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Abstract
There have been several reports about the potential for predicting prognosis of neuroblastoma patients
using microarray gene expression profiling of the tumors. However these studies have revealed an
apparent diversity in the identity of the genes in their predictive signatures. In order to test the
contribution of the platform to this discrepancy we applied z-scoring method to minimize the impact
of platform and combine gene expression profiles of neuroblastoma (NB) tumors from two different
platforms, cDNA and Affymetrix. A total of 12442 genes were common to both cDNA and
Affymetrix arrays in our dataset. Two-way ANOVA analysis was applied to the combined dataset
for assessing the relative effect of prognosis and platform on gene expression. We found 26.6%
(3307) of the genes had significant impact on survival. There was no significant impact of microarray
platform on expression after application of z-scoring standardization procedure. Artificial neural
network (ANN) analysis of the combined data set in a leave-one-out prediction strategy correctly
predicted the outcome for 90% of the samples. Hierarchical clustering analysis using the top-ranked
160 genes showed the great separation of two clusters, and the majority of matched samples from
the different platforms were clustered next to each other. The ANN classifier trained with our
combined cross-platform data for these 160 genes could predict the prognosis of 102 independent
test samples with 71% accuracy. Furthermore it correctly predicted the outcome for 85/102 (83%)
NB patients through the leave-one-out cross validation approach. Our study showed that gene
expression studies performed in different platforms could be integrated for prognosis analysis after
removing variation resulting from different platforms.

Introduction
Neuroblastoma (NB) is the most common solid extra-cranial tumor of childhood. Patients with
high-risk neuroblastoma still have a very poor outcome; therefore the prediction of prognosis
is important for the selection of treatment. We and others have reported the capability of
predicting prognosis of neuroblastoma patients using microarray gene expression profiling
[1;2;3;4;5]. However these studies have revealed an apparent diversity in the identity of the
genes in their predictive signatures. The factors causing the diversity may include the difference
of patient treatment protocol, tumor sample source, tumor selection, sample number, sample

*Corresponding Author: Javed Khan, Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National
Cancer Institute, 8717 Grovemont Circle, Gaithersburg, MD 20877, Phone: (301) 435-2937, Fax: (301) 480-0314 Email:
khanjav@mail.nih.gov.

NIH Public Access
Author Manuscript
Genomics. Author manuscript; available in PMC 2009 October 1.

Published in final edited form as:
Genomics. 2008 October ; 92(4): 195–203. doi:10.1016/j.ygeno.2008.05.014.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



preparation, microarray platform and data analysis. Integrating data from existing experiments
into a metadata pool may be beneficial for the retrieval of a gene signature that best predicts
outcome for patients with neuroblastoma.

Microarray technology has become a powerful tool for analyzing gene expression and several
different microarray platforms have emerged during the past several years including
commercial and custom-made cDNA and oligonucleotide arrays. The diversity of platforms
has made it a challenge to compare and integrate the datasets generated in different
experiments. Many comparison studies have been done to investigate the agreement in results
obtained with different platforms [6;7;8;9;10;11;12]. Recently Larkin et al [6] compared the
whole gene expression data set generated in Affymetrix and cDNA platforms by using a mouse
model of angiontensin II-induced hypertension and found that the analysis of cardiac gene
expression yielded consistent results for greater than 90% of the genes in common between
the two platforms.

In this study we compared and integrated the gene expression profiles of 42 neuroblastoma
tumor samples with known patient outcome, using both cDNA and the Affymetrix platforms.
We combined the data sets from different platforms after using z-scoring to minimize the
impact of platform and assessed the relative effect of prognosis and platform on gene expression
of the combined data. We used the signature obtained from the integrated data to validate
independent data from a different laboratory.

