spatial locations (Kosslyn et al., 1994; Kosslyn et al., 1997). To our knowledge, this
is the first study explicitly relating WM processes to processes involved in the categorization
of impoverished objects.

Finally, we note that the use of top-down processing is not all-or-none, but rather falls along
a continuum. Thus, our manipulation should vary only the degree to which such processing is
used in the task.

Materials and Methods
Experiment 1

Subjects—Twenty-one Harvard University undergraduates (12 females, 9 males; mean age
= 20 years), volunteered for the study for pay. All had normal or corrected-to-normal vision,
no history of neurological disease, and were right-handed. All subjects gave written informed
consent for the study according to the protocols approved by Harvard University and
Massachusetts General Hospital Institutional Review Boards. We analyzed data from 17
subjects; data from 4 subjects were not analyzed because of uncorrectable motion artifacts (2
subjects) or because they did not complete the study; demographics of these 4 subjects were
comparable to those of the entire group.

Stimuli—Line drawings of 200 objects from a standardized picture set (Snodgrass and
Vanderwart, 1980) were impoverished by removing random blocks of pixels (Figure 1), a
method referred to as fragmentation. This method of impoverishing pictures is atheoretical;
no assumptions are made about whether certain parts are more important than others to carry
out object categorization. In the following, fragmentation level per se refers to the proportion
of deleted pixel blocks in the image, regardless of how perceptual properties of each picture
affect categorization. Eight levels of fragmentation (from 1 to 8, with 8 corresponding to the
most fragmented version) were available for each picture, making up a fragmentation series.
The formula that expresses the proportion of deleted pixel blocks as a function of fragmentation
level is (modified from Snodgrass and Corwin, 1988):

Using this formula, for instance, the proportion of deleted blocks at levels 4 and 6 is 66% and
83%, respectively. For 150 of the objects, the fragmentation series were from the Snodgrass
and Corwin (1988) set. We used the same software algorithm originally used to produce that
set (Snodgrass et al., 1987) to generate the fragmentation series for the remaining 50 objects.

We then tested a separate group of 16 subjects to obtain normative data used to select 128
objects that included two fragmentation levels (high vs. low) such that: (a) each picture was
categorized correctly (i.e., defined by the acceptable names given in Snodgrass and
Vanderwart, 1988) by at least 75 % of people at the two levels; (b) for each picture, the RT for
the low fragmentation level was numerically lower than for the high fragmentation level. For

Ganis et al. Page 4

Neuroimage. Author manuscript; available in PMC 2008 October 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



different pictures, different fragmentation levels were used (which is a factor we later
considered in our analysis).

As control stimuli, 64 pseudo-objects were stimuli that could be real objects (in the sense that
they were not impossible objects that cannot exist in the Euclidean three-dimensional world)
but do not correspond to any known object and so are unidentifiable. The pseudo-objects were
from a prior study (Schendan et al., 1998) and had been created by rearranging the parts of our
object pictures. Objects and their corresponding pseudo-objects were fragmented using the
same procedures and to the same degree, thereby equating this aspect of perceptual similarity
(Figure 7a). Stimuli subtended 6 by 6 degrees of visual angle, on average with a visual contrast
of approximately 30% (dark pixels against a brighter background).

Procedure—The tasks were administered on a MacIntosh G3 Powerbook computer using
Psyscope software (Macwhinney et al., 1997). Stimuli were projected via a magnetically
shielded LCD video projector onto a translucent screen placed behind the head of each subject.
A front-surface mirror mounted on the head coil allowed the subject to view the screen. Prior
to the MRI session, general health history and Edinburgh Handedness (Oldfield, 1971)
questionnaires were administered.

Before the MRI session, subjects read instructions on the computer screen and paraphrased
them aloud. We corrected any misconceptions at this time. We then administered 10 practice
trials. Subjects pressed one key if they could categorize the visual stimulus and another key if
they could not. They were instructed to respond as quickly as possible without sacrificing
accuracy. Furthermore, they were instructed to fixate their gaze on the center of the screen at
all times, but eye movements were not otherwise controlled.

The MRI session consisted of 8 functional scans. During the first 4 scans, we presented the
pictures of objects and pseudo-objects for 2.2 s in a fast event-related paradigm. The average
stimulus onset asynchrony was 6.8 s, varying between 4 and 16 s from trial to trial, according
to a random sequence optimized for deconvolution using program ‘optseq2’ (Dale, 1999). The
order of conditions was randomized. Note, no mention was made of the existence of the pseudo-
objects: from the standpoint of subjects, the pseudo-objects were simply objects that they could
not categorize. A debriefing questionnaire at the end of the study revealed that none of the
subjects realized some stimuli were pseudo-objects.

For the next 2 scans, we localized object-sensitive brain regions by alternating grayscale
pictures of objects and textures in a blocked design (6 blocks, each lasting 60 s); the textures
were created using the standard method of scrambling the phase information in the Fourier
representation of the corresponding objects (Malach et al., 1995). For the last 2 scans, we
localized regions involved in the generation of saccadic eye movements to eliminate from
analyses any regions related to saccades per se. In the eye movement condition, a dot appeared
at random locations on the circumference of an invisible circle (with a radius equal to 3 degrees
of visual angle) at a rate of 1 Hz. The area of the circle was the average area of the objects used
in the object categorization task, which thus induced, as closely as possible, saccades with the
same amplitude as those during that task. The control condition required fixating the same dot
when it was stationary at the center of the screen, and the two conditions alternated every 30
s, and each cycle repeated 6 times.

MRI parameters—Using a 3 T Siemens Allegra scanner with whole head coil, for later
registration and spatial normalization, we collected T1-weighted EPI, full-volume structural
images at the same locations as the subsequent BOLD images; these measurements relied on
SPGR imaging before and after the functional scans (128, 1.3 mm thick sagittal slices, TR=6.6
ms, TE=2.9 ms, FOV = 25.6 cm, flip angle = 8 deg, 256 × 256 matrix). Functional scans
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assessed blood oxygenation changes, using a T2*-sensitive sequence (gradient echo, TR =
2000 ms, TE = 30 ms, FOV = 20 cm, flip angle = 90 deg, 64×64 matrix, voxel size = 3.125 ×
3.125 × 6 mm). Each scan resulted in 380 volumes, each composed of 21, 5 mm, oblique slices
(slice gap = 1 mm).

Analyses—Data were pre-processed and analyzed with AFNI (Cox, 1996): 1) slice timing
correction; 2) motion correction; 3) spatial smoothing with a Gaussian filter (full-width half-
maximum = 4 mm); 4) amplitude normalization, by scaling each timeseries to a mean of 100
and calculating the percent signal change about this mean; 5) spatial normalization to the
MNI305 template (Collins et al., 1994); and 6) spatial resampling to a 3x3x3 mm grid. For the
hemodynamic response function, we used a finite impulse response (FIR) model and estimated
the fMRI response at each time point independently using multiple linear regression. The
multiple regression model included an offset (i.e., mean), a linear, and a quadratic trend
coefficient for each scan. In addition, for each condition there was one coefficient for each
time step in the window of interest (from −2 s before trial onset to 16 s after trial onset, for a
total of 10 regressors).

