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Computed tomographic colonography �CTC� computer aided detection �CAD� is a new method to
detect colon polyps. Colonic polyps are abnormal growths that may become cancerous. Detection
and removal of colonic polyps, particularly larger ones, has been shown to reduce the incidence of
colorectal cancer. While high sensitivities and low false positive rates are consistently achieved for
the detection of polyps sized 1 cm or larger, lower sensitivities and higher false positive rates occur
when the goal of CAD is to identify “medium”-sized polyps, 6–9 mm in diameter. Such medium-
sized polyps may be important for clinical patient management. We have developed a wavelet-
based postprocessor to reduce false positives for this polyp size range. We applied the wavelet-
based postprocessor to CTC CAD findings from 44 patients in whom 45 polyps with sizes of
6–9 mm were found at segmentally unblinded optical colonoscopy and visible on retrospective
review of the CT colonography images. Prior to the application of the wavelet-based postprocessor,
the CTC CAD system detected 33 of the polyps �sensitivity 73.33%� with 12.4 false positives per
patient, a sensitivity comparable to that of expert radiologists. Fourfold cross validation with 5000
bootstraps showed that the wavelet-based postprocessor could reduce the false positives by 56.61%
�p�0.001�, to 5.38 per patient �95% confidence interval �4.41, 6.34��, without significant sensitiv-
ity degradation �32 /45, 71.11%, 95% confidence interval �66.39%, 75.74%�, p=0.1713�. We con-
clude that this wavelet-based postprocessor can substantially reduce the false positive rate of our
CTC CAD for this important polyp size range. �DOI: 10.1118/1.2938517�
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I. INTRODUCTION

Although colon cancer is the second leading cause of cancer
death in the US,1 it is also one of the most preventable forms
of cancer. Early detection and resection of colon polyps,
small growths in the colon lining, are the best form of pre-
vention for colon cancer. CT colonography �CTC�, also
known as virtual colonoscopy, is a promising new technique
that can identify polyps on CT scans where computer aided
detection �CAD� systems2–5 have been suggested as one way
of aiding the radiologist in reading these exams. Current
CTC CAD systems have high sensitivities and low false
positive rates for detecting polyps 1 cm or larger in diameter,
but tend to detect too many false positives when detecting
smaller 6–9 mm polyps.5–7

One way radiologists interpret CTC cases is by virtually
flying through a 3D colon surface constructed from 2D CT
scans. There is evidence suggesting that radiologists improve
interpretation accuracy when navigating endoluminal projec-
tions of the 3D colon surface, compared to examining the
original cross-sectional 2D CT slices.8,9 True polyps gener-

ally stand out in the endoluminal projection images, making
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discrimination easier in many cases. Features of polyps on
endoluminal projection images have not previously been uti-
lized in CAD systems. The purpose of this article was to
develop a postprocessor that uses wavelet analysis
of the endoluminal projection images to markedly reduce the
number of false positives from a CTC CAD system
for the 6–9 mm polyps by mimicking, to some extent, the
3D virtual flythrough reading process used in clinical
interpretation.

II. BACKGROUND

We have previously developed a CTC CAD system which
identifies polyps based on geometric features of the colon
surface and volumetric properties of the candidate polyps6

�Fig. 1�. For a set of CT scan images, the CTC CAD system
first segments the colon using a region growing algorithm.10

The colon surface is then extracted by an isosurface
technique.11 Surface smoothing was not used to avoid infor-
mation loss. For each vertex on the colon surface, geometric
and curvature features are calculated and filtered. Candidate

polyps are formed on the surface from connected clusters of
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filtered vertices.12 The filtering and clustering are optimized
by a multiobjective evolutional technique.12,13 A knowledge-
based polyp segmentation is performed on the 3D volume
data, starting from the identified surface region.14 Next, more
than 100 quantitative features are calculated for each seg-
mented polyp candidate. A feature selection procedure re-
duces the number of features to less than 20. The selected
features are presented to a support vector machine �SVM�
classifier for false positive reduction.15,16

