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Abstract
Cardiac alternans, a beat-to-beat alternation in action potential duration (at the cellular level) or in
ECG morphology (at the whole heart level), is a marker of ventricular fibrillation, a fatal heart rhythm
that kills hundreds of thousands of people in the US each year. Investigating cardiac alternans may
lead to a better understanding of the mechanisms of cardiac arrhythmias and eventually better
algorithms for the prediction and prevention of such dreadful diseases. In paced cardiac tissue,
alternans develops under increasingly shorter pacing period. Existing experimental and theoretical
studies adopt the assumption that alternans in homogeneous cardiac tissue is exclusively determined
by the pacing period. In contrast, we find that, when calcium-driven alternans develops in cardiac
fibers, it may take different spatiotemporal patterns depending on the pacing history. Because there
coexist multiple alternans solutions for a given pacing period, the alternans pattern on a fiber becomes
unpredictable. Using numerical simulation and theoretical analysis, we show that the coexistence of
multiple alternans patterns is induced by the interaction between electrotonic coupling and an
instability in calcium cycling.

I. INTRODUCTION
Sudden cardiac death, attributable to unexpected ventricular arrhythmias, is one of the leading
causes of death in the US and kills over 300,000 Americans each year [1]. The induction and
maintenance of ventricular arrhythmias has been linked to single-cell dynamics [2,3]. In
response to an electrical stimulus, cardiac cells fire an action potential [4], which consists of
a rapid depolarization of the transmembrane voltage (Vm) followed by a much slower
repolarization process before returning to the resting value (Fig. 1). The time interval during
which the voltage is elevated is called the action potential duration (APD). The time between
the end of an APD and the beginning of the next one is called the diastolic interval (DI). The
time interval between two consecutive stimuli is called the basic cycle length (BCL). When
the pacing rate is slow, a periodic train of electrical stimuli produces a phase-locked steady-
state response, where each stimulus gives rise to an identical action potential (1:1 pattern).
When the pacing rate becomes sufficiently fast, the 1:1 pattern may be replaced by a 2:2 pattern,
so-called electrical alternans [5,6], where the APD alternates between short and long values.
Recent experiments have established a causal link between alternans and the risk for ventricular
arrhythmias [7–9]. Therefore, understanding mechanism of alternans is a crucial step in
detection and prevention of fatal arrhythmias.

Cellular mechanisms of alternans have been much studied. Summaries on this topic can be
found in recent review articles by Shiferaw et al. [10] and Weiss et al. [11]. At the cellular
level, cardiac dynamics involves bidirectional coupling between membrane voltage (Vm)
dynamics and intracellular calcium (Cain) cycling. During an action potential, the elevation of
Vm activates L-type Ca currents ICa to invoke the elevation of [Cain], which in turn triggers
Ca release from the sarcoplasmic reticulum (SR), a procedure known as calcium-induced-
calcium release (CICR) [12]. The Vm → Cain coupling satisfies graded release, where a larger
DI leads to an increase in the Ca release at the following beat since it allows more time for L-
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type Ca channels to recover. On the other hand, Ca release from the SR affects the APD in two
folds: to curtail the APD by enhancing the inactivation of L-type Ca currents ICa; and to prolong
the APD by intensifying Na+/Ca2+ exchange currents INaCa. Therefore, depending on the
relative contributions of ICa and INaCa, an increase in Ca release may either shorten the APD
(negative Cain → Vm coupling) or lengthen the APD (positive Cain → Vm coupling) [13–15].
There exist two main cellular mechanisms of alternans. Firstly, alternans may be attributed to
steep APD restitution [5], which is due to a period-doubling instability in the Vm dynamics.
In this case, Cain transient alternans, as a slave variable, is induced because Vm regulates
[Cain] via the L-type Ca currents and the sodium-calcium exchange currents. Secondly,
alternans may be caused by a period-doubling instability in Cain cycling, which is associated
with a steep relationship between the sarcoplasm reticulum (SR) release and SR load [16,17].
In this case, APD alternans is a secondary effect via Cain → Vm coupling. For ease of reference,
we call the first mechanism APD-driven alternans and the second Ca-driven alternans.
Interestingly, APD and Cain transient alternans can be electromechanically (E/M) in phase or
out of phase [18,19]. In E/M in-phase alternans, a long-short-long APD pattern corresponds to
a large-small-large [Cain] pattern, See Fig. 2 (a). In contrast, in E/M out-of-phase alternans, a
long-short-long APD pattern corresponds to a small-large-small [Cain] pattern, See Fig. 2 (b).
When alternans happens in isolated cells, the bidirectional coupling between APD and Cain
transient determines the relative phase of APD and Cain transient alternans. In particular, APD-
driven alternans always leads to E/M in-phase alternans whereas Ca-driven alternans is E/M
in phase for positive Cain → Vm coupling and out of phase for negative Cain → Vm coupling
[13–15].