Results
Impact of prognosis and platform on gene expression

To assess if the expression profile data from two different array platforms could be integrated
for prognosis analysis, we performed gene expression profiles of 42 neuroblastoma tumor
samples with known outcome on both cDNA and Affymetrix platforms (Supplemental Table
1). The data from each platform was normalized separately as described in detail in Materials
and Methods. The Unigene ID was used as a common identifier to link the two platforms. In
case of multiple probes representing the same Unigene cluster, the probe with the top
correlation (Pearson correlation) between cDNA and Affymetrix arrays was kept for the
analysis. A total of 12442 unique Unigene clusters were common to both platforms and were
kept for the subsequent analysis. We performed log2 transformation for the expression ratio
and z-score standardization across samples for each gene separately for each platform. The
data sets from two different platforms were then combined for further analysis. The gene
correlation between the data collected from two platforms is shown in Fig 1. Around 50% of
genes have a correlation greater than 0.56 (p < 0.0001).

We used principal components analysis (PCA) to reduce the dimensionality of the data. The
first three principal components showed the differential expression of tumors with good
prognosis and poor prognosis (Fig 2A). Hierarchical clustering using all of 12442 genes also
showed a separation of tumors with good prognosis and poor prognosis (Fig 2B), but three of
tumor samples (NB282, NB206 and NB207) were shown clearly not clustered according to
their status. In the original paper [1] NB282 was also predicted to have poor prognosis and it
is possible that this patient may have relapsed after the 3-year follow-up period since there is
a small percentage of patients that relapse after 3 years. Unfortunately because the patients
were anonymized for our study and have severed all linking information we do not have the
means to see what happened to the patient after 3 years. Interestingly NB206 and NB207 were
predicted to have poor prognosis using ANN in the original paper [1] although they are not
clustered with other poor prognosis samples in our hierarchical clustering analysis here. There
are two possible reasons for this. Firstly, hierarchical clustering is an unsupervised linear
classification tool and we used all quality filtered genes and thus it is not expected to work as
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well as ANN which is supervised non-linear classification with use of hidden layers. Secondly,
of note NB206 and NB207 although they died of disease had relatively longer survival times
(5.8 and 3.1 years) compared to other poor prognosis samples. Thus these unusual samples
may be biologically different compared with the majority of others who dies of disease. These
are speculative and difficult to validate.

We then investigated the effect of platform on the combined data analysis using two-way
ANOVA as described by Larkin et al [6]. Fig 2C showed the source of variation associated
with the different factors: prognosis, platform, and interaction. The F-ratio for each factor
represents the variance by this factor relative to the random within group variance (error).
Interaction addresses whether the effect of prognosis depends on platform or vice versa. In this
two-way ANOVA result, the F-ratio of 0.058 for platform factor means that the variation
associated with platform was very low suggesting that the effect of platform could be removed
by the simple z-scoring standardization; F-ratio of 5.83 for prognosis effect means that the
variation associated with prognosis is much larger. This result agreed with the result of PCA
and hierarchical clustering. In detail, for the 12442 genes present on both arrays, 26.6% (n =
3307) had significant impact (p_prognosis < 0.01) on prognosis; there was no significant
impact of microarray platform on expression levels after the normalization mentioned above
(p_platform > 0.19 for all genes). The interaction in the ANOVA analysis identifies genes with
divergent gene expression measurements between the two platforms [6]. We found that 2.0%
(n = 253) of all 12442 genes had significant interaction (p_interaction < 0.01) between platform
and prognosis (Supplemental Table 5), which means that the two platforms gave discordant
measurements of samples with good and poor prognosis for this subset of genes. The false
discovery rate (FDR) of the test at significance level of 0.05 is shown in Supplemental Table
2; according to FDR-adjusted significance level 3632 genes had significant prognosis impact,
21 genes showed interaction and no gene had significant platform impact. All datasets as well
as the ANOVA results are available in an online searchable database
(http://pob.abcc.ncifcrf.gov/cgi-bin/JK). To investigate the biological differences between
good and poor prognosis groups, we performed GO analysis on these 3307 significant genes
(p_prognosis < 0.01) as well as their significance (Supplemental Table 3). Genes involved in
signal transducer activity were significantly associated with good prognosis group; genes
involved in metabolism, mitotic cell cycle, biosynthesis, RNA and DNA metabolism, and RNA
processing were significantly associated with poor prognosis group.