We were primarily interested in data from correct trials, defined as those in which subjects
appropriately categorized an object when an object was presented or responded they could not
categorize the image when a pseudo-object was presented. Within each block, MI versus LI
objects were defined as those with mean RTs above versus below the median RT, respectively,
for correctly categorized objects. MI and LI pseudo-objects were defined analogously. Note
that, for the main analysis comparing activation to MI and LI objects, we used only 98 of the
128 object stimuli (those corresponding to fragmentation levels 3, 4, and 5, with the median
RTs defining MI and LI conditions computed for these levels) to equate average visual
complexity for the MI and LI sets, according to the normative data from Snodgrass and
Vanderwart (1988), as described in the Results section. For correct trials, we used 4 sets of
regressors: 2 for the MI and LI objects and 2 for the MI and LI pseudo-objects. For incorrect
trials, we used 2 sets of regressors, one for objects that were not categorized and one for pseudo-
objects that were incorrectly categorized as objects. The 30 trials (out of 128) from
fragmentation levels 1, 2, and 6 (not included in the main analysis) were modeled with a
separate set of regressors. Finally, we used another set of regressors for occasional trials during
which the subject did not provide a response (no-response trials). We note that, although these
last three groups of trials were not included in the main analysis, they contributed to the
observed fMRI timeseries and so had to be included in the multiple regression model. We also
note that we repeated all analyses on the entire set of 128 objects (encompassing all levels),
and the results were unchanged. Furthermore, the same analyses repeated on MI and LI objects
defined in terms of fragmentation level (4, 5, and 6 for MI and 1,2, and 3 for LI) produced
comparable results.

Maps of percent signal change for each subject and condition were obtained using the
normalized regression coefficient at 6 s post-onset, at the peak of the hemodynamic response.
The principal whole-brain analysis was a repeated-measures ANOVA on the maps for the MI
and LI objects (5 voxel extent threshold, all significant at p < .001). These parameters provide
a good compromise between sensitivity and protection against false positives (Xiong et al.,
1995).

For the object-sensitive regions and eye-movement localizer tasks, we performed the same
preprocessing steps (1 through 6). The multiple regression model included an offset (i.e.,
mean), a linear, and a quadratic trend coefficient for each scan. We created the regressor for
these blocked designs by convolving the timecourse of the paradigm with an assumed
hemodynamic response.
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We use the term “activation” to refer to positive activations, and “deactivation” to refer to
negative activations.

Experiment 2
Subjects—Sixteen Harvard University undergraduates, not tested in Experiment 1,
volunteered to participate in this study for pay (8 females, mean age = 19.7 years). All gave
written informed consent for the study according to the protocols approved by the Harvard
University Institutional Review Board.

Stimuli—Of the 200 objects created for Experiment 1, the normative data described for
Experiment 1 stimuli were used to select 100 objects that included two levels of fragmentation
(high vs. low) that fulfilled both criteria (a) and (b) from Experiment 1 for being impoverished,
and a third criterion (c) the MI version was exactly two levels more fragmented than the
corresponding LI version, to keep the images as comparable as possible.

The WM materials were digits (1-9) and 9 non-verbalizable shapes. These shapes were selected
from a set of 100 polygons created by connecting 4 to 8 dots randomly placed on the vertices
of a 10 × 10 grid. Eight subjects were shown the entire set and asked to provide a list of names
that could be used to refer to the shape (with a rating of how well the names fit the object, from
1, worst fit, to 5, best fit). For each shape, we calculated the average nameability by adding the
ratings for all names provided by each subject. The final set was selected by taking the 9 shapes
with the lowest total nameability (0.3, on average). We arranged the stimuli into strings, where
each digit string had 5 distinct numbers, and each shape string had 2 distinct shapes. We
determined the string lengths in a pilot study with a separate group of 8 subjects to equate
difficulty for the two WM tasks. For this normative study, we used intact versions of the
pictures. We equated task difficulty by ensuring that the WM task accuracy (as measured by
the WM score, see Analyses section below) was equivalent in the two tasks (.92 for Digit WM
compared to .91 for Shape WM, t(7) = .58, p > .5).

Procedure—We presented Shape WM and Digit WM trials in separate blocks. Block order,
assignment of pictures to MI and LI conditions and Shape and Digit tasks was counterbalanced
across subjects. Each trial began with a visual string of digits or shapes (Figure 7a). Subjects
were told to keep the string in mind throughout the trial. After studying the string for 5 s, 4
pictures were presented in sequence, each one for 2 s, followed by a 1 s fixation cross. Subjects
spoke the name of each picture into a microphone as soon as they categorized it (or said “don't
know,” if they could not do so). Voice onset response times (referred to as RTs) were recorded
by the computer, and names were recorded by the investigator. Following the sequence of 4
pictures, subjects were to press the sequence of digits on a numerical keypad or the sequence
of shapes (little pictures of the shapes were attached to the keys) on a second keypad. We
ensured that subjects did not look at the keypad while studying the strings at the beginning of
each trial to discourage explicit strategies based on the association between items and keypad
locations. We repeated the experiment, with the same stimuli and order, to assess the possibility
of floor effects on RTs.

Analyses—First, to quantify performance on each of the WM tasks, we assigned a normalized
score to each WM trial. This was necessary to ensure that only trials were included during
which subjects had actually performed the WM task. We assigned one point for each item
reported correctly and an extra point for each item reported at its correct sequential position
within the string, and divided the total by the maximum number of points (and thus the scores
ranged from 0 to 1, perfect performance). The RTs and error rates (ERs; when subjects could
not categorize the object) for trials where the WM score was .25 or higher (96% of the trials)
were submitted to a 3-way repeated measures ANOVA, with factors of WM load (low vs. high),
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fragmentation level (MI vs. LI), and session (first vs. second). We checked for possible speed-
accuracy trade-offs by correlating RTs and ERs across subjects.

Results
We here report the results from both Experiment 1 (with fMRI) and Experiment 2 (which used
a behavioral paradigm to test the causal role of top-down processing during categorization).

Experiment 1
We used a median split of categorization times to operationally define the degree to which the
image was impoverished, that is, MI versus LI stimuli (Figure 1). To demonstrate that the
effects of image impoverishment on brain activation were not due to mere task difficulty (as
indexed by RTs), unbeknownst to subjects, a set of pseudo-objects was included, formed by
rearranging parts of the objects to produce a shape that does not embody any known object
category.

Performance—On average, subjects correctly categorized 80% of the real objects and failed
to categorize 91.7% of the pseudo-objects. The average fragmentation levels (defined in terms
of the proportion of deleted pixel blocks in the image on a scale from 1, least fragmented, to
8, most fragmented, see Material and Methods) for the MI and LI objects were 4 and 3.5, F
(1,16)=201.2, p < .0001, respectively, which is consistent with the fact that subjects categorized
objects more slowly when they were more fragmented than when they were less fragmented.
Indeed, as expected, RTs and fragmentation levels were highly correlated, r=−.65, p<.0001.
In addition, we did not find any systematic differences between MI versus LI objects on various
dimensions (Snodgrass and Vanderwart, 1980): name agreement (86% vs. 87%), image
agreement (3.7 vs. 3.6), familiarity (3.4 vs. 3.2), visual complexity (2.9 vs. 2.9), name frequency
(18 vs. 15), and age of acquisition (2.6 vs. 2.8). We found the opposite pattern for the pseudo-
objects: Average fragmentation levels for the MI and LI pseudo-objects were 4.7 and 5.2,
respectively, which shows that subjects realized that they could not categorize a pseudo-object
faster when it was more fragmented than when it was less fragmented, F(1,16)=175.2, p < .
0001.

Figure 2a illustrates RTs for correctly categorized objects (MI and LI) and uncategorized
pseudo-objects (MI and LI). A 2×2 repeated measures ANOVA with factors of stimulus type
(objects vs pseudo-objects) and impoverishment (MI vs LI) showed that subjects categorized
MI stimuli slower than LI stimuli, F(1,16)=184.4, p < .0001. They also required more time for
pseudo-objects than real objects, F(1,16)=20.3, p < .001. The interaction of type by
impoverishment was not significant, F(1,16)=2.5, p >.1. The impoverishment effect was thus
similar for real objects and for pseudo-objects.

Finally, the behavioral results were not contaminated by speed/accuracy trade-offs: RTs for
categorized objects and ERs for objects were not correlated across subjects (all rs < 0.1, p > .
5).