The mechanism of alternans in multicellular tissue is more complicated since it involves
electrotonic coupling and conduction velocity restitution. Of particular interest is a
phenomenon called spatially discordant alternans, in which different regions of the tissue
alternate out of phase. Discordant alternans is arrhythmogenic because it forms a dynamically
heterogeneous substrate that may promote wave break and reentry [2,3]. To study the
spatiotemporal patterns of alternans, Echebarria and Karma derived amplitude equations that
are based on APD-driven alternans [20,21]. These amplitude equations not only are capable
of quantitative predictions but also provide insightful understandings on the arrhythmogenic
patterns. In a recent article, Dai and Schaeffer [22] analytically computed the linear spectrum
of Echebarria and Karma’s amplitude equations for the cases of small dispersion and long
fibers.

Spatial patterns of alternans have been investigated in experiments [7,23–25]. Recently,
Aistrup et al. [26] used single-photon laser-scanning confocal microscopy to measure Ca
signaling in individual myocytes. They found that Ca alternans is spatially synchronized at low
pacing rates whereas dyssynchronous patterns, where a number of cells are out of phase with
adjoining cells, arise when the pacing rate increases. Aistrup et al. also observed subcellular
alternans at fast pacing, where Ca alternans is spatially dyssynchronous within a cell. Using
simulations of 1-d homogeneous tissue, Sato et al. [15] found that, in cardiac fibers with
negative Ca→Vm coupling, Ca alternans reverses phase over a length scale of one cell whereas,
in fibers with positive Ca→Vm coupling, Ca alternans changes phase over a much larger length
scale. They interpreted this difference by showing that negative Ca→Vm coupling tends to
desynchronize two coupled cells while positive Ca→Vm coupling tends to synchronize the
coupled cells.

Motivated by the aforementioned experimental and theoretical work, this paper aims to explore
spatial patterns of cardiac alternans. Through extensive numerical simulations, we find that
complex spatial patterns of Ca alternans with phase reversals in adjacent cells can happen in
homogeneous fibers with both negative and positive Ca→Vm couplings. Most surprisingly,
we find that the spatiotemporal pattern of cardiac alternans is not determined by the pacing
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period alone. Specifically, when calcium-driven alternans develops in multicellular tissue,
there coexist multiple spatiotemporal patterns of alternans regardless of the length of the fiber,
the junctional diffusion of Ca, and the type of Ca→Vm coupling. We further investigate the
mechanism that leads to the coexistence of multiple alternans solutions. Our analysis shows
that multiple alternans solutions are induced because of the interaction between electrotonic
coupling and an instability in Cain cycling.

II. MODEL DESCRIPTION
A. Membrane dynamics

We adopt a model of membrane dynamics that combines the calcium dynamics model
developed by Shiferaw et al. [27] and the canine ionic model by Fox et al. [28]. In the following,
we will refer to this model as the Shiferaw-Fox model. Detailed formulations of the model can
be found in [27,29]. The Shiferaw-Fox model has adopted two sets of parameters in the calcium
dynamics to account for negative and positive Cain →Vm couplings. Besides the phase
difference, the two sets of parameters also produce alternans at different values of BCL. Using
Shiferaw’s default parameters, we find alternans happens at BCL ≈ 401 ms for negative Cain
→ Vm coupling and BCL ≈ 323 ms for positive Cain → Vm coupling. Fig. 3 shows the
bifurcation diagrams in APD and peak value of [Cain] for negative Cain → Vm coupling. The
bifurcation diagrams for positive Cain → Vm coupling are similar and thus are not shown here.
We note that, in simulations of isolated cells using the Shiferaw-Fox model, alternans solutions
do not depend on the initial condition nor on the pacing history. However, as we will show in
the following, fibers based on the Shiferaw-Fox model possess multiple alternans solutions,
which are sensitive to the initial condition and the pacing protocol.

B. Simulation of fiber models
We study paced, homogeneous fibers, which can be modeled using the cable equation:

(1)

where υ represents Vm, D = 5 ×10−4 cm2/ms represents the effective diffusion coefficient of
υ in the fiber, Cm = 1 μF/cm2 represents the transmembrane capacitance, Iion is the total ionic
current, and Iext represents the external current stimulus. The ionic current Iion is computed
using the Shiferaw-Fox model. The current stimulus has duration 1 ms and amplitude 80 μA/
μF. This paper studies fibers of various lengths. For two coupled cells, we pace the left cell.
For longer fibers, we pace the leftmost few cells to ensure propagation. For example, the
leftmost 5 cells are paced in simulating a fiber of 100 cells. The cable equation (1) is solved
using the finite difference method with a space step of Δx = 0.015 cm and time step of Δt =
0.1 ms. No-flux boundary conditions are imposed at both ends of the fiber [27, 29].