Due to image noise and the fact that many other structures
inside the colon such as haustral folds and residual stool
mimic true polyps,14 CTC CAD systems usually produce
many false positives. A number of methods had been pro-
posed for false positive reduction, including volumetric tex-
ture analysis,4,7,17 random orthogonal shape section,18 train-
ing additional artificial neural networks,19,20 an edge
displacement field,21 and using the line of curvature to detect
the polyp neck.22 Depending upon different definitions, the
false positive reduction step is sometimes referred to as a
postprocessing step.21 False positives are eliminated in two
steps in our previously developed CTC CAD system.23 First,
a set of thresholds are set for geometric features such as
curvature, sphericity, and number of vertices in the cluster, to
filter out initial detections on the colon surface.12 Second, the
SVM classifier is used to classify all segmented detections
based on volumetric and statistical features derived from the
detections.24 The features used by the SVM classifier include
the size of the segmented candidate, image intensity distri-
bution inside the candidate, colon wall thickness, etc. A large
population study showed that our system achieved high sen-
sitivities and low false positive rates for detecting larger pol-
yps. However, we found that the sensitivity was lower and
the false positive rate was higher for detecting the so-called
“medium-size” polyps, 6–9 mm in diameter.3,6 In this paper,
we propose an additional postprocessing method based on
the endoluminal projection of polyp detections in order to
further reduce the false positive rate in detecting 6–9 mm
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FIG. 1. A block diagram representation of our CTC CAD system and the
proposed wavelet-based postprocessor for false positive reduction. The pro-
posed method is shown as the second classifier above.
polyps �Fig. 1�.
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Selecting a good viewpoint for the endoluminal projection
is a very important component in this FP reduction process
because it directly impacts the texture information contained
in the 2D endoluminal images. Viewpoint optimization has
been studied in many applications, such as object recogni-
tion, 3D shape reconstruction, and volume visualization. One
of the pioneering studies is the work done by Koenderink et
al.,25,26 where the concept of “aspect graph” was utilized to
optimize viewpoints for object recognition. Entropy maps
have also been intensively studied for viewpoint optimiza-
tion in object recognition.27 A theoretic framework for view-
point selection for active object recognition had been formu-
lated by Denzler and Brown based on Shannon’s information
theory.28 In the visualization research community, Takahashi
et al.29 used the concept of “viewpoint entropy”30 to select
the best viewpoint for volume visualization, where the view-
point entropy was used as the performance metric to search
for a viewpoint along which visible faces for 3D objects
were well balanced. We utilize viewpoint entropy, which was
defined on the polyp candidate surface, as a criterion for our
camera placement task.

Once a viewpoint was established, we then extracted tex-
ture features from the Haar wavelet coefficients of the result-
ing 2D images. It has been suggested that the wavelet trans-
form mimics some aspects of human vision.31 Wavelet
analysis is a powerful tool for medical applications.32–34 We
utilized a wavelet-based method that was recently developed
to identify artists’ uniquely signature pattern of brush strokes
from 72 wavelet features.35 This wavelet analysis was uti-
lized to identify forgeries of valuable paintings.

The wavelet transformation analyzes data by dividing the
signal into multiple scales and orientations in the frequency
space. Figure 2 shows one example of a five-level wavelet
transformation of one polyp detection. We use similar nota-
tions Vi�x ,y�, Hi�x ,y�, and Di�x ,y� as those in Ref. 35 to
denote the wavelet coefficients in the vertical, horizontal,
and diagonal directions at scale or level i. For the purpose of
identifying forgeries in valuable paintings,35 Lyu et al. ap-
plied the five-level wavelet transformation on each of the
paintings investigated. They then computed four statistics
�mean, variance, skewness, and kurtosis� for each orientation
at levels 1–3, yielding 36 features. They calculated another
four similar statistical features of prediction errors for each
of those subbands and then obtained a total of 72 features.
The prediction errors are derived from the concept that the
magnitudes of the wavelet coefficients are correlated to their

FIG. 2. Left: one original true polyp image. Right: wavelet decomposed
images �5 level�, where Vi, Di, and Hi denote the vertical, horizontal, and
diagonal directions at level i.
spatial, orientation, and scale neighbors. The magnitude of
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one coefficient was calculated using the eight most predic-
tive neighbors through a linear prediction model. The eight
neighbors were searched using a step-forward feature selec-
tion method and a prediction error was computed for each of
the coefficients.