Brain Activation Maps and Time Courses for the Object Categorization Task—
To test top-down control theories of object categorization, the crucial comparison is between
the activation elicited when subjects successfully categorized MI versus LI objects. Consistent
with the predictions of these theories, categorizing MI objects elicited stronger activation
(bilaterally, unless otherwise specified) than did categorizing LI objects in several regions
implicated in top-down control and object processing (Table 1). First, activation was stronger
in numerous frontal and parietal areas when subjects categorized MI than when they
categorized LI objects, specifically the ventrolateral prefrontal cortex (VLPFC), anterior
cingulate gyrus, extending into supplementary motor area, right precentral sulcus/gyrus,
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postero-lateral portions of left inferior frontal cortex, and intraparietal sulcus, encompassing
superior and inferior parietal lobule regions (Figures 3-4). One region in the right angular gyrus
showed instead deactivation to all stimuli, with MI objects eliciting more deactivation than LI
objects (Figure 4). In addition, activation was stronger for MI than LI objects in the fusiform
gyrus, extending into inferior temporal sulcus, left lateral occipital cortex, and left middle
occipital gyrus (Figures 4).

Notice in Figures 3-6 that the hemodynamic response for both MI and LI objects peaked at 6
s post-stimulus, but both (MI and LI) responses relative to baseline were already significant
by 4 s post-stimulus in all regions, including posterior ones, F(1,16)=57.7, p<.0001. However,
at this earlier time, the posterior regions did not yet show any activation difference between
MI and LI objects, including in the fusiform gyrus, lateral occipital cortex, and middle occipital
gyrus (neither the main effect of impoverishment, nor interactions with impoverishment were
significant, all ps > .5). By contrast, in frontal top-down control areas, differences in activation
evoked by MI and LI objects were already significant at this time, as shown by an ANOVA
including the VLPFC, anterior cingulate/SMA, and left inferior frontal cortex, F(1,16)=9.45,
p<.01.

Objects versus pseudo-objects: To determine whether the effect of impoverishment is due to
object categorization processes and not simply due to generic task difficulty, as may be
suggested by the RTs, we conducted an analysis of activation in all regions of interest that were
found in the comparison between MI and LI conditions for the real objects (excluding the
angular gyrus because it was the only region in which deactivation occurred). The ANOVA
had 3 factors: stimulus type (objects vs pseudo-objects), impoverishment (MI vs LI), and
region. If the activation pattern described earlier was due entirely to generic task difficulty,
activation should be stronger overall for pseudo-objects than objects because the subjects
required more time overall to respond to pseudo-objects than objects (Figure 2a). Further,
activation corresponding to the impoverishment effect (MI minus LI) should not differ between
pseudo-objects and objects (Figure 2b), because RTs had no such interaction (Figure 2a). Note
that although these regions of interest were defined by using the comparison between MI and
LI conditions for real objects, here we focus on how these regions were activated when
processing the pseudo-objects. The activation when objects were being processed served as an
independent baseline against which to compare activation when pseudo-objects were being
processed (which were not used to define these regions of interest).

The results were clear (Figure 5): Activation was higher when subjects processed MI stimuli
than LI stimuli, F(1,16)=38.72, p <.0001, and different levels of activation were found in
different regions, F(10,160)=18.79, p<.0001. Crucially, there was no sign of stronger activation
for pseudo-objects than for objects. In fact, on average, activation elicited by objects was
stronger than that elicited by pseudo-objects (.37 vs. .34, respectively), the opposite of the RT
pattern, albeit only numerically (main effect of Stimulus type, F[1,16]=1.27, p>.1).
Furthermore, categorizing objects elicited stronger activation in some regions than did
attempting to categorize pseudo-objects; stimulus type interacted with region, F(10,160)=3.8,
p <.0001. Follow-up analyses revealed these regions were the fusiform gyrus/ITS and left
intraparietal sulcus. Critically for the issue at hand, the impoverishment effect was larger for
objects than for pseudo-objects (Figure 2b): stimulus type interacted with impoverishment, F
(1,16)=7.93, p<.05. Because we did not find this interaction with RTs, fMRI activation
differences cannot be explained by appealing to differences in RT per se. No other effects or
interactions were significant, p > .1 in all cases.

Object-sensitive regions: We also defined which regions were activated more strongly when
subjects saw images of objects than when they viewed phase scrambled versions of those
objects (which look like textures); this comparison identified a large section of occipital,
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posterior temporal, and posterior parietal cortex. These regions appeared as a continuous swath
of cortex within each hemisphere, so we parceled them out using the Talairach coordinate
ranges from the previous literature (Grill-Spector at al., 2000; Hasson et al., 2003) and referred
to them using the corresponding nomenclature: VOT, DOT-ITS, DOT-LOS (corresponding to
the classic LOC), DF1, and DF2 (Figure 6). Within these regions, we defined ROIs by
identifying voxels that were significant in the object-sensitive localizer and in the main analysis
comparing activation for MI and LI objects. We used a more liberal statistical threshold (p < .
005) than in the whole-brain analysis because the search for activated voxels was carried out
within small, pre-defined regions (Xiong et al., 1995). Virtually all voxels in posterior regions
that were significant in the main analysis fell within the object-sensitive regions that were
identified by our localizer task.

Next, we performed an analysis using these ROIs to test our hypothesis that, for successfully
categorized objects, categorizing MI objects would evoke stronger activation in posterior
object-sensitive regions than would categorizing LI objects. At the same time, we also tested
the opposite prediction made by bottom-up accounts, namely that there should be greater
activation in posterior object-sensitive regions when subjects categorized LI than when they
categorized MI objects. Finally, this analysis allowed us to assess whether the response to
stimulus impoverishment differed among object-sensitive regions. Results from the repeated
measures ANOVA on the 5 region pairs with factors of hemisphere (left vs. right), region
(VOT, DOT-ITS, DOT-LOS, DF1, and DF2), stimulus type (object vs. pseudo-object), and
impoverishment (MI vs. LI) revealed that the overall strength of activation was different among
the 5 bilateral pairs of object-sensitive regions, as witnessed by a main effect of region, F(1,16)
=9.56, p<.0001. Furthermore, categorizing the MI stimuli elicited stronger activation than did
categorizing the LI stimuli, as shown in a main effect of impoverishment, F(1,16)=24.59, p<.
0001. It is important to note that, as in the main analysis, impoverishment had a larger effect
on objects than pseudo-objects, as shown by the interaction between impoverishment and
stimulus type, F(1,16)=5.43, p<.05. We also found an interaction of region by hemisphere, F
(4,64)=4.26, p<.005, which reflected the fact that activation was stronger in the left hemisphere
for DOT-LOS, F(1,16)=5.14, p<.05, but stronger in the right hemisphere for all other regions.
Finally, an interaction between stimulus type and region, F(4,64)=3.52, p<.05, arose because
activation in response to categorizing objects was reliably stronger than that elicited when
subjects tried to categorize pseudo-objects in regions VOT, DOT-ITS, and DF2, but not in
DOT-LOS and DF1. The fact that we did not find an interaction between impoverishment and
region is consistent with the idea that the critical impoverishment effect was uniform across
object-sensitive regions.

Eye movement regions: Comparing the two conditions in the eye movement localizer scan
revealed activation in previously known eye movement regions (Beauchamp et al., 2001) of
the precentral sulcus, extending into precentral gyrus, left posterior intraparietal sulcus,
extending dorsally into the superior parietal lobule, lateral occipital sulcus, extending into
middle occipital gyrus, and large parts of medial occipital cortex extending dorsally into the
parieto-occipital sulcus and inferiorly to ventral occipital cortex (Table 2). The precentral
cortex activations correspond to the locations of the frontal eye fields (Beauchamp et al.,
2001).