We also compared z-score method with two other methods, Distance Weighted Discrimination
(DWD) [13] and mean-centering method, in removing variation resulting from different
platforms. As shown in Supplemental Fig 1, all three methods worked well, which suggested
that all of these methods could be used to integrate the data. In addition, we validated the
integration method on a published breast cancer dataset [11] (Supplemental Fig 2). Finally we
validated our method using a dataset from preclinical pediatric xenograft samples generated
on custom cDNA array [14] and Affymetrix human U133plus2 array [15] (Supplemental Fig
3). For this dataset RNA from the same xenograft samples were isolated in independent
laboratories and were profiled with cDNA by our laboratory [14] and Affymetrix microarrays
from an independent laboratory [15] respectively (see methods and Supplemental Fig 3 for
more details).

Neuroblastoma prognosis analysis on cross-platform data
To investigate if the data integrated from the two platforms could be used for prognosis
analysis, ANN analysis and leave-one-out prediction strategy were applied on the combined
cross-platform data of 42 neuroblastoma samples with 12442 genes. Samples analyzed on the
two platforms were considered as different samples, the same samples from both platforms
were left out as test samples when performing the leave-one-out testing. We found that the
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ANNs correctly predicted 30/32 poor-outcome and 46/52 good-outcome cases (Fig 3A) with
an accuracy rate 90%. To identify the optimal set of genes that results in the minimum
classification errors, we performed a gene minimization procedure in a separate ANN analysis.
We observed that the top 160 ANN-ranked probes resulted in the minimal classification error
(Fig 3B). The ranking information is also available in the online searchable database
(http://pob.abcc.ncifcrf.gov/cgi-bin/JK). Hierarchical clustering analysis (Fig 3C) using the
160 top-ranked probes showed two distinct clusters (good prognosis vs. poor prognosis group).
We did not observe a platform effect on the clustering. The majority of matched samples from
the different platforms were clustered next to each other. In most cases they have a similar
heatmap pattern. This result again suggests that the data from two platforms could be integrated
for the prognosis analysis after the data standardization.

Prediction of prognosis in an independent test set
To investigate if the experiment of independent samples from a different lab can be integrated
with the previous cross-platform data set of 42 samples, we used an independent test dataset
of 102 neuroblastoma samples, representing different cohort of patients, produced on the
Affymetrix U133ABset platform generated by a different lab [4]. This data set includes 56
good prognosis samples (no disease relapse for at least 5 years from diagnosis) and 46 poor
prognosis samples (have disease relapse). We performed PCA and ANOVA analysis on the
integrated data consisting of the cross-platform data set of 42 samples (84 experiments) and
the independent data set of 102 samples, each of them was z-score standardized before
combined. As shown in Fig 4A the samples representing different cohort of patients on different
platforms are intermingled. Separation between good and poor prognosis group could be seen
as well. ANOVA analysis showed that the variation associated with prognosis is much larger
than platform and patient cohort (Fig 4B).

We also tested the prediction power of 160 top ranked genes on samples from the independent
data set. We recalibrated or trained the ANNs with the cross-platform data of 42 samples for
the 160 top ranked genes and predicted the prognosis of 102 neuroblastoma samples in the
independent test data set [4]. The ANNs correctly predicted the outcomes for 32/46 poor
outcome and 40/56 good outcome patients, corresponding to the accuracy rate of 71% (Fig
5A). The Kaplan-Meier survival curve of event-free-survival was constructed for the patients
classified as good and poor outcome by the ANN analysis above (Fig 5B). The results showed
that the patients classified into different outcomes had significantly different survival
probabilities (P < 0.0001). We also used ANNs to predict the prognosis of the 102 samples
with the 160 top ranked probes using a leave-one-out prediction strategy. We found that this
ANN classifier correctly predicted 38/46 poor-outcome and 47/56 good-outcome cases with
the accuracy rate 83%. This corresponds to a sensitivity of 83% and specificity of 84% for the
poor-outcome patients (data not shown).