C. Pacing protocols
To study the onset and development of alternans, we pace both single cells and fibers of various
lengths with several pacing protocols, which are briefly described below.

i. In the downsweep protocol [30], the cell/fiber is paced periodically with period BCL
until it reaches steady state. Then, the pacing period is reduced by ΔB and the
procedure is repeated many times. Note that this protocol is also known as dynamic
pacing protocol [31].

ii. The perturbed downsweep protocol, proposed by Kalb et al. [30], can be regarded as
a perturbation to the downsweep protocol. At each pacing period BCL, the cell/fiber
is first paced N beats to reach steady state. Then, a longer pacing period is applied at
the N+1st pacing, after which the original pacing period is applied for 10 beats to
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allow the tissue to recover its previous steady state. Next, a shorter pacing period is
applied and followed by 10 beats of the original pacing period. Finally, the pacing
period is reduced by ΔB and the procedure is repeated.

iii. To explore the possibility for multiple alternans solutions, we set up certain initial
condition and pace the tissue with period BCL to reach steady state, a process we call
direct pacing.

iv. To explore the origin of an alternans pattern, we use the upsweep protocol [30], which
is a reversed downsweep protocol.

III. SPATIOTEMPORAL PATTERNS OF ALTERNANS: NUMERICAL
EXPLORATION

We simulate fibers using the Shiferaw-Fox model with both negative and positive Cain →
Vm couplings under various conditions. Default parameters in Shiferaw’s code [29] are used
unless otherwise specified. Despite quantitatively significant differences, we find both types
of couplings lead to the coexistence of multiple alternans solutions. For clarity, we start with
the results for negative Cain → Vm coupling and defer the results for positive Cain → Vm
coupling in a later subsection.

A. Coexistence of multiple solutions
We first consider a homogeneous fiber of 100 cells with negative Cain → Vm coupling. To our
surprise, numerical simulations show that when the fiber is in alternans, there coexist multiple
solutions for a given pacing period. For example, Fig. 4 shows 6 selected solutions of alternans
for the fiber paced at BCL=375 ms. Here, the steady-state solutions in panels (a–c) are obtained
using the downsweep protocol with step size ΔB=1 ms, 2 ms, and 25 ms, respectively. The
pacing protocols are started from BCL=500 ms in (a) and (c) and from BCL=499 ms in (b).
We note that the solution of a downsweep protocol is not influenced by the initial condition at
the starting, long BCL; instead, the solution is sensitive to the step size ΔB. The steady-state
solutions in panels (d–f) are obtained by pacing the fiber at BCL=375 ms with prescribed initial
conditions for 200 beats, the so-called direct pacing. The initial condition of the fiber in panel
(d) is uniform, i.e., all cells are assigned the same resting voltage, gating variables, and ionic
concentrations. The initial condition in panel (e) is same as that in (d) except that [Cain] is
assigned to be 0.54 μM for the first 35 cells and 0.66 μM for the remaining cells. Interestingly,
this initial condition leads to a steady-state [Cain] pattern, which, besides the phase reversal
between cells 35 and 36, has another phase reversal between cells 11 and 12. The initial
condition in panel (f) is the same as that in (d) except that [Cain] is randomly assigned for cells
on the fiber according to a uniform distribution in the interval of 0.45 μM to 0.75 μM. In all
protocols, we pace the fiber for 200 beats at each BCL and plot the last 10 beats at BCL=375
ms. The simulation results in Fig. 4 demonstrate that the alternans on a fiber is not solely
determined by the pacing period. Instead, the solution is sensitive to the pacing protocol and
the initial condition. It is worth noting that, besides the solutions shown in Fig. 4, there exist
many other solution patterns. In particular, there exist many complex patterns similar to Fig.
4 (f). In the following, we will verify whether the phenomenon is influenced by the length of
the fiber, junctional Ca diffusion, or Cain →Vm coupling.

B. Influence of the length of the fiber
We repeat the numerical simulations for fibers of various lengths and find that the phenomenon
persists regardless of the length of the fiber. Probably, the most illuminating example is a
“fiber” of two coupled cells. Denoting the voltage at cell 1 as V1 and that at cell 2 as V2, we
can simulate the two coupled cells by integrating the following equations [32]
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(2)

(3)

Note that only cell 1 is paced in this case. Using various pacing protocols and initial conditions,
we find the two coupled cells can have spatially desynchronized (Fig. 5 (a)) and synchronized
(Fig. 5 (b)) alternans. Note that in the desynchronized pattern, APD in both cells exhibit a beat-
to-beat variation of a few hundredth of ms, which is impossible to observe in experiments.

C. Influence of junctional Ca diffusion
The original Shiferaw-Fox model does not include the diffusion of Ca between neighboring
cells [33]. Physiologically, there exists gap junctional Ca diffusion although its magnitude is
several orders lower than voltage diffusion [34,35] and thus is typically neglected in cardiac
modeling. One may wonder whether including junctional Ca diffusion will affect the
simulation results. To answer this question, we introduce junctional Ca diffusion to the
Shiferaw-Fox model by modifying the equation governing [Cain] as follows [32]:

(4)

where Ci represents [Cain], Dc = 3 ×10−9 cm2/ms is the Ca diffusion coefficient [34,35], Zc is
the valence of Ca, F is the Faraday constant, R is the gas constant, T = 300 K is the temperature,
and Ic represents the Cain currents in the Shiferaw-Fox model. With this modification, we repeat
the numerical simulations and find there still exist multiple alternans solutions.