To assess whether any differences between MI versus LI object activation could reflect
differential eye movements, we defined voxels in the MI-LI object maps that overlapped with
those found in the eye movement localizer. Almost no voxels activated during the eye
movement task (compared to the fixation task) overlapped with those in the MI-LI maps. We
found overlap only in 3 small clusters, which encompassed a total of 6 voxels: these voxels
were located in the right precentral sulcus (2 voxels), left intraparietal sulcus (3 voxels), and
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left middle occipital gyrus (1 voxel). When these voxels were excluded from the analyses that
led to the results summarized in Table 1, the results were unchanged.

Experiment 2
The fMRI results provided correlational evidence that top-down processes play a larger role
when one categorizes MI objects than when one categorizes LI objects. To interpret these
results, we conducted a second experiment that produced not correlational evidence, but rather
evidence of causal relations. Specifically, we designed this behavioral study to demonstrate
that interference with top-down control processes impairs performance when subjects must
visually categorize MI objects more than when they must categorize LI objects.

Based on our assumptions relating top-down control, attention, and WM processes in lateral
PFC (see Introduction), we devised an interference paradigm in which subjects categorized MI
and LI objects while performing one of two types of WM tasks. One task was designed to
recruit WM processes involved in object model verification: the Shape WM task used strings
of 2 novel, nonverbalizable visual shapes. The other task was designed to rely minimally, if at
all, on WM processes involved in model verification: the Digit WM task was a verbal WM task
that required subjects to keep in mind strings of 5 digits. These two tasks were equated in
difficulty by using strings of different lengths, as determined by pilot results (see Materials
and Methods for details). We hypothesized that the Shape WM task would interfere more than
the Digit WM task with categorization of MI images, and that such interference would not be
as strong with categorization of LI images.

Analyses were limited to only stimuli that were categorized correctly (92%) and trials with a
WM score higher than .25 (96%, see Materials and Methods). Figure 7b shows mean RTs.
Most important, the Shape WM task interfered more with the categorization of MI objects than
did the Digit WM task (1159 ms vs. 1103 ms, respectively), and this effect was absent for LI
objects (958 ms vs. 956 ms, respectively), as witnessed by the interaction of WM task by
impoverishment, F(1,15) = 5.8, p < .05. Subjects also categorized MI objects more slowly than
LI objects (1131 ms vs. 957 ms, respectively), F(1,15)= 70.7, p < .001. Finally, subjects were
faster the second time they saw the stimuli (mean RTs of 1116 ms vs. 971 for the first and
second presentations, respectively), F(1,15) = 31.1, p < .001. No other effects or interactions
were significant, all p > .1. Note that the lack of a difference between RTs for the two WM
tasks for the LI objects confirms that the two WM conditions were equally difficult; moreover,
these results are unlikely to reflect a floor effect because repeating the experiment further
reduced the RTs, but the interaction of interest persisted nevertheless.

The ERs showed a similar pattern, being higher for MI than LI objects (13.9% vs 2.4%,
respectively, F(1,15) = 64.1, p < .0001), and they were higher during the first than the second
block (9.6% vs 6.7%, respectively, F[1,15] = 27.9, p < .0001). Furthermore, the
impoverishment effect was smaller the second time subjects received the stimuli; block by
impoverishment was significant, F(1,15) = 46.3, p < .001. In addition, the results were not due
to speed-accuracy trade-offs because all RTs and ERs were not correlated across subjects (all
ps > .1).

Finally, all average WM scores were above .80 and were affected neither by Repetition nor by
WM task (all ps > .1), showing that subjects performed the concurrent WM tasks well, and the
difficulty of these tasks was constant across conditions.

Discussion
Our findings confirm three key predictions from theories that posit a role for top-down control
during visual object categorization. First, the fMRI results provide direct evidence that the

Ganis et al. Page 11

Neuroimage. Author manuscript; available in PMC 2008 October 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



categorization of impoverished images of objects engages frontoparietal brain regions
implicated in top-down control for retrieval, WM and covert attention, regardless of eye
movements (e.g., Kosslyn, 1994; Miller and Cohen, 2001). This finding lends support to the
claim that the lateral PFC plays a crucial role in object model verification. Second, using an
independent localizer for object-sensitive regions, the fMRI results also suggest that these top-
down control processes modulate activity in regions that represent and process object properties
during the course of model verification. Third, the behavioral interference results demonstrate
that a Shape WM task, designed to engage top-down control processes for model verification,
interferes with categorizing MI objects more than does a Digit WM task that engages these
verification processes minimally; by contrast, we did not find such selective interference for
LI objects. This finding is as predicted if top-down control processes are required during the
categorization of impoverished objects. We next consider the results in more detail, interpreting
the specific findings reported earlier.

VLPFC-IPS Regions for Top-Down Control
VLPFC—In our view, these findings are best interpreted as implicating the anterior part of
the VLPFC (BA 45, 47) in the top-down control of both WM and covert attention processes
that subserve the categorization of impoverished stimuli. We draw this inference on the basis
of converging evidence. First, the VLPFC bilaterally is one of the most reliably activated
regions during the categorization of MI relative to LI objects in the present study, as well as
in related neuroimaging research that compared pictures of objects degraded by masking,
adding noise, or viewing from unusual angles (Bar et al., 2001; Heekeren et al., 2004; Kosslyn
et al., 1994; Kosslyn et al., 1997; Sugio et al., 1999).

Second, VLPFC is part of a prefrontal network that is recruited during the control of attention
by WM functions, such as the online monitoring of performance to achieve a goal, including
object categorization (de Fockert et al., 2001; Freedman et al., 2003; Lavie et al., 2004; Miller
and Cohen, 2001; Rainer and Miller, 2000; Tomita et al., 1999). VLPFC has been implicated
not only in simple WM maintenance tasks (Smith and Jonides, 1999) but also in tasks requiring
complex operations on information held in WM (Petrides, 2005), such as the inhibition and
switching of attentional sets (Konishi et al., 1999; Monchi et al., 2001). VLPFC is thought to
play a critical role in the dynamic interplay between facilitation of task-relevant information
versus the inhibition of irrelevant information in posterior cortex.

The output from these initial cognitive control processes in VLPFC can then be passed on to
other PFC regions to achieve more complex goals, such as monitoring and manipulation
functions in the dorsolateral PFC (Petrides, 2005). In fact, areas 44, 46, and 10 are connected
bidirectionally with VLPFC and other PFC areas. We found that medial PFC, the anterior
cingulate, the medial supplementary motor area, and a precentral gyrus region near the frontal
eye fields, were more strongly activated during the categorization of MI objects than during
the categorization of LI objects. These areas have been implicated in selective attention (i.e.,
directed to one specific attribute of a stimulus among others) and WM (Wager et al., 2004;
Wager and Smith, 2003). In addition, medial PFC may be recruited to facilitate switching of
selective attention (Beauchamp et al., 2001; Corbetta and Shulman, 2002; Wager et al.,
2004).

Third, VLPFC has the functional and neuroanatomical properties expected for an area that
computes the perceptual decisions required for object categorization. VLPFC has strong
bidirectional connections with object-sensitive regions in the ventral stream, has been
implicated in visual memory encoding (Brewer et al., 1998; Kirchhoff et al., 2000; Wagner et
al., 1998), and VLPFC neurons learn to code stimulus shape and feature information in terms
of their relevance for categorization (Rainer and Miller, 2000). Intriguingly, VLPFC neuronal
responses and human behavioral performance with impoverished images of objects both show
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learning curves that are maximal when just enough information is available in the learned item
to support categorization (Rainer and Miller, 2000; Snodgrass and Feenan, 1990). In general,
VLPFC seems to be a key node in a brain network that implements and acquires the associative
mappings that relate patterns of visual cues to the decisions or actions required to perform a
task (Bunge, 2004; Bussey et al., 2001; Passingham et al., 2000).