III. METHOD AND MATERIALS

III.A. System diagram of our proposed method

The proposed method consists of four steps �Fig. 1�. First,
we generate a 2D endoluminal projection image �snapshot�
for each polyp detection produced by our CTC CAD system.
The viewpoint location was optimized by calculating the
viewpoint entropy along the colon centerline. The surface
was rendered by the open source software Open Inventor
�http://www.coin3d.org� using the Gouraud shading model.36

The lighting direction was set to be the same as the camera
direction. Second, we extract wavelet texture features for
these images. Third, we use a feature selection algorithm to
identify a set of useful features. Finally, we used the selected
features with a SVM committee classifier to classify the CTC
CAD detections as polyps or nonpolyps.

III.B. Step 1: Generating 2D images for polyp
detections

In virtual colonoscopy, a virtual camera flies through the
inside of the colon to examine the inner colon surface while
the colonic surface is rendered on a computer screen by en-
doluminal projection. If a suspicious region is found, radi-
ologists can adjust the camera’s view angle and distance to
further examine the polyp candidate. In this article, we use a
snapshot of the polyp candidate, at an optimized camera po-
sition, and analyze this snapshot image through a wavelet
method, trying to mimic the radiologist’s reading process.

III.B.1. Taking snapshots of polyp candidates

Figure 3 shows a representation of a colon segment that
has a polyp candidate arising from the colon wall. In order to
obtain a 2D image that contains as much of the polyp surface
information as possible, there are two important parameters
that should be optimized: Position of the camera �viewpoint�

FIG. 3. Process for taking snapshots of polyp detections. The camera and
lighting source locations are adjusted to maximize polyp surface information
in the resulting image.
and direction of the lighting. Optimality of camera position
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and lighting direction for polyp recognition is not, in general,
a well posed problem. One approach to help solve this prob-
lem is to use maximized entropy to optimize both viewpoint
and lighting direction.30,37

We produced color images for the detections, where each
vertex on the colon surface was preset to be a constant color
value �pink�. We convert the color images to gray level im-
ages as

I = �11 � R + 16 � G + 5 � B�/32,

where I is the intensity of the gray image, R, G, B are inten-
sities of red, blue, and green components in the color image.

III.B.2. Viewpoint entropy

Intuitively, the quality of a viewpoint is related to how
much object information is contained in the resulting image,
as represented by Shannon’s entropy. Here, we evaluate
viewpoint optimality using the viewpoint entropy formulated
by Vazquez et al.30 The original definition of viewpoint en-
tropy is based on perspective projections. However, the for-
mulation can be extended to also handle orthogonal
projections.29 Thus, we use the orthogonal projection for ef-
ficiently calculating viewpoint entropy. Figure 4 shows the
orthogonal projection of one object represented by a 3D tri-

angular mesh. For a projection direction P� c, the viewpoint
entropy is defined as

E�P� c� = − �
i=0

Nf Ai

S
log2 Ai/S , �1�

where Nf is the total number of faces in the given 3D mesh,
Ai is the visible projection area of the ith face, A0 denotes the
background area, and S the sum of the projected area. Note

that E�P� c� becomes larger when the viewpoint balances face
visibility. The task of viewpoint optimization is to find the
viewpoint that achieves the maximum value of viewpoint
entropy.