Discussion
We have shown that gene expression studies performed in different platforms could be
combined for prognosis analysis after properly removing variation resulting from different
platforms. However in order to perform integration of data from different sources with highly
heterogeneous cross-platform data sets, many factors have to be considered, such as sample
source, sample composition, time interval of freezing of samples, RNA preparation, labeling
method, array platform, data preprocessing and other technical noises. In this study we mainly
focused on the noise caused by platforms using homogenous sample preparation. We examined
the effect of the platform by carefully selecting the same RNA samples for both cDNA and
Affymetrix oligonucleotide platforms, and applied the z-scoring method to integrate the cross-
platform data. Because of the use of z-scoring to standardize the data from each of the different
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platforms the method will best work when combining similar data sets, in our case both data
sets were from neuroblastoma tumors. We compared two neuroblastoma prognosis data sets
generated on in-house cDNA and Affymetrix oligonucleotide arrays by using ANOVA, PCA
and hierarchical clustering analysis. All of the results confirmed that platform had no significant
effect after standardization but patient prognosis had a dominant impact on gene expression
levels of combined data. Hierarchical clustering analysis using the top ranked genes separated
well the samples of good prognosis group from those of poor prognosis. The same samples
analyzed in two platforms clustered tightly, they were next to each other in most of cases.
However there were a small set of genes which showed a significant interaction between
prognosis and platform. Splice variants, difference of probe sequences used in both platforms
and the contamination of cDNA clones may contribute to the inconsistence of their expressions.

It has been well discussed [6;7;11] that methods used for the data preprocessing and handling
may affect the comparability of expressions across platforms. In order to perform the cross-
platform comparison the Unigene ID has been frequently used as a unique identifier to match
probes on the different platforms. The sequence-matching approach has also been used to
increase the cross-platform consistency [16]. We used Unigene ID as the common identifier
in this study; in cases where multiple probes were represented for same unigene in both cDNA
and Affymetrix platforms, we kept the top correlated probes in the neuroblastoma study; and
the average of multiple probes was used in pediatric xenograft datasets and breast cancer
datasets (Supplemental Fig 2 and 3). The success of this method is evident by the unsupervised
hierarchical clustering analysis (Fig 3C and Supplemental Fig 3B); the majority of matched
samples from the different platforms were clustered next to each other. Since the normalization
methods for the data from the different platforms are very different, we normalized the data
sets from cDNA array and Affymetrix array platforms separately in their own standard
normalization methods. Then each data set was standardized using a simple z-score
transformation method and combined for analysis. This simple standardizing process has been
proven to work well in our study and make the data from two different platforms, but similar
datasets, comparable and combinable on the same scale. We used ANOVA analysis [6] to
assess the impact of platform on expression levels after z-scoring standardization in
neuroblastoma study and have not observed any gene with significant impact of platform. DWD
and mean-centered methods were also proved to work well. A previous study [11] illustrated
that data from different microarray platforms are variable to the extent that direct integration
of data from several sources may be complicated and unreliable. Our study clearly exhibits the
promising result of data integration from different platforms, and we have tested the method
on the breast cancer cell line data used in that study (Supplemental Fig 2). PCA analyses showed
that after z-score standardization the experiments of same cell line with data generated on
different platforms and different normalizations cluster together tightly; ANOVA analysis also
indicated that the standardization completely reduced the platform effect and increased the
difference between cell lines. In addition, we validated the method on a dataset of preclinical
pediatric xenograft generated on both cDNA and Affymetrix platforms (Supplemental Fig 3).
The result in Supplemental Fig 3 indicated that the integrative method is applicable to multi-
class unsupervised (PCA and hierarchical clustering analysis) and supervised (ANN analysis)
classification. Furthermore, we used a neuroblastoma prognosis data set generated on
Affymetrix U133ABset platform from a different laboratory by Asgharzadeh et al [4] as an
independent test set. Of note the ANN classifier calibrated or trained with our combined cross-
platform data could predict the prognosis of 102 samples of the independent test set to 71%
accuracy. The 42 tumor samples we had were of different stages with or without MYCN
amplification, however the 102 samples from Asgharzadeh et al [4] only included the patients
in the high stage without MYCN amplification. Considering that the data is from a different
lab, a different platform, with different data normalization method, different sample collection
method and even different patient selection, it is not trivial to achieve such accuracy. Again
the ANN analysis on this independent set with the 160 genes correctly predicted 83% of patients
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in a leave-one-out prediction strategy, further indicating that the gene signature obtained from
the cross-platform data are reliable.