Intraparietal Sulcus (IPS)—To categorize objects in MI images, subjects must search for
visual attributes of objects that will allow them to verify that the input matches a specific stored
object model. This consideration suggests an interpretation for our finding of robust bilateral
activation in a swath of posterior parietal regions along the IPS when subjects processed MI
relative to LI images. Most important, these regions have been implicated in diverse attention
tasks, including those requiring covert shifts of attention, such as visual search (Beauchamp et
al., 2001; Corbetta and Shulman, 2002; Downing et al., 2001; Hopfinger et al., 2000; Wager
et al., 2004; Wojciulik and Kanwisher, 1999).

In addition, caudal parts of IPS, including dorsal object-sensitive region DF2 (Grill-Spector et
al., 2000), may contribute other spatial, perceptual, and representational functions to the object
model verification process. In the right hemisphere, this region has been implicated in object-
oriented spatial tasks, including categorizing objects from unusual views (i.e., another MI
image) (Kosslyn et al., 1994; Sugio et al., 1999; Turnbull et al., 1997), object mental rotation
(Kosslyn et al., 1998), object-directed action (James et al., 2002), and binding visual object
features (Friedman-Hill et al., 1995). After all, our MI images are composed of spatially
disparate elements that may need to be bound together to create a spatially coherent image that
can be matched to stored object representations. In the left hemisphere, caudal IPS is part of a
frontoparietal network implicated in WM, grasping, perception and action-related processes
with objects, such as the tools in our study (Chao and Martin, 2000; Grezes et al., 2003); the
frontal component of this network, in inferior frontal cortex (BA 6 in ventral precentral sulcus;
possible human homologue of monkey area F5), was also implicated herein. Finally, object-
sensitive region DF2 also overlaps with parts of BA 19, which has been suggested to be a
storage site for object and spatial perceptual knowledge that is activated during object model
verification processes (Kosslyn et al., 1994).

Ventral Extrastriate Regions for Object-Processing and Visual Representation
Although the temporal smoothing in fMRI data does not allow us to demonstrate directly that
the fronto-parietal network modulates ventral posterior regions, studies in human and non-
human primates provide convergent evidence that such top-down processing exists (Corbetta
and Shulman, 2002; Fuster et al., 1985; Hopfinger et al., 2000; Kastner and Ungerleider,
2000; Kosslyn, 1994; Mechelli et al., 2004; Miller and Cohen, 2001; Moore and Armstrong,
2003; Petrides, 2005; Ranganath and D'Esposito, 2005; Tomita et al., 1999). For instance,
Fuster et al. (1985) demonstrated that the neurons in monkey inferotemporal cortex are less
selective during the delay period of a WM task when the prefrontal cortex is deactivated
bilaterally (by reversible cooling); Tomita et al. (1999) demonstrated that prefrontal cortex
directly affects responses in inferotemporal cortex in monkeys during a cued recall task; and
Moore and Amstrong (2003) demonstrated that subthreshold electrical stimulation of monkey
frontal eye fields enhances the responses of neurons in area V4 to preferred visual stimuli. In
our fMRI study, we predicted that top-down modulation would cause object-sensitive areas to
be more strongly activated during the categorization of MI than LI objects. Indeed, this was
what we found in areas VOT, DOT-ITS, DOT-LOS, DF1, and DF2 (Grill-Spector et al.,
2000; Hasson et al., 2003).

Purely bottom-up accounts of visual categorization cannot easily explain this finding. Bottom-
up accounts are based on the well-established, hierarchical organization of visual cortex: More
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posterior regions respond well to elementary parts, whereas more anterior regions respond best
to higher-order parts or whole objects (e.g., Lerner et al., 2004; Tanaka, 1996). Such results
predict the opposite of our findings: The reduced visual information available in MI objects
should result in reduced activation for MI relative to LI objects in more posterior areas, as well
as successive processing areas along the visual hierarchy. This is because, on average, MI
objects have fewer visual features than LI objects and so they should activate a smaller neural
population and perhaps should activate these neurons more weakly. Although this was the
observed pattern in prior neuroimaging studies based on a bottom-up framework and aimed at
other issues, the studies were not designed specifically to reveal top-down processing in the
ventral stream. For example, Lerner and collaborators (2004) superimposed opaque bars over
line drawings, creating images of objects that were occluded to varying degrees (i.e.,
impoverished), but, crucially, all of the objects were actually easy to categorize via purely
bottom-up processes. In other studies (Bar et al., 2001; Grill-Spector et al., 2000), presentation
rates may have been too fast to allow top-down processes to gather additional information from
the stimulus, and the backward masking used would further minimize feedback influences
(Rolls et al., 1999). However, we note that Grill-Spector et al., (2000) did not collect data from
prefrontal cortex, and that Bar et al. (2001) did in fact find increased prefrontal activation for
masked (relative to unmasked) object stimuli that were presented for very brief durations.

The present study, by contrast, was designed to allow us to observe evidence that top-down
control processes are normally recruited during the categorization of impoverished objects,
and we obtained the opposite pattern of effects in ventral regions from what a bottom-up
account would predict.

Network Operation in Object Model Verification
We have suggested that the VLPFC is responsible for the top-down control processes that
evaluate stored models in posterior object-sensitive regions, consistent with model verification
theories (Kosslyn, 1994; Lowe, 1985; Lowe, 2000). Moreover, our finding of greater activation
across entire VLPFC-posterior networks not only motivates us to focus on VLPFC as having
a role in facilitating neural processes in other brain regions, but also leads us to propose that
the VLPFC is engaged in four particular types of cognitive control processes. Specifically, (a)
Retrieving Distinctive Attributes: VLPFC activates perceptual information in long-term
memory that is used to guide subsequent top-down processing. (b) Attribute WM: VLPFC
maintains retrieved knowledge about distinctive attributes of candidate object models, (c)
Covert Attention Shifting: VLPFC initiates attentional shifts so that additional attributes,
especially those suggested by the hypotheses activated by a candidate object, are examined
further and tested against the candidate match. These VLPFC processes result in facilitation
and inhibition of activity in object-processing regions, driven also by IPS areas (Beauchamp
et al., 2001; Corbetta and Shulman, 2002). (d) Attribute Biasing: VLPFC biases neural
representations of salient visual features in the object-sensitive regions, thereby facilitating
detection and selection of these relevant features. These subprocesses may occur
simultaneously and continue until sufficient information has been obtained to select a response,
including deciding that the available evidence is not sufficient to categorize the visual input.
The role of the VLPFC is critical when the ventral pathway and the initial attentional set
produce only a weak match for the impoverished visual input.

Although strong inferences about the time courses of processing are not possible because the
hemodynamic responses are a temporally smoothed version of the underlying neural responses,
we find it intriguing that our proposal provides a possible (although far from conclusive)
interpretation of the time course of the hemodynamic response in the ventral pathway and
VLPFC. We proposed that categorization of MI stimuli recruits top-down control processes
after an initial bottom-up pass through posterior object-sensitive regions, and that top-down
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control processes enhance later activation of object-processing areas until categorization
succeeds. Consistent with this idea, in the ventral pathway, activation is initially (at 4 s) above
baseline for both MI and LI objects, but reliable differences between the two conditions begin
only later (at 6 s). On the other hand, activation in the VLPFC and other prefrontal regions for
cognitive control differs between MI and LI objects both at the earlier and later times (4 and
6 s). Further work will be required to evaluate the actual timing of the neural response.

Alternative Explanations?
One might argue that the posterior effects we observed reflect visual differences among the
stimuli at different fragmentation levels: By construction, MI images have fewer pixels than
LI images, on average. However, this difference would predict that activation would be stronger
in visual areas for the LI stimuli with more pixels than the MI stimuli with fewer pixels. To
the contrary, the opposite results were obtained: We found stronger activation in all extrastriate
areas when subjects categorized MI images than when they categorized LI images.