III.B.3. Efficient algorithm for locating a good
viewpoint

We determine the camera position in two steps. The best
camera direction is found first followed by the appropriate

FIG. 4. Viewpoint entropy of one object with a 3D mesh representation,
where the lower part is the projection result of the 3D mesh under the
specified projection direction.
camera distance. Lighting direction also has a big effect on
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the recognition accuracy for the detections. We tried to opti-
mize the lighting direction based on the image entropy
criterion,37 which is a measure of the amount of information
contained in the image. Different lighting directions produce
different shadows that lead to different values of image en-
tropy. An image having a uniformly distributed intensity his-
togram has the maximum image entropy. However, our ex-
periments showed that the image entropy criterion is not
relevant to recognition accuracy because of the complicated
surroundings of the candidate polyp. The background in the
2D snapshot images usually contributed more to the image
entropy than that of the polyp area in the images. We thus set
the lighting direction as the same as the camera direction to
keep a consistent lighting condition for all detections.

In finding the optimal viewpoint, the view sphere sur-
rounding the object is usually uniformly sampled, and the
viewpoint entropy for each viewpoint on the sphere is calcu-
lated to identify the optimal viewpoint that maximizes en-
tropy. For a particular viewpoint, the viewpoint entropy is
usually obtained by utilizing graphics hardware:38 the pro-
jected area of a face can be obtained by counting the number
of pixels belonging to that face after the object is drawn into
the frame buffer. Different faces are discriminated by assign-
ing different colors for each face to establish a one-to-one
correspondence between the faces and the colors.

We sped up the viewpoint optimization for our task by
calculating the viewpoint entropy directly on triangle faces
of the polyp candidate mesh. The polyp candidate usually
includes less than 100 vertices so that traveling all faces in
the mesh is very efficient. We also limited the camera posi-
tion to be either along the colon centerline39 or along the
average normal to the polyp candidate surface. This further
reduced the viewpoint search space and follows what is com-
monly done by radiologists, at least as a first step, in endolu-
minal review. The colon centerline has been successfully ap-
plied for path planning in virtual colonoscopy and it has been
shown that observing polyps from the centerline is
satisfactory.40 We realize that limiting the viewpoint to this
space may not always provide a viewpoint that matches that
of the radiologist, but it does minimize potential blind spots
since the polyp can be viewed ahead or behind and our tech-
nique substantially reduces the search space. Figure 5 shows
our viewpoint optimization method, and an outline of our
algorithm is shown in Fig. 6. We will detail each step of the
algorithm in the rest of this subsection.

Step A: The polyp centroid C is obtained by averaging the
coordinates of all the vertices in the surface of the polyp
candidate. The nearest point D on the centerline to the point
C is identified by evaluating the Euclidean distance from C
to all points on the centerline. It is possible that the nearest
point on the centerline does not see the polyp candidate
when the colon makes a sharp bend. In order to avoid this
situation, we only evaluate the centerline points that are on
the positive side of the detection. We form a vector that
points from the detection’s centroid to the centerline point
under evaluation. If the angle between the vector and the

average normal is less than 90°, the centerline point is con-
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sidered to be located in the positive side of the detection and
therefore is a valid centerline point. Otherwise, we skip this
centerline point.

Step B: To locate a good viewpoint along the centerline,
we extend the search space from point D to points B and E
which are located approximately �5 cm about D. We quan-
tized the line between B and E into 100 equally spaced
points. From our experiments, we have found that the 100
centerline points are enough to find a good viewpoint along
the centerline.

Steps C & D: To save computation time, we use two
stages for searching the optimal viewpoint. We start the
search with a coarse resolution, i.e., the viewpoint entropy is
calculated for every fifth centerline point from B to E and the
point with maximal entropy is defined as the coarse optimal
viewpoint Pc. After Pc is located, we refine it to Pf by evalu-
ating the viewpoint entropy of the four closest centerline
points on either side of Pc and choosing the one with the
maximum entropy.

Figure 7 shows how the viewpoint entropy is calculated,
where the 3D triangular mesh represents a candidate polyp
surface that consists of a set of vertices �Vj�1

Nv and faces

FIG. 5. The search path to efficiently locate a good viewpoint. The dotted
line represents the colon centerline, C is the polyp centroid, D is the nearest
centerline point to C, and PN is the average normal of the polyp surface. We
first locate D and extend D to B and E, the beginning and end search points.
We then perform a coarse search for the optimal centerline viewpoint PC

between B and E. Finally, we refine Pc to Pf using a higher resolution
search.