For example, Fig. 6 shows three selected solutions for a homogeneous fiber of 100 cells paced
at BCL=375 ms. Figures 6 (a) and (b) are obtained using downsweep protocols same as those
in Fig. 4 (b) and (c), respectively. Figure 6 (c) is obtained using a random initial distribution
in [Cain] (cf. Fig. 4 (f)). Comparing results in Figs. 4 and 6 shows that the coexistence of
multiple solutions is not influenced by junctional Ca diffusion.

D. Influence of Cain →Vm coupling
Simulations show that fibers with positive Cain →Vm coupling also possess multiple alternans
solutions. For example, Fig. 7 shows 3 selected solutions for a homogeneous fiber of 100 cells
with positive Cain →Vm coupling, paced at BCL=300 ms. Figure 7 (a) is obtained via a
perturbed downsweep protocol, where the step size is ΔB=25 ms and a long and a short
perturbations of ±20 ms are applied at each BCL, see section 2 for details of the perturbed
downsweep protocol. Figures 7 (b) and (c) are obtained by directly pacing the cell at BCL=300
ms using a uniform and a random initial distributions in [Cain], respectively.

We simulate two coupled cells with positive Cain → Vm coupling and find that alternans can
be both spatially synchronized and spatially desynchronized, see Fig. 8. In Figs. 5 and 8, values
of APD are almost identical in the two cells because conduction time across a cell’s length is
negligible. Thus, these examples indicate that the coexistence of multiple solutions does not
depend on steep CV restitution. We note that, using a downsweep protocol with step size of 2
ms, Sato et al. [15] also studied alternans in two coupled cells. They observed the
desynchronized solution for negative Cain → Vm coupling and the synchronized solution for
positive Cain → Vm coupling. Using numerical simulation, Sato et al. showed that negative
Cain → Vm coupling tends to desynchronize two coupled cells whereas positive Cain → Vm
coupling tends to synchronize them. Thus, we hypothesize that the synchronized solution for
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negative Cain → Vm coupling and the desynchronized one for positive coupling are induced
by electrotonic coupling, which will be verified in the next section.

IV. ORIGIN OF THE INDETERMINACY
A. Numerically tracing an alternans solution

The coexistence of multiple alternans solutions in a fiber is surprising because the underlying
cell’s model possesses a supercritical period-doubling bifurcation, describing a transition from
a unique 1:1 solution to a unique alternans solution (Fig. 3). The transition to alternans in a
fiber appears to be more complicated. First, when paced at sufficiently large values of BCL, a
fiber has a single 1:1 solution, regardless of the initial condition. However, as shown in the
previous section, the fiber can develop multiple patterns of alternans. Therefore, it is interesting
to ask how different alternans patterns are related to one another and how they are connected
to the 1:1 solution. To address these questions, we utilize the upsweep protocol to trace the
“origins” of different alternans solutions. Starting at BCL=375 ms from a pattern in Fig. 4, we
increase BCL by 1 ms every 200 beats until the alternans solution either changes to a different
alternans pattern or becomes a 1:1 pattern. Then, we mark that value of BCL as the “starting”
point for the studied alternans pattern. Under this protocol, each solution in Fig. 4 transforms
into another alternans solution at a starting BCL shown in Table I. Specifically, pattern (a)
“starts” at BCL=416 ms and patterns (b)-(f) start at BCL values between 402 and 405 ms.
Further numerical simulations show that the fiber first undergoes alternans at BCL=425 ms.
This is counterintuitive because, in the underlying cell’s model, the onset of alternans occurs
at 401 ms (cf. Fig. 3). Since alternans solutions in the fiber can occur earlier than alternans in
the single-cell model, we hypothesize that these solutions are induced from the interaction
between cellular dynamics and electrotonic coupling (induced alternans). We further
hypothesize that alternans may also result from the intrinsic instability mechanism that leads
to alternans in the underlying cellular model (intrinsic alternans). Noticing that the spatially
concordant alternans in pattern (d) starts at BCL=402 ms, near the onset of alternans in the
single-cell model, we hypothesize the concordant alternans is a result of intrinsic alternans.

Using upsweep protocols, we also trace the origins of the alternans in Fig. 5 for the two coupled
cells. Numerical simulations show that the desynchronized solution in Fig. 5 (a) stops at
BCL=405 ms and the synchronized solution in Fig. 5 (b) stops at BCL=401 ms. Moreover, we
also find that different alternans solutions for fibers with positive Cain → Vm coupling stop at
different values of BCL. Thus, the bifurcation structure for a fiber is much more complicated
than that for a single cell. Moreover, the numerical results suggest that the multiple alternans
patterns born from different bifurcations are due to the interaction between electrotonic
coupling and instability in calcium cycling.