Generic task difficulty is often discussed in the literature as an alternative explanation for
condition differences. By this account, our results implicate an extended network of brain
regions, all comparably modulated by task difficulty, although one cannot infer whether the
modulation in visual cortex is an inherent local response or a result of prefrontal projections.
To our knowledge, such a widespread network has not been previously reported to differ
between two conditions within the same task. However, such a generic task difficulty
explanation does not seem compelling on empirical and theoretical grounds. First, our results
are not consistent with such an account. RT is often taken as a metric of task difficulty. Given
this, we observed that RTs for the pseudo-objects were much longer (by ∼500 ms) than those
for the objects, which would predict more activation for pseudo-objects than objects. To the
contrary, no region shows even a hint of stronger activation to pseudo-objects than to objects,
and, in some areas, the opposite occurred: Activation to objects was reliably stronger than
activation to pseudo-objects. Furthermore, although the difference in RTs between MI and LI
object stimuli was similar in magnitude to those between MI and LI pseudo-object stimuli, the
difference in brain activation (i.e., impoverishment effect) was reliably larger for objects than
for pseudo-objects.

Second, from a theoretical perspective, generic task difficulty is vaguely defined and does not
make clear predictions for the direction of effects: Although task difficulty is often taken to
predict greater activation, greater prefrontal activity has been found not only for harder than
easier tasks but also for the opposite, for easier than harder tasks (Bor et al., 2003). More
important, our object model verification theory is an attempt to provide a well-articulated
explanation of how specific neural processes differ when the stimuli are more or less
impoverished. It is important to realize that being harder to categorize is an inherent
characteristic of impoverished stimuli, compared to intact ones. Hence, one could try to match
generic task difficulty between the two conditions by equating the RTs, say, through reducing
the visual contrast of intact pictures of objects, thereby making them harder to categorize.
However, that would merely create another type of impoverished stimulus. Image
impoverishment thus is a more precise way to think about factors affecting categorization
processes than generic task difficulty.

In addition, these considerations stand against an explanation that the observed results are
simply due, in a generic way, to the subjects' paying more attention to any image that is more
impoverished, as opposed to the specific engagement of a prefrontal control network
subserving the goal of visual object categorization. A generic attention explanation would
predict the greatest activation for pseudo-objects because the search for a match can potentially
continue indefinitely with these stimuli. As just mentioned, no region shows this pattern.

Ganis et al. Page 15

Neuroimage. Author manuscript; available in PMC 2008 October 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Alternatively, one might argue that our findings reflect differential eye movements in the MI
and LI conditions, but the results of our standard eye movement localizer make this
interpretation unlikely. Only six scattered voxels were more strongly activated in the MI
condition than in the LI condition and overlapped with saccade regions. Moreover, most
saccade regions defined by the eye movement localizer task showed no differences between
MI and LI conditions. However, because our eye movement localizer task did not use pictures
of objects, we cannot rule out the possibility that some parietal effects were influenced by
differential eye movements specifically to objects.

One could also hypothesize that some of the observed effects might be due to post-
categorization processes, given that the objects were on the screen for 2200 ms, longer than
the RTs. According to this hypothesis, stimuli that were classified more quickly might undergo
more post-categorization processes and eye movements/attention shifts than those that subjects
classified more slowly. If this were the case, the pattern of results should be exactly the opposite
of what was found in Experiment 1.

Finally, one might argue that MI objects tend to be categorized with less confidence than LI
objects, and it is this difference in confidence levels that is responsible for the observed patterns
of activation. It is unlikely that confidence caused the present effects because, if anything, MI
objects should be categorized with lower confidence, thereby resulting instead in weaker
activation for MI than LI objects.

Top-Down Control Processes Are Necessary for Categorization of MI Stimuli
The logic of Experiment 2 rested on a straightforward idea: If top-down control processes are
required when people categorize impoverished objects, then a concurrent task (i.e., Shape WM)
that engages processes recruited for object model verification should interfere with the
categorization of MI objects more than a concurrent task (i.e., Digit WM) that engages
processes not recruited during object model verification (although some interference may be
present, due to overall effort expended under dual task conditions). Furthermore, this effect
should be smaller or absent during the categorization of LI objects, because, in this case, top-
down control processes should be less important for correct categorization. The results were
as predicted.

By our top-down account of categorization of the MI objects, visuospatial WM is a necessary
component of model verification processes. This explains why a WM task that competes for
the same neural resources used in such top-down processing slows the categorization of
impoverished images of objects. Our Shape WM task required subjects to keep in WM not
only the identity and structure of the shapes but also their relative spatial positions. In contrast,
the relative positions of the items in the Digit WM task could be kept in WM by means of
phonological rehearsal. This result provides evidence that top-down WM control processes,
which appear to be supported by the VLPFC-parietal network revealed in Experiment 1, are
necessary for the categorization of impoverished pictures of objects, and not an
epiphenomenon.

Summary and Conclusions
In this study, neuroimaging and behavioral data were used to test three key predictions of object
model verification theory, which implicates top-down control processes during the
categorization of impoverished objects. The findings confirm our predictions. First, the
categorization of impoverished objects engages a VLPFC-IPS network involved in top-down
control. Second, coincident with the operation of this frontoparietal network, the categorization
of impoverished objects engages object-sensitive regions in the ventral stream more strongly
than does the categorization of less impoverished pictures of objects. Third, top-down control
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processes, which convergent evidence suggests are supported by this VLPFC-IPS network, are
required to categorize impoverished pictures of objects. This evidence supports the view that
a comprehensive account of object categorization under all viewing conditions requires
characterizing the top-down processing contributions that have been little studied with
neuroimaging.

Acknowledgments
G.G. and H.E.S. contributed equally to this research endeavor. We thank two anonymous reviewers for insightful
comments. This research was supported in part by Tufts University faculty research funds and grants NIMA:
NMA201-01-C-0032; DARPA: FA8750-05-2-0270; NIH: 1 R21 MH068610-01A1, and 2 R01 MH060734-05A1;
NIA: NRSA 5 F32 AG005914. The MRI infrastructure at the A. Martinos Center for Biomedical Imaging was
supported in part by the National Center for Research Resources (P41RR14075) and the Mental Illness and
Neuroscience Discovery (MIND) Institute.

References
Awh E, Jonides J. Overlapping mechanisms of attention and spatial working memory. Trends Cogn Sci

2001;5:119–126. [PubMed: 11239812]
Bar M, Tootell RB, Schacter DL, Greve DN, Fischl B, Mendola JD, Rosen BR, Dale AM. Cortical

mechanisms specific to explicit visual object recognition. Neuron 2001;29:529–535. [PubMed:
11239441]

Beauchamp MS, Petit L, Ellmore TM, Ingeholm J, Haxby JV. A parametric fMRI study of overt and
covert shifts of visuospatial attention. Neuroimage 2001;14:310–321. [PubMed: 11467905]

Biederman I. Recognition-by-components: a theory of human image understanding. Psychol Rev
1987;94:115–147. [PubMed: 3575582]

Bor D, Duncan J, Wiseman RJ, Owen AM. Encoding strategies dissociate prefrontal activity from
working memory demand. Neuron 2003;37:361–367. [PubMed: 12546829]

Brewer JB, Zhao Z, Desmond JE, Glover GH, Gabrieli JDE. Making memories: Brain activity that
predicts how well visual experience will be remembered. Science 1998;281:1185–1187. [PubMed:
9712581]

Bunge SA. How we use rules to select actions: a review of evidence from cognitive neuroscience. Cogn
Affect Behav Neurosci 2004;4:564–579. [PubMed: 15849898]

Bussey TJ, Wise SP, Murray EA. The role of ventral and orbital prefrontal cortex in conditional
visuomotor learning and strategy use in rhesus monkeys (Macaca mulatta). Behav. Neurosci
2001;115:971–982. [PubMed: 11584930]

Chao LL, Martin A. Representation of manipulable man-made objects in the dorsal stream. Neuroimage
2000;12:478–484. [PubMed: 10988041]