Functional GO analysis for the top 160 genes obtained from the integrated data indicated that
genes related with mitochondrion were significantly associated with poor prognosis group (p
< 0.01 and Bonferroni corrected p < 0.01). Genes involved in energy pathways, mitotic cell
cycle, ATPase activity and structural constituent of ribosome were also significantly associated
with poor prognosis group (p < 0.05) although it is not significant after Bonferroni correction
(data not shown). So far several gene expression-based prognostic classifiers have been
published [1;2;3;4;5]; comparison of the 160 genes with those classifiers showed some
overlapped genes. There are 8 genes overlapped with the classifier identified by Oberthuer et
al [5] (CHAF1A, CNR1, FLJ20105, MAP7, PDE4DIP, PGM2L1, PMP22 and WSB1), 3 genes
with Asgharzadeh et al [4] (CNR1, PGM2L1, and TMOD2), 2 genes with Schramm et al [2]
(NEDD8 and PSMA6), 1 gene with Wei et al [1] (CNR1) and no overlap with the classifier of
Ohira et al [3]. It is not too surprising to find that very few overlapped genes between the 160-
gene classifier and other different classifiers. Several reasons may account for this, since these
studies were performed using a heterogeneous set of samples with patients receiving different
treatment protocols, tumor selection, sample number and sample preparation is playing an
important role in the classifier identification. Because of the rarity of neuroblastoma incidence,
sample numbers for current neuroblastoma published studies are limited when done in a single
lab. Therefore the z-scoring method enables us to integrate data from different existing data
into a metadata pool to identify a prognostic gene signature.

During recent years microarray technology has made it possible and relatively affordable for
scientists to study gene expression on a global scale. More and more microarray gene
expression data have been deposited in public databases for scientists to share. Exploring the
methods to standardize the data from different sources and different platforms and to make
data comparable and data integration possible will be necessary, especially for studies of rare
diseases such as neuroblastoma where lack of sufficient samples to perform large studies. In
addition, to perform a large study in a single lab using a single platform is technically
challenging because of preferences for different technologies in individual labs and the
continuing evolution of microarray technology. Therefore data integration may be a strategy
for retrieval of the best gene signature.

In summary, we used z-scoring method to integrate the neuroblastoma prognosis data sets from
different platforms; the effect of platform was eliminated to the minimal level and the greatest
signal was due to prognosis. Using ANN analysis and a leave-one-out strategy to predict the
patient’s prognosis we found that more than 90% of samples are independent of platform. The
top-ranked 160 genes from ANN may have a relevance to biology. The ANN classifier trained
for these genes with our combined cross-platform data could predict the prognosis of 102
independent test samples with pretty high accuracy. Our study showed that gene expression
studies performed in different platforms could be integrated for prognosis analysis after
removing variation resulting from different platforms.

Materials and Methods
Tumor samples and microarray experiments

Forty-two pretreatment primary neuroblastoma tumor samples from patients with outcome
information were obtained retrospectively from three sources [1]. Patients were divided into
two outcome groups: the “good-outcome” (Alive) group had event-free survival (i.e., neither
relapses nor neuroblastoma progression) for at least 3 years (n=26), and “poor-
outcome” (Dead) died due to neuroblastoma disease (n=16). Total RNA from seven human
cancer cell lines (CHP212, RD, HeLa, A204, K562, RDES, and CA46) was pooled in equal
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portions to constitute a reference RNA, which was used in all of the cDNA microarrray
experiments. RNA preparation and cDNA microarray experiment was done as previously
described [1]. The same RNAs were used for Affymetrix microarray experiments. Biotinylated
cRNA was synthesized and hybridized to Affymetrix Genechip U133 set (HG-U133A and HG-
U133B arrays; Affymetrix, Santa Clara, CA) according to the Affymetrix protocol. For the
Xenograft data a total 42 experiments of preclinical pediatric xenograft samples was analyzed
(22 experiments on custom cDNA array from our laboratory [14] and 20 experiments on
Affymetrix human U133plus2 array platform from an independent laboratory [15]). The data
came from three pediatric cancer types: Neuroblastoma (NB), Rhabdomyosarcoma (RMS) and
Ewing’s sarcoma (EWS) (Supplemental Table 4).