B. Bifurcation Mechanism
Shiferaw et al. showed that the bidirectional Vm/Ca coupling in the Shiferawox can be captured
by a 2-d mapping model [13]. The work of Shiferaw et al. provides a theoretical framework
for understanding various experimental observations including electromechanically in-phase/
out-of-phase alternans and quasi-periodic oscillations of voltage and calcium. Here, we follow
their approach and take a mapping model in the following form [36],

(5)

(6)

where An, Dn, and Cn represent the APD, DI, and peak [Cain] concentration of nth beat,
respectively. By definition, it follows that Dn =BCL−An, see Fig. 1. Function f stands for the
APD resitution. The second term in Eq. (5) accounts for the influence of [Cain] on APD.
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Negative Cain → Vm coupling corresponds to γ < 0 and positive coupling to γ > 0. Due to
graded release, μ has to be positive [15]. Function g determines the relation between Ca
concentrations in two consecutive beats.

Using map (5, 6), we will show how the interaction between electrotonic coupling and
instability in calcium cycling leads to multiple alternans patterns in fibers. Since the analysis
below does not depend on the forms of f and g, we do not specify their forms here. Instead we
present numerical examples based on concrete forms of f and g in the Appendix. The numerical
examples there show that fiber models based on the map (5, 6) are able to reproduce the
phenomena observed in simulations of the Shiferaw-Fox model.

1. Bifurcation for single cells—Using a mapping model similar to (5,6), Shiferaw et al.
[13] carried out a bifurcation analysis to show how different alternans solutions in single cells
arise as a result of Vm/Ca coupling. Here, we briefly review that analysis, which serves as a
starting point to understand bifurcation for fibers. To this end, consider a paced cell described
by map (5,6). A 1:1 solution is a fixed point of the map and its stability is determined by the
Jacobian matrix:

(7)

where f′ measures the slope of the APD restitution and g′ measures the slope of the [Cain]
relation, and all derivatives are evaluated at the fixed point.

The strength of Vm/Ca coupling varies among species [13]. In this paper, we assume a weak
coupling between Vm dynamics and Ca cycling, which allows easy analysis and yields insight
on the instability mechanisms in cardiac cells as well as in fibers. To this end, we assume γμ
≪ f′, g′ in the following. Using a perturbation technique [37], we find the eigenvalues of J to
first order in γμ are

(8)

Since γμ is small, one can see that a period-doubling bifurcation occurs if one of the slopes, f′
or g′, becomes sufficient large (compared to 1). Thus, if the bifurcation is caused by increasing
in f′, we say the alternans is APD driven. On the other hand, it is called a Ca-driven alternans
if the bifurcation is due to increasing in g′. For simplicity, if alternans is APD driven, we assume
g′ remains small and will not induce dynamic instability for all physiologically interesting
parameter regimes; and vice versa.

APD-driven alternans: In case of APD-driven alternans, it follows that f′ > g′. To first order
in γμ, the unstable eigenvector is

(9)

which is in phase in APD and [Cain]. Therefore, APD-driven alternans is electromechanically
in phase.

Calcium-driven alternans: In case of Ca-driven alternans, it follows that g′ > f′. To first order
in γμ, the unstable eigenvector is

(10)
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For positive Cain → Vm coupling, it follows that γ > 0 and thus alternans is electromechanically
in phase. On the other hand, for negative Cain →Vm coupling, it follows that γ < 0 and thus
alternans is electromechanically out of phase.

2. Bifurcation for two coupled cells—To understand the bifurcation mechanism for
fibers, we start with the extreme case of two coupled cells. Denoting the locations of the cells
by x1 and x2, we represent the APD, DI, and [Cain] of cell i for the nth beat as An (xi), Dn (xi),
and Cn (xi), respectively. Following Fox et al. [38], we account for electrotonic coupling
between the cells using weighted averaging:

(11)

(12)

(13)

(14)

where

(15)

and ρ(0) and ρ(1) are the weighting functions. Here, we have neglected the effect of dispersion
due to conduction velocity restitution since the “fiber” is short and thus the influence of
conduction restitution to APD is insignificant. On the time scale of one APD, Vm diffuses on
a spatial scale of a few tens of cells [20]. Thus, the coupling in APD between two neighboring
cells is strong. As a result, ρ(0) ≈ ρ(1) and ρ(0) + ρ(1) = 1. Therefore, we let ρ(0) = 1/2 + ε and
ρ(1) = 1/2 − ε, where 0 < ε ≪ 1. For a 1:1 solution, the two cells have the same values of APD
and [Cain]. Thus, the Jacobian matrix can be written as

(16)

where all derivatives are evaluated at the 1:1 solution.

Using perturbation theory [37], we find the eigenvalues to first order in γμ and ε are

(17)

Note that the first two eigenvalues are the same as those for the case of single cells (cf. Eq. 8).
Thus, they are due to intrinsic membrane dynamics. The last two eigenvalues are induced by
the electrotonic coupling as manifested by the small coupling parameter ε.