Algorithm 1: Viewpoint Optimization

A. Locate the nearest point, D, on the centerline to the polyp centroid, C.

B. Locate the beginning search point, B, and the ending search point, E, on the

centerline.

C. Coarse search: Identify the best viewpoint, Pc, by evaluating the viewpoint

entropy every five points between B to E and choosing the one having

maximum entropy.

D. Fine search: Refine the best viewpoint Pc to Pf by evaluating the viewpoint

entropy of each of the four points left and right to the point Pc and choosing the

one having maximum entropy.

E. Evaluate the viewpoint entropy of point PN, where PN is aligned to the average

normal of the polyp detection with a unit distance. If PN is a better viewpoint

than Pf, PN is then chosen as the final viewpoint.

F. Determine the distance from the camera to the centroid.

G. Take a snapshot for the polyp candidate.

FIG. 6. Algorithm outline for locating the optimal viewpoint along the colon

centerline.
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�Fj�1
Nf. The entropy of one viewpoint, Pc, is calculated using

Eq. �1�, where the projected area Ai for the ith face is

Ai = Aoi
C̄P� c · N� i

�C̄P� c · N� i�
, �2�

where Aoi, C, and N� i are the area, polyp centroid, and normal
of face i, respectively. In the case that the ith face is not
visible in the resulting image, we set Ai=0. Note that Ai is
the orthogonal projected area of the ith face because we do
not consider the relative location of face i and the centroid C.

Recall that in Eq. �1� A0 denotes the background area.
Here, we define A0=St−S, where St is the total area of the
polyp 3D mesh and S the total projected area of the polyp 3D
mesh. By this definition, only the detected 3D mesh of the
polyp is involved in the viewpoint entropy calculation; the
undetected triangle mesh representing nearby background is
not considered during the viewpoint optimization.

Step E: We also evaluate the viewpoint entropy at the
point �PN�, which is 1 cm long along the average normal of
the candidate polyp. The final optimal point is identified as
either Pf or PN whichever achieves the maximum viewpoint
entropy.

Step F: We determine the camera distance, camDist, by
the size of a bounding box calculated for the candidate
polyp. We use the principal component analysis method to
calculate a 3D bounding box for each candidate polyp, and
use the maximum dimensional size Lbounding of the box as the
initial estimation of the camDist, i.e., camDist=Lbounding. It is
possible that the initial polyp candidate is either smaller or
bigger than the true polyp. We then set camDist=0.9 cm if
Lbounding is less than 0.9 cm, and set camDist=1.1 cm if
Lbounding is greater than 1.1 cm. Given these parameter set-
tings of the camera, the resulting snapshot will cover a
square area with a length from 7.5 to 9.1 mm for each side
such that the viewable area can accommodate polyps in the
6–9 mm size range of interest.

Step G: We take a snapshot of the polyp candidate from
the optimized camera position. When taking the snapshot, we

FIG. 7. Viewpoint entropy calculation. C is the polyp centroid, Pc is a view-
point which determines the projection direction, Vi represents one vertex on
the mesh and Fi is one face in the mesh.
set the focal distance of the camera as the camera distance,
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the height angle as 45°, the near distance and the far distance
as 0.1 and 10 cm, respectively, and the aspect ratio as 1
�Fig. 8�.

III.C. Step 2: Feature extraction

An experienced radiologist can fairly easily discriminate
false positives from real polyps by examining the projected
2D images of the colon surface, because false positives and
true detections contain different shape or texture patterns. We
proposed one texture analysis method for this discrimination
purpose by extending the idea proposed by Lyu et al., who
used a wavelet feature extraction method to identify forgeries
in valuable paintings.35