Collins D, Neelin P, Peters T, Evans A. Automatic 3D intersubject registration of MR volumetric data
in standardized Talairach space. J. Comput. Assist. Tomogr 1994;18:192–205. [PubMed: 8126267]

Corbetta M, Miezin FM, Shulman GL, Petersen SE. A PET study of visuospatial attention. J Neurosci
1993;13:1202–1226. [PubMed: 8441008]

Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev
Neurosci 2002;3:201–215. [PubMed: 11994752]

Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages.
Comput Biomed Res 1996;29:162–173. [PubMed: 8812068]

Dale AM. Optimal experimental design for event-related fMRI. Hum Brain Mapp 1999;8:109–114.
[PubMed: 10524601]

Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface
reconstruction. NeuroImage 1999;9:179–194. [PubMed: 9931268]

de Fockert JW, Rees G, Frith CD, Lavie N. The role of working memory in visual selective attention.
Science 2001;291:1803–1806. [PubMed: 11230699]

Downing P, Liu J, Kanwisher N. Testing cognitive models of visual attention with fMRI and MEG.
Neuropsychologia 2001;39:1329–1342. [PubMed: 11566315]

Ganis et al. Page 17

Neuroimage. Author manuscript; available in PMC 2008 October 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: Inflation, flattening, and a surface-
based coordinate system. NeuroImage 1999;9:195–207. [PubMed: 9931269]

Freedman DJ, Riesenhuber M, Poggio T, Miller EK. A comparison of primate prefrontal and inferior
temporal cortices during visual categorization. J Neurosci 2003;23:5235–5246. [PubMed: 12832548]

Friedman-Hill SR, Robertson LC, Treisman A. Parietal contributions to visual feature binding: Evidence
from a patient with bilateral lesions. Science 1995;269:853–855. [PubMed: 7638604]

Fuster JM, Bauer RH, Jervey JP. Functional interactions between inferotemporal and prefrontal cortex
in a cognitive task. Brain Res 1985;330:299–307. [PubMed: 3986545]

Ganis, G.; Kosslyn, SM. Multiple mechanisms of top-down processing in vision. In: Funahashi, S., editor.
Representation and brain. Springer Verlag; in press

Grezes J, Armony JL, Rowe J, Passingham RE. Activations related to “mirror” and “canonical” neurones
in the human brain: an fMRI study. Neuroimage 2003;18:928–937. [PubMed: 12725768]

Grill-Spector K, Kushnir T, Hendler T, Malach R. The dynamics of object-selective activation correlate
with recognition performance in humans. Nat Neurosci 2000;3:837–843. [PubMed: 10903579]

Grill-Spector K, Malach R. The human visual cortex. Annu Rev Neurosci 2004;27:649–677. [PubMed:
15217346]

Hasson U, Harel M, Levy I, Malach R. Large-scale mirror-symmetry organization of human occipito-
temporal object areas. Neuron 2003;37:1027–1041. [PubMed: 12670430]

Heekeren HR, Marrett S, Bandettini PA, Ungerleider LG. A general mechanism for perceptual decision-
making in the human brain. Nature 2004;431:859–862. [PubMed: 15483614]

Holmes CJ, Hoge R, Collins L, Woods R, Toga AW, Evans AC. Enhancement of MR images using
registration for signal averaging. J Comput Assist Tomogr 1998;22:324–333. [PubMed: 9530404]

Hopfinger JB, Buonocore MH, Mangun GR. The neural mechanisms of top-down attentional control.
Nat Neurosci 2000;3:284–291. [PubMed: 10700262]

James KH, Humphrey GK, Vilis T, Corrie B, Baddour R, Goodale MA. “Active” and “passive” learning
of three-dimensional object structure within an immersive virtual reality environment. Behav Res
Methods Instrum Comput 2002;34:383–390. [PubMed: 12395554]

Kastner S, Ungerleider LG. Mechanisms of visual attention in the human cortex. Annu Rev Neurosci
2000;23:315–341. [PubMed: 10845067]

Kirchhoff BA, Wagner AD, Maril A, Stern CE. Prefrontal-temporal circuitry for episodic encoding and
subsequent memory. J Neurosci 2000;20:6173–6180. [PubMed: 10934267]

Konishi S, Kawazu M, Uchida I, Kikyo H, Asakura I, Miyashita Y. Contribution of working memory to
transient activation in human inferior prefrontal cortex during performance of the Wisconsin Card
Sorting Test. Cereb Cortex 1999;9:745–753. [PubMed: 10554997]

Kosslyn, SM. Image and Brain. MIT Press; Cambridge, MA: 1994.
Kosslyn SM, Alpert NM, Thompson WL, Chabris CF, Rauch SL, Anderson AK. Identifying objects seen

from different viewpoints. A PET investigation. Brain 1994;117(Pt 5):1055–1071. [PubMed:
7953588]

Kosslyn SM, Thompson WL, Alpert NM. Identifying objects at different levels of hierarchy: A positron
emission tomography study. Hum Brain Mapp 1995;3:107–132.

Kosslyn SM, DiGirolamo GJ, Thompson WL, Alpert NM. Mental rotation of objects versus hands: Neural
mechanisms revealed by positron emission tomography. Psychophysiology 1998;35:151–161.
[PubMed: 9529941]

Kosslyn SM, Thompson WL, Alpert NM. Neural systems shared by visual imagery and visual perception:
a positron emission tomography study. Neuroimage 1997;6:320–334. [PubMed: 9417974]

Lavie N, Hirst A, de Fockert JW, Viding E. Load theory of selective attention and cognitive control. J
Exp Psychol Gen 2004;133:339–354. [PubMed: 15355143]

Lerner Y, Harel M, Malach R. Rapid completion effects in human high-order visual areas. Neuroimage
2004;21:516–526. [PubMed: 14980554]

Lowe, D. Perceptual Organisation and Visual Recognition. Kluwer Academic; Boston: 1985.
Lowe, D. Paper presented at: First IEEE International Workshop on Biologically Motivated Computer

Vision. Seoul, Korea: 2000. Towards a computational model for object recognition in IT cortex.

Ganis et al. Page 18

Neuroimage. Author manuscript; available in PMC 2008 October 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Macwhinney B, Cohen J, Provost J. The PsyScope experiment-building system. Spat Vis 1997;11:99–
101. [PubMed: 9304758]

Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA, Ledden PJ, Brady TJ, Rosen BR,
Tootell RB. Object-related activity revealed by functional magnetic resonance imaging in human
occipital cortex. Proc Natl Acad Sci U S A 1995;92:8135–9. [PubMed: 7667258]

Mechelli A, Price CJ, Friston KJ, Ishai A. Where bottom-up meets top-down: neuronal interactions during
perception and imagery. Cereb Cortex 2004;14:1256–1265. [PubMed: 15192010]

Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci
2001;24:167–202. [PubMed: 11283309]

Miller BT, D'Esposito M. Searching for the “top” in top-down control. Neuron 2005;48:535–538.
[PubMed: 16301170]

Monchi O, Petrides M, Petre V, Worsley K, Dagher A. Wisconsin Card Sorting revisited: distinct neural
circuits participating in different stages of the task identified by event-related functional magnetic
resonance imaging. J Neurosci 2001;21:7733–7741. [PubMed: 11567063]

Moore T, Armstrong KM. Selective gating of visual signals by microstimulation of frontal cortex. Nature
2003;421:370–373. [PubMed: 12540901]

Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia
1971;9:97–113. [PubMed: 5146491]

Oliver RT, Thompson-Schill SL. Dorsal stream activation during retrieval of object size and shape. Cogn
Affect Behav Neurosci 2003;3:309–322. [PubMed: 15040551]

Passingham RE, Toni I, Rushworth MF. Specialisation within the prefrontal cortex: the ventral prefrontal
cortex and associative learning. Exp Brain Res 2000;133:103–113. [PubMed: 10933215]

Perrett D, Oram M. . Neurophysiology of shape processing. Image Vis Computing 1993;11:317–333.
Petrides M. Lateral prefrontal cortex: architectonic and functional organization. Philos Trans R Soc Lond

B Biol Sci 2005;360:781–795. [PubMed: 15937012]
Poggio T, Edelman S. A network that learns to recognize three-dimensional objects. Nature

1990;343:263–266. [PubMed: 2300170]
Rainer G, Miller EK. Effects of visual experience on the representation of objects in the prefrontal cortex.