APD-driven alternans: For APD-driven alternans, the intrinsic bifurcation is the only
mechanism to produce alternans. The corresponding eigenvector to first order in γμ and ε is

(18)

Thus, APD-driven alternans tends to be electro-mechanically in phase and spatially
synchronized.
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Calcium-driven alternans: For Ca-driven alternans, bifurcation can happen intrinsically
when g′ + γμg′/(g′ − f′) = 1 (intrinsic bifurcation). Bifurcation can also be induced by
electrotonic coupling when g′+ 2 ε γμ = 1 (induced bifurcation). To first order in γμ and ε, the
eigenvector corresponding to the intrinsic bifurcation is

(19)

To first order in γμ and ε, the eigenvector corresponding to the induced bifurcation is

(20)

Therefore, while the intrinsic bifurcation gives birth to a spatially synchronized solution, the
induced bifurcation leads to a spatially desynchronized pattern. And the electromechanical
phase is determined by the sign of γ.

Subtracting the intrinsic eigenvalue from the induced one yields γμ (g′(g′ − f′) − 2ε), which has
the same sign as γ since g′ > f′(Ca-driven alternans) and μ > 0 (graded release). If γ < 0, the
induced eigenvalue is more negative; therefore, the spatially desynchronized pattern, born from
the induced bifurcation, occurs before the spatially synchronized pattern, born from the
intrinsic bifurcation. On the other hand, if γ > 0, the intrinsic eigenvalue is more negative;
therefore, the spatially desynchronized pattern occurs after the spatially synchronized pattern.
The analysis is in agreement with numerical simulations of the Shiferaw-Fox model using
upsweep protocols. Therefore, when BCL is continuously decreased from a 1:1 solution, it is
more likely to observe the spatially synchronized solution for the positive Cain →Vm coupling
case whereas it is more likely to observe spatially desynchronized pattern in the negative
Cain →Vm coupling case. This is probably why Sato et al. observed different solution patterns
for negative and positive Cain →Vm couplings in their downsweep simulations.

The conclusion based on two coupled cells may be extended to short fibers; however, we expect
long fibers have more complicated phenomena than presented here. In particular, because the
dispersion effect may play an important role in long fibers as shown by Echebarria and Karma
[20,21] and by Dai and Schaeffer [22]. Nevertheless, the simple case sheds light on the effect
of electrotonic coupling, the difference between APD and Ca-driven alternans, and the
difference between negative and positive Cain →Vm couplings.

3. Understanding bifurcation for fibers—For Ca-driven alternans in fibers, we start with
the extreme case of μ = 0. As can be seen from the cellular model (5,6), in this case, Cain
dynamics becomes independent of Vm dynamics. Because Cain dynamics is not influenced by
electrotonic coupling, when alternans develops in a fiber, cells can arbitrarily choose their
phases in [Cain]. Depending on the initial conditions, Ca alternans on a fiber can take different
spatial patterns. When μ is small but nonzero, [Cain] in different cells are weakly coupled due
to feedback of Vm dynamics and electrotonic coupling. If this weak coupling does not suppress
the coexistence of multiple solutions, the alternans pattern will become sensitive to initial
conditions and pacing protocols. Under certain pacing protocols, Cain alternans on a fiber may
possess a complex pattern with multiple phase reversals, as shown in Figs. 4 (f), 6 (c), and 7
(c). In these examples, the spatial patterns of APD are much less complex, which is because
APD on the fiber is an averaging effect over many cells due to the fast diffusion of Vm [20,
21]. As a result of electrotonic coupling, different spatial patterns of Cain alternans may
correspond to similar spatial patterns of APD. Moreover, as shown in simulations of the
Shiferaw-Fox model (see Figs. 4, 6, and 7) and of the mapping model (see Fig. 10 in Appendix),
spatial dyssynchrony in Cain alternans may induce spatially discordant APD alternans, which
verifies the hypothesis of Aistrup et al. [26].
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V. SUMMARY AND DISCUSSION
Using numerical simulation and theoretical analysis, we have investigated spatiotemporal
patterns of calcium-driven alternans. The main finding is that although alternans of an isolated
cell is solely determined by the pacing period, the solution in a fiber is sensitive to pacing
protocols and initial conditions. To the author’s knowledge, this is the first report on the
coexistence of multiple alternans solutions for cardiac fibers. We have further verified that the
coexistence of multiple alternans solutions is independent of the length of the fiber, junctional
Ca diffusion, and the type of Cain →Vm coupling. Since multiple solutions also exist for fibers
of as few as a couple of cells, the phenomenon does not require steep conduction velocity
restitution. Another interesting observation is that complex patterns of Cain alternans with
multiple phase reversals in neighboring cells may arise in a homogeneous fiber with both
negative and positive Cain →Vm couplings. The simulation results also verify the hypothesis
of Aistrup et al. that spatially desynchronized Ca signaling may lead to spatially discordant
APD alternans [26].