III.C.1. Wavelet-based postprocessor

We enhanced Lyu et al.’s feature extraction method35 in
the following three aspects. First, we used a piecewise linear
orthonormal floating search �PLOFS� algorithm to find the
eight most predictive neighbors.41 Compared to the step-
forward search, the PLOFS algorithm can provide a more
accurate prediction model. The PLOFS algorithm was suc-
cessfully applied in our previous work for regression41 and
classification problems.16 Second, we compute energy and
entropy features for each subband. For the vertical subband
Vi�x ,y�, for example, we calculated

energyi =
1

Lx � Ly
�
x=1

Lx

�
y=1

Ly

Vi
2�x,y� , �3�

entropyi =
− 1

Lx � Ly
�
x=1

Lx

�
y=1

Ly Vi
2�x,y�
D2 log

Vi
2�x,y�
D2 , �4�

where D=�x=1
Lx �y=1

Ly Vi
2�x ,y�, and Lx, Ly are the dimensions of

subband Vi�x ,y�. Third, we calculate mean, variance, skew-
ness, and kurtosis for coefficients at levels 4 and 5. We there-
fore obtain 150 features in total for one image, including 96
�=16�6� statistics of the coefficients in all subbands �each
subband has six features, there are 16 subbands in total�, and
54 �=9�6� error statistics for the subbands in level 1–3
�each subband has six features, and there are nine subbands

FIG. 8. Camera parameters setting.
in level 1–3�. Our previous work showed that this wavelet-
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based postprocessor is statistically better than the Lyu’s
method42 for the task of characterizing polyp candidates.

III.D. Step 3: Feature subset and committee
selection

We have 150 features for each detection image computed
by the wavelet-based postprocessor. However, some of these
features are based on heuristic techniques and were eventu-
ally found not to be useful. Irrelevant or redundant features
increase complexity and can lead to overtraining.43 We use a
wrapper-type feature selection method, where a SVM classi-
fier �see the description in the next subsection� is utilized for
fitness evaluation to limit the number of features. The fitness
value of a feature vector is defined as the average of the
sensitivity and specificity of the involved SVM. If we want
to select m features for each SVM classifier in the commit-
tee, a group of vectors with m features are first randomly
generated. During the selection procedure, each feature in the
vector is replaced with a new feature where the substitution
is kept only if it improves the fitness value. The process is
iterated on each feature in the vector until no further im-
provements are found. It has been shown that this algorithm
can perform similarly to a genetic algorithm in some
situations.16 The feature selection algorithm generates a large
number of vectors with m features each. We retain the top
1000 such feature vectors according to their fitness values. In
the SVM committee selection procedure, if it is determined
that a committee classifier with n SVM members is good for
the given data, the best committee classifier with n SVM
members �i.e., having the highest fitness value� is then found
among those 1000 combinations.

III.E. Step 4: Polyp candidates classification

We utilize a SVM committee classifier for polyp candi-
date classification. Recent work showed successful applica-
tions of committee classifiers in medical imaging research
such as breast cancer screening,44,45 bone abnormality
detection,46 and colonic polyp identification.15,47 The reason
for using a committee of classifiers is that this approach can
often achieve a better performance than that of its individual
committee members. This is because a committee having
members with diverse properties is less likely to sustain the
same error in a majority of its members. Another advantage
is that the behavior of outliers can be better controlled.

Given a set of data pairs �xp , ip�p=1
Nv , where xp�RN is the

feature vector extracted from a polyp candidate image, ip

� �+1,−1� is a class label �true polyp, true negative� associ-
ated with xp. A SVM defines a hyperplane, f�x�=wT��x�
+b=0, to separate the data points onto two classes, where w
and b are the plane parameters, and ��x� is a function map-
ping the vector x to a higher dimensional space. The hyper-
plane is determined using the concept of Structural Risk
Minimization.48 After the hyperplane is determined, a polyp
is declared if f�xp��0, otherwise a nonpolyp is declared. In
order to combine the outputs from the different committee

49
members we utilize a method suggested by Platt to transfer
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the SVM output, f�xp�, to a posterior probability by fitting a
sigmoid

p�ip = 1�f�xp�� =
1

1 + exp�Af + B�
.