Data processing
A total of 42,578 cDNA clones were printed on our in-house cDNA array. The cDNA gene
expression ratios between tumor RNA and reference RNA on each microarray were normalized
using a pin-based normalization method [1]. In order to include only high quality data in the
analysis, the quality of each individual cDNA spot was calculated as previously described
[1]. Spots with an average quality across all samples less than 0.95 were excluded from the
analysis. For neuroblastoma data, a total of 37668 clones representing 33180 Unigene clusters
passed this quality filter. For neuroblastoma data on Affymetrix gene chip, we exported. CEL
files from Affymetrix GCOS software and normalized in dChip [17] to the median intensity
using the PM-only model. To get Affymetrix gene expression ratios, the expression values of
samples obtained from dChip normalization process were divided by the median value of the
whole array. We used 10% present call filter and removed the probe sets with the present calls
less than 10% across all samples; a total of 33647 probes representing 31124 Unigene clusters
remained for the further analysis.

Data analysis
For comparison between neuroblastoma data from cDNA and Affymetrix arrays we used
UniGene cluster ID (Build #191) as the common identifier between the platforms. In case of
multiple probes representing the same Unigene cluster, the probe with the top correlation
(Pearson correlation) between cDNA and Affymetrix arrays was kept for the analysis. A total
of 12442 Unigenes were common to both platforms and used for the analysis. The data was
log2 transformed and z-score normalization was performed across samples for each gene
separately in each data set. The two data sets were then combined using the common identifier
for prognosis analysis. For the published data set by Asgharzadeh et al [4], we extracted the
data from Gene Expression Omnibus (GEO accession number GSE3446;
http://www.ncbi.nlm.nih.gov/geo/) which included 102 samples (56 samples have no disease
relapse for at least 5 years from diagnosis; 46 samples have disease relapse). They are all
metastatic neuroblastoma without MYCN amplification. The data has been normalized by
authors; therefore we directly used the data for the analysis. A two-way ANOVA was applied
to quantify the impact of platform and prognosis on gene expression. Gene ontology (GO)
analysis was performed using EASE tool from David bioinformatics resources
(http://david.abcc.ncifcrf.gov/). The whole set of 12442 genes was used as the background list.
The list of genes with high expression in good or poor prognosis group was run separately to
evaluate the enrichment of GO categories represented in each gene list.

Analysis using Architecture of Artificial Neural Networks (ANNs)
We used principal component analysis (PCA) and reduced the dimensionality of the data to
the top 10 PCs as inputs for ANNs. This procedure reduced the number of variables to 10 to
avoid over-fitting the data which occurs when the number of variables exceeds the number of
samples. We used feed-forward resilient back-propagation multi-layer perceptron ANNs [1;
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18] (coded in Matlab, The Mathworks, Natick, MA) with 3 layers: an input layer of the top 10
principal components (PCs) of the data; a hidden layer with 5 nodes; and an output layer
generating a committee vote that discriminates two classes (i.e., good- and poor-outcome
groups). Average ANN committee votes were used to classify samples, and 0.5 was used as
the decision boundary for ANN prediction throughout the study. The ideal vote was 0 for the
good-outcome group (alive), and 1 for the poor-outcome group (dead). We trained the ANNs
and predicted NB outcomes using an 8-fold cross validation scheme in all analyses similar as
described previously [1].

Statistical analysis for evaluation of prognosis in survival
The probability of survival was calculated using the Kaplan-Meier method, and the significance
of the difference between Kaplan-Meier curves was calculated using the log-rank test.