We have also explored the bifurcation mechanism for the coexistence of multiple solutions.
Numerical simulations and symbolic bifurcation analyses trace the onset of multiple alter-nans
patterns to a number of bifurcations induced by the interaction between electrotonic coupling
and an instability in calcium cycling. The bifurcation here bears similiarity to that of a ring
model. For example, Courtmanche et al. [39] used the Beeler-Reuter model [40] to show that,
when the length of the ring is reduced, there is an infinite-dimensional Hopf bifurcation, which
gives birth to an infinite number of quasi-periodic solutions. Since the Beeler-Reuter model
does not account for intracellular calcium cycling, it will be interesting to investigate how
calcium-induced alternans propagates in a ring.

Simulations in this paper lead to another interesting observation—the onset of altrenans in a
fiber does not occur at the same value of BCL as that in the underlying single-cell model, a
phenomenon against the common wisdom. This counter-intuitive observation indicates that
one can not directly relate behavior of fibers to that of single cell models. Another intriguing
example about the differences between alternans in fibers and alternans in single cells is
presented in the work of Cherry and Fenton [41], who analyzed two models of canine
ventricular myocytes: the Fox-MchHarg-Gilmour (FMG) model [28] and the Hund-Rudy (HR)
model [42]. Simulations of both models show that the bifurcation structures for fibers are
different than those for the corresponding single cells (see Fig. 5 in [41]). Most interestingly,
the HR 0d model (a single cell) shows alternans for BCL between 180 and 230 ms whereas
the HR 1d model (a 1.25 cm-long fiber) does not undergo alternans for all values of BCL
studied. Examples in [41] as well as examples in the current paper show that stability of a fiber
may not be inferred from stability of the single cell model and vice versa.

Results in this paper are based on numerical simulations and hypothesized mapping models.
Here, we describe potential experiments to verify the numerical observations. Probably, the
simplest experiment would measure the spatial patterns of APD or Ca alternans on a fiber under
various pacing protocols. It is well know that in vitro experiments suffer non-stationary drifts
due to tissue dying. However, this is a slower process compared to typical experimental
protocols, which last a few tens of minutes. Moreover, time constant of cardiac tissue is on the
order of a few tens of seconds [30]. Therefore, it is possible to conduct multiple well-designed
protocols in a time interval when tissue dynamics remains stationary. Other related experiments
include the work of Fenton [43], where action potential is measured using microelectrode at a
cell in a slice of paced dog epicardium tissue. Fenton showed that the onset and the form of
alternans at the measured cell depend on the pacing history. While Fenton’s observations may
be attributable to factors such as cardiac memory, the coexistence of multiple alternans patterns
in cardiac tissue may be another contributing element.
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As pointed out by Qu and Weiss [44], because Cain instability and Vm instability are always
being regulated by each other, it remains a challenge to identify the sources of instabilities in
cardiac experiments. Recent work by Sato et al. [45] and by Jordan and Christini [46] have
developed theoretical criteria to assess the relative contributions of Vm and Cain dynamics in
inducing cardiac alternans. The coexistence of multiple alternans patterns observed here may
provide another possible criterion for this purpose. If the phenomenon was verified in
experiments, it will raise questions in detection of alternans. New theories will also be needed
to understand the development of different alternans patterns to ensure better prediction and
control of spatiotemporal alternans.
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APPENDIX A: SIMULATION OF THE MAPPING MODEL
Here, we present numerical examples for single cells and for fibers using the mapping model
(5, 6). For simulation purpose, we let f(Dn) = α(1 − β e−Dnτ and g (Cn) = −s (Cn − Ccrit) −
Cmin. Inspired by the results of Shiferaw et al. (Fig. 10 (d) in [27]), we choose the slope s in
g to be , where θ = tanh (k (C − Ccrit)). To produce numerical results, we
adopt the following set of parameters: α = 500 ms, β = 0.62; τ = 500 ms, γ = −30 ms/μM, μ =
0.0025 μM=ms, Ccrit = 1.6 μM, Cmin = 1.25 μM, s1 = −2.5, s2 = 0.01, and k = 10 μM−1. Note
that we have arbitrarily chosen a negative value of γ although a positive value of γ will produce
similar phenomena. Moreover, we make the magnitude of γμ small to simulate weak Vm/
Cain coupling.

1. Alternans for single cells
With the chosen parameters, map (5, 6) gives birth to alternans through a period-doubling
bifurcation at B = 410.958 ms, see the bifurcation diagrams in Fig. 9. For this simple model,
it can be analytically shown that, for a given BCL, the cell has either a unique 1:1 solution or
a unique alternans solution. However, as we will see below, a fiber has multiple alternans
solutions induced from electrotonic coupling.