The parameters A and B were fit using a maximum likeli-
hood estimation from a training set �f�xp� , ip� by minimizing
a cross-entropy error function.49

There exist many ways to combine the outputs of com-
mittee members. Theoretic analysis showed that the sum rule
�simple average� outperforms other combination schemes in
practice though it is based on the most restrictive
assumptions.50 The sum rule is superior because it is most
resilient to estimation errors. Therefore, we use the simple
average method to combine the posterior probability output
of each SVM member to form the final decision. The SVM
committee classifier utilizes the LIBSVM software package
�www.csie.ntu.tw/�cjlin/libsvm/�.

IV. EXPERIMENTS

We applied the enhanced wavelet method to 44 patient
data sets, based on fourfold cross-validation �CV� and free-
response receiver operation characteristic �FROC� analysis,51

to determine if it could significantly reduce the false posi-
tives produced by our CTC CAD system.

IV.A. Data selection

Supine and prone CTC was performed on 44 patients with
a high suspicion of colonic polyps or masses. These patients
were chosen from a larger cohort who underwent CTC with
fluid and fecal tagging. All 44 patients had at least one polyp
6 mm or larger and each polyp was verified by same-day
optical colonoscopy. The polyp size was measured at optical
colonoscopy using a calibrated guide wire.

If polyps could not be found on the supine and/or prone
views, it is not possible to train on them or to confirm
whether CTC CAD detected them. Consequently, we com-
puted sensitivity using only the polyps that were visible on
retrospective review of the CT colonography.6 There were 45
6–9 mm polyps that were colonoscopy confirmed and retro-
spectively visible on CT images. Thirty two of them were
retrospectively visible on both the prone and supine views;
the other 13 polyps were visible on either the prone or supine
view but not both. A polyp was considered to be detected if
CAD located it on the supine, prone, or both supine and
prone views.

We chose two operating points on the FROC curve at
which to evaluate the effectiveness of the wavelet-based
postprocessor. For each operating point, the SVM classifier
produces a series of detections. We took a snapshot for each
detection using the techniques described in Sec. III B. Fea-
tures were then extracted from the each snapshot and then
feature selection, committee classifier selection, and false

positive reduction were performed.
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IV.B. Classifier configuration

The wavelet-based postprocessor produced 150 wavelet
features. We used a SVM committee classifier for our clas-
sification task. There were seven committee members and
each committee member consisted of three features. Our pre-
vious work showed that this configuration was adequate for
our CTC CAD system; adding more members to the com-
mittee did not make a significant difference.52 We follow the
same classifier configuration in our false positive reduction
experiments in this paper.

IV.C. Feature and committee selection

We applied a forward stepwise feature selection algorithm
to select a set of three features from the 150 computed fea-
tures for each detection image, where a SVM classifier was
used to evaluate features. A fitness value was defined as the
average of sensitivity and specificity of the particular SVM.
Sensitivity denotes classification accuracy for positive cases,
whereas specificity represents classification accuracy for
negative cases. First, a group of three feature vectors were
randomly generated. Then one feature in the vector was sub-
stituted by a new feature. If the substitution improved the
fitness value, the new vector replaced the old one. The pro-
cess was iterated on each feature in the vector over and over
until no further improvement was found. The feature selec-
tion algorithm generated a group of three features; we kept
the best 1000 such combinations according to their fitness
values. The best SVM committee with seven members was
then searched among those 1000 combinations, and the best
resulting SVM committee was identified. Once the best SVM
committee is obtained, we directly apply it to new data cases
using the selected features.

IV.D. Cross-validation

We utilized fourfold cross validation �CV� to evaluate the
effectiveness of our false positive reduction strategy. In four-
fold CV, we first randomly divided the 44 patients into four
equal-sized patient cohorts. Each of the four cohorts was
held out as a test set. The remaining three cohorts were used
for the SVM committee training based on the selected fea-
tures which led to a trained SVM committee model. This
model was then applied to the held-out set to provide test
results, and the test results were put into a pool. The training
and testing procedures were repeated four times so that each
cohort was used as a test set only once. At the end, we
generated a FROC curve based on the test results pool. We
calculated the sensitivity on a per-polyp basis. If there were
multiple detections for one polyp, any correctly identified
detection of the polyp was considered as correctly classify-
ing the polyp.