Web-based Database
We have released the gene expression data of 42 neuroblastoma samples generated on both
cDNA array and Affymetrix U133AB set platforms in an online searchable database
(http://pob.abcc.ncifcrf.gov/cgi-bin/JK). The two-way ANOVA analysis results as well as
ANN ranking information were also included in the database. The web-interface offers a broad
variety of options for data query and visualization.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig 1. Cross-platform correlation of neuroblastoma prognosis gene expression data
Forty-two unique neuroblastoma samples with 26 in good prognosis group (Alive) and 16 in
poor prognosis (Dead) were analyzed by both cDNA and Affymetrix microarray platforms.
The Unigene ID was used as a common identifier. The Pearson correlation was calculated for
the probes representing the same Unigene cluster, the probe with the top correlation between
cDNA and Affymetrix arrays was kept for the analysis (a total of 12442 Unigenes). The
distribution of correlations for 12442 unigenes is shown in blue. The red curve shows the
distribution of the correlations of the reshuffled data with random sample labels for each gene,
the process was repeated for 1000 times. The dashed vertical line represents the p < 0.001 level.
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Fig 2. The impact of prognosis on gene expression
The datasets of 42 neuroblastoma samples from two platforms were combined after the
normalization and z-score standardization to remove the effect of platform. The poor prognosis
samples are shown in red (cDNA) and magenta (Affymetrix), good prognosis in green (cDNA)
and blue (Affymetrix). A. Loading plot of top three principal components of the 84 experiments
using all 12442 Unigenes demonstrates the separation of good prognosis from poor prognosis
samples. Platform effect is not seen after normalization. The sample labels are shown as
follows: platform-stage-MYCN status-sample name-survival status. For MYCN; NA= not
amplified and A= amplified and for survival status A= alive and D= dead. B. Hierarchical
clustering analysis using all 12442 Unigenes showed the experiments are mainly clustering
according to clinical outcome. C. The sources of variation in the two-way ANOVA analysis.
Prognosis has the highest variation.
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Fig 3. Prediction of neuroblastoma outcome using cross-platform data
A. ANN voting results for outcome prediction of 42 samples from two platforms using 12442
Unigenes in a leave-one-out prediction strategy. The same samples from both platforms were
left out as test samples when performing leave-one-out test. Red represents the samples with
poor prognosis, green with good prognosis. Vertical line at 0.5 is the decision boundary for
outcome prediction, good signature < 0.5, poor signature >= 0.5. B. Gene minimization plot
for ANN prediction. ANNs were trained using 42 samples from both two platforms; the average
prediction errors were calculated. The minimal number of genes that generated the minimal
error rate was 160. C. Hierarchical clustering analysis using the top 160 Unigenes showed the
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experiments clustered according to clinical outcome. Matched samples from the different
platforms clustered tightly. Experiment color codes and sample labels are used as in Fig 2.
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Fig 4. Integrated data from different cohorts of patients
The datasets of 42 neuroblastoma samples on cDNA and Affymetrix platforms (84
experiments) and a dataset of 102 neuroblastoma samples produced on Affymetrix platform
generated by a different lab [4] with a different cohort of patients were combined after the
normalization and z-score standardization separately. A. Loading plot of top three principal
components of the 186 experiments using all 12442 Unigenes demonstrates the separation of
good prognosis from poor prognosis samples. Platform effect and patient cohort effect are not
seen after standardization. The sample labels are shown as follows: for patient cohort and
platform status affy= 42 neuroblastoma samples on Affymetrix, cDNA= 42 neuroblastoma
samples on cDNA, test= 102 neuroblastoma samples on Affymetrix; for survival status A=
alive and D= dead. B. The sources of variation in the ANOVA analysis. Prognosis has the
highest variation.
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Fig 5. Prediction of neuroblastoma prognosis in an independent data set
A. ANN voting results for outcome prediction of 102 neuroblastoma samples from an
independent test set [4]. The ANNs were trained using the top ranked 160 Unigenes with the
cross-platform data of 42 samples. The data set from 102 neuroblastoma samples were z-score
transformed and plugged in as test samples. Magenta represents the samples with poor
prognosis; blue with good prognosis. Vertical line at 0.5 is the decision boundary for outcome
prediction, good signature < 0.5, poor signature >= 0.5. ANN classifier correctly predicted
32/46 poor-outcome and 40/56 good-outcome cases with the accuracy rate 71%. The sample
labels are shown as: disease status-sample number. For disease status; “poor” means patients
relapsed within 5 year and “good” means there is no disease relapse for at least 5 years from
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diagnosis. B. Kaplan-Meier curve of event-free-survival probability of 102 patients based on
the ANN analysis obtained from A. The patients classified as good and poor outcome had
significantly different survival probability (p < 0.0001).
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