2. Alternans for fibers
Based on the mapping model (5, 6) for single cells, we construct a coupled-maps model to
simulate fibers. Coupled-maps models have been used by a few authors to study propagation
of action potential [38,47–49]. Here, we follow that approach. Specifically, we consider a fiber
consisting of M identical cells, located at xi, i = 1, 2, … M. The distance between two
neighboring cells is denoted by Δx. At cell xi, APD and DI are related by the following equation:

(A1)

where Tn+1 (xi) is the time interval between two consecutive activations of site xi. The time
Tn+1 (xi) is determined by the propagation time from the pacing site to xi, that is,

(A2)
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where Vn (xi) stands for the conduction velocity. We adopt a conduction velocity from Fox et
al. [48]: Vn (xi) = Vmax (1 − exp (− (Dn (xi) + β)/δ)) with parameters Vmax = 0.72 cm/ms, β =
17.408, and δ = 14. To account for the effect of electrotonic coupling, we modify the weighted
averaging formula in Fox et al. [38] as follows:

(A3)

where Ān+1 (xj) = n(Dn (xj)) + γ (Cn+1 (xj) − Ccrit) and w (j) = exp (−0.0067 j2). The equation
for [Cain] reads

(A4)

Simulations of the coupled-maps model (A1–A4) show that the alternans pattern on a fiber
depends on the pacing history, a phenomenon consistent with that observed in simulations of
the Shiferaw-Fox model. For example, Fig. 10 shows 3 selected solutions for a homogeneous
fiber of 100 cells paced at B=375 ms. Panels in Fig. 10 have different initial conditions in
[Cain]. Panel (a) starts from a uniform initial distribution. Panel (b) starts from an initial
condition, where [Cain] is set to be 1.5 μM in the first 35 cells and 1.7 μM in the remaining
cells. Panel (c) starts from a random initial distribution. Thus, the coupled maps model is able
to reproduce the coexistence of multiple alternans solutions as observed in the Shiferaw-Fox
model.

Zhao Page 14

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2009 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIG. 1.
Schematic action potential showing the response of the transmembrane voltage to periodic
electrical stimuli.
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FIG. 2.
Schematic illustration of electromechanically in-phase (a) and out-of-phase (b) alternans.
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FIG. 3.
Bifurcation diagrams of an isolated cell using the Shiferaw-Fox model.
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FIG. 4.
(Color online) Six selected alternans solutions for a homogeneous fiber of 100 cells with
negative Ca→Vm coupling when paced at BCL=375 ms. Panels (a)–(c) are obtained using
down-sweep protocols from 500 ms to 375 ms in steps of 1, 2, and 25 ms, respectively. Panels
(d)–(f) are obtained by directly pacing at BCL=375 ms with different initial distributions in
Cain, see text for details. To verify if a solution reaches steady state, we plot the last 10 beats
of the simulation results, where odd beats are represented by red solid lines and even beats by
blue dashed lines. The coincidence of all odd beats and that of all even beats confirm that the
solution is indeed in steady state.
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FIG. 5.
(Color online) A “fiber” of two cells with negative Ca→Vm coupling can have both spatially
desynchronized and synchronized alternans solutions. The pacing period is 375 ms. The last
10 beats of the steady-state solutions are plotted, where odd beats are represented by red solid
lines and even beats by blue dashed lines.
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FIG. 6.
(Color online) Three selected alternans solutions for a homogeneous fiber model, where
junctional Ca diffusion is included. The cells have negative Ca→Vm coupling and the pacing
period is 375 ms. Panels (a) and (b) are obtained using downsweep protocols and panel (c) is
obtained by direct pacing with random initial distribution of Cain. The last 10 beats of the
steady-state solutions are plotted, where odd beats are represented by red solid lines and even
beats by blue dashed lines.
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FIG. 7.
(Color online) Three selected alternans solution in a homogeneous fiber of 100 cells with
positive Ca→Vm coupling. The pacing period is 300 ms in all panels. Panel (a) is obtained
using a perturbed downsweep protocol. Panels (b) and (c) are obtained by direct pacing with
with initial uniform distribution and random distribution of Cain, respectively. (See text for
details.) The last 10 beats of the steady-state solutions are plotted: odd beats are red solid and
even beats are blue dashed.
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FIG. 8.
(Color online) A “fiber” of two cells with positive Ca→Vm coupling can have both spatially
synchronized and desynchronized alternans solutions. The pacing period is BCL= 300 ms. The
last 10 beats of the steady-state solutions are plotted: odd beats are red solid and even beats
are blue dashed.
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FIG. 9.
Bifurcation diagrams of the map (5, 6) with negative Vm/Ca coupling.
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FIG. 10.
(Color online) Simulation of the coupled-maps model: three selected alternans solutions for a
homogeneous fiber of 100 cells with negative Ca→Vm coupling. The pacing period is 375 ms
in all panels. Panel (a) starts from a uniform initial distribution in Cain. Panel (b) starts from
an initial condition, where Cain is set to be 1.5 μM in the first 35 cells and 1.7 μM in the
remaining cells. Panel (c) starts from a random initial distribution in Ca. The last 10 beats of
the steady-state solutions are plotted, where odd beats are represented by red solid lines and
even beats by blue dashed lines.
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TABLE I
Origins of the alternans patterns in Fig. 4.

pattern (a) (b) (c) (d) (e) (f)
starting BCL (ms) 416 405 404 402 403 404
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