In the fourfold CV procedure, the trained committee clas-
sifier outputs a probability value �score� for each detection.
Ideally, a good classifier will assign a value close to “1” for
a true polyp detection while a value close to “0” for a false

positive. We analyze the causes of low scores on true polyps.
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IV.E. Statistical analysis methods

We used bootstrapping to calculate the 95% confidence
interval �CI� and error bars with one standard deviation
length for sensitivity and false positive rate for each opera-
tion point on the FROC curves.53 In the fourfold CV, we put
the test results from each CV into the pool. We then boot-
strapped patients in the test results pool 5000 times to obtain
error bars �� one standard deviations� on our estimates.

V. RESULTS

V.A. CAD performance prior to application of wavelet-
based postprocessor

The CTC CAD system detected 38 /45 polyps �84.44%
sensitivity� with 101 false positives per patient prior to both
SVM classification and wavelet-based postprocessing. A
FROC curve showing the performance of the SVM classifier
is shown in Fig. 9. We chose two operating points �operating
point 1 and operating point 2 in Fig. 9� on the FROC curve at
which to evaluate the effectiveness of the wavelet-based
postprocessor �Fig. 9�. At these operating points, prior to the
wavelet-based postprocessor, the sensitivities were 82.23%
and 73.33% and the false positive rates per patient were
26.54 and 12.4, respectively. The operating points were cho-
sen to be those having the lowest false positive rates at the
given sensitivity.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positives per patient

S
en
si
tiv
ity

Operating point 1

Operating point 2

FIG. 9. FROC curve of our CTC CAD system before application of the
wavelet-based postprocessor.
FIG. 10. CTC CAD detection samples: Polyp images.
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V.B. Endoluminal images

Figures 10 and Figure 11 show endoluminal images of
true and false positive detections, respectively, obtained us-
ing the viewpoint optimization techniques described in Sec.
III B. Figure 2 shows an endoluminal image of a polyp and
its five-level wavelet decomposition.

V.C. FROC curves of false positive reduction

FROC curves indicating the performance of the wavelet-
based postprocessor for operating points 1 and 2 in Fig. 9 are
shown in Figs. 12 and 13, respectively. Both curves show
that false positives can be reduced markedly at the cost of a
small degradation in sensitivity. We also chose three points
B, C, and D in Fig. 12 and one point in Fig. 13 for further
analysis using the bootstrap techniques. Again, these points
were chosen to be those having the lowest false positive rates
at the given sensitivity.

V.D. Bootstrap and statistical analysis

Figure 14 shows the original FROC curve together with
the bootstrap error bar estimates for the four chosen points. It
is observed that we can reduce the false positives at all four
operating points. We are most interested in operating point A
in Fig. 14 because the false positive rate �5.38 per patient� is

FIG. 11. CTC CAD detection samples: False positive images.
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FIG. 12. FROC curve for the operating point 1 in Fig. 9 following false
positive reduction using the wavelet-based postprocessor. B, C and D are
three chosen points that will be further analyzed in the bootstrap experiment

�see Fig. 14�.
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in the desired clinically acceptable range. Comparing operat-
ing point A in Fig. 14 with its associated operating point 2 in
Fig. 9, the sensitivity was 71.11% �95% CI: 66.39%,
75.74%� versus 73.33% for operation point 2 �p=0.1713�.
The mean false positive rate was 5.38 �95% CI: 4.41, 6.34�
per patient at operating point A. This corresponds to a
56.61% reduction compared to operating point 2 �p
�0.001�.

V.E. True polyps with low scores

Figure 15 shows the true polyp that had the lowest clas-
sifier score �0.09� after the wavelet based postprocessing in
the experiment shown in Fig. 13. The 56.61% reduction in
false positive rate at operating point A is at the cost of sac-
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FIG. 13. FROC curve for the operating point 2 in Fig. 9 following false
positive reduction using the wavelet-based postprocessor. A is the chosen
point that will be further analyzed in the