Neuron 2000;27:179–189. [PubMed: 10939341]
Ranganath C, D'Esposito M. Directing the mind's eye: prefrontal, inferior and medial temporal

mechanisms for visual working memory. Curr Opin Neurobiol 2005;15:175–182. [PubMed:
15831399]

Riesenhuber M, Poggio T. Neural mechanisms of object recognition. Curr Opin Neurobiol 2002;12:162–
168. [PubMed: 12015232]

Rolls ET, Tovee MJ, Panzeri S. The neurophysiology of backward visual masking: information analysis.
J Cogn Neurosci 1999;11:300–311. [PubMed: 10402257]

Romanski LM. Domain specificity in the primate prefrontal cortex. Cogn Affect Behav Neurosci
2004;4:421–429. [PubMed: 15849888]

Rosch E, Mervis CB, Gray WD, Johnson DM, Boyes-Braem P. Basic objects in natural categories. Cogn
Psych 1976;8:382–439.

Rousselet GA, Thorpe SJ, Fabre-Thorpe M. Taking the MAX from neuronal responses. Trends Cogn Sci
2003;7:99–102. [PubMed: 12639684]

Schendan HE, Ganis G, Kutas M. Neurophysiological evidence for visual perceptual categorization of
words and faces within 150 ms. Psychophysiology 1998;35:240–251. [PubMed: 9564744]

Schendan HE, Kutas M. Neurophysiological evidence for two processing times for visual object
identification. Neuropsychologia 2002;40:931–945. [PubMed: 11900745]

Smith EE, Jonides J. Storage and executive processes in the frontal lobes. Science 1999;283:1657–1661.
[PubMed: 10073923]

Smith, EE.; Medin, DL. Categories and concepts. Harvard University Press; Cambridge, MA: 1981.
Snodgrass JG, Corwin J. Perceptual identification thresholds for 150 fragmented pictures from the

Snodgrass and Vanderwart picture set. Percept Mot Skills 1988;67:3–36. [PubMed: 3211683]
Snodgrass JG, Feenan K. Priming effects in picture fragment completion: Support for the perceptual

closure hypothesis. J Exp Psych Gen 1990;119:276–296.

Ganis et al. Page 19

Neuroimage. Author manuscript; available in PMC 2008 October 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Snodgrass JG, Smith B, Feenan K, Corwin J. Fragmenting pictures on the Apple Macintosh computer
for experimental and clinical applications. Behav Res Methods Instr Comput 1987;19:270–274.

Snodgrass JG, Vanderwart M. A standardized set of 260 pictures: Norms for name agreement, image
agreement, familiarity, and visual complexity. J Exp Psych Hum Learn Mem 1980;6:174–215.

Sugio T, Inui T, Matsuo K, Matsuzawa M, Glover GH, Nakai T. The role of the posterior parietal cortex
in human object recognition: a functional magnetic resonance imaging study. Neurosci Lett
1999;276:45–48. [PubMed: 10586971]

Tanaka K. Inferotemporal cortex and object vision. Annu Rev Neurosci 1996;19:109–139. [PubMed:
8833438]

Tomita H, Ohbayashi M, Nakahara K, Hasegawa I, Miyashita Y. Top-down signal from prefrontal cortex
in executive control of memory retrieval. Nature 1999;401:699–703. [PubMed: 10537108]

Turnbull OH, Beschin N, DellaSala S. Agnosia for object orientation: Implications for theories of object
recognition. Neuropsychologia 1997;35:153–163. [PubMed: 9025119]

Wager TD, Jonides J, Reading S. Neuroimaging studies of shifting attention: a meta-analysis.
NeuroImage 2004;22:1679–1693. [PubMed: 15275924]

Wager TD, Smith EE. Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav
Neurosci 2003;3:255–274. [PubMed: 15040547]

Wagner AD, Schacter DL, Rotte M, Koutstaal W, Maril A, Dale AM, Rosen BR, Buckner RL. Building
memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science
1998;281:1188–1191. [PubMed: 9712582]

Wallis G, Rolls ET. Invariant face and object recognition in the visual system. Prog Neurobiol
1997;51:167–194. [PubMed: 9247963]

Wojciulik E, Kanwisher N. The generality of parietal involvement in visual attention. Neuron
1999;23:747–764. [PubMed: 10482241]

Xiong J, Gao J-H, Lancaster JL, Fox PT. Clustered analysis for functional MRI activation studies of the
human brain. Human Brain Mapp 1995;3:287–301.

Ganis et al. Page 20

Neuroimage. Author manuscript; available in PMC 2008 October 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Sample stimuli in Experiment 1; at the left is an impoverished image of a bus; at the right is
an impoverished image of its pseudo-object version.
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Figure 2.
a) Mean RTs to MI and LI objects and pseudo-objects (Experiment 1); b) Percent signal change
(relative to the mean of the corresponding timeseries, see text for details) to the same stimuli,
averaged across regions of interest defined by the contrast of MI and LI objects in the main
analysis. The dissociation between the RT pattern and the brain activation pattern indicated
that RTs alone were not responsible for the object impoverishment effects. Error bars represent
the standard error across subjects
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Figure 3.
Activation maps (6 s post-stimulus onset) and time courses of activation (percent signal change
is relative to the mean of the corresponding timeseries, see text for details) showing frontal
regions significantly active in contrasts of MI and LI objects (VLPFC=ventrolateral prefrontal
cortex ACG/SMA=Anterior Cingulate Gyrus/Supplementary Motor Area; LH=Left
Hemisphere; RH=Right Hemisphere). Activations are displayed on an average inflated brain
[created with FreeSurfer (Dale et al., 1999; Fischl et al., 1999) from 27 anatomical scans
obtained from MNI and UCLA (Holmes et al., 1998)].
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Figure 4.
Activation maps (6 s post-stimulus onset) and time courses of activation (percent signal change
is relative to the mean of the corresponding timeseries, see text for details) showing occipital,
temporal and parietal regions significantly active in contrasts of MI and LI objects
(IPS=intraparietal sulcus; MOG=middle occipital gyrus; LO=lateral occipital; AG=angular
gyrus; FG/ITS=fusiform gyrus/inferotemporal sulcus). Activations are displayed on the same
average inflated brain as in Figure 3.
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Figure 5.
Percent signal change (relative to the mean of the corresponding timeseries, at the peak
occurring at 6 s post-stimulus onset, see text for details) to MI and LI stimuli in the regions
listed in Table 1 (excluding the angular gyrus, which exhibited negative activation to all
stimuli). Error bars represent the standard error across subjects. “L” means “left”, and “R”
means “right”.
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Figure 6.
Time courses of activation in object-sensitive regions activated in both the MI – LI objects
comparison and the independent object-sensitive localizer task (percent signal change is
relative to the mean of the corresponding timeseries, see text for details). The specific regions
were defined using Talairach coordinates from prior studies of object-sensitive regions.
Activations are displayed on the same average inflated brain as in Figure 3.
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Figure 7.
a) Diagram of a trial in Experiment 2 and illustration of the nine digits and shapes used in the
WM tasks (RT = voice onset time); b) Behavioral data from Experiment 2; average RTs for
categorizing MI and LI objects in the Shape WM and Digit WM tasks during the first (top) and
second (bottom) block of trials. Error bars represent the standard error across subjects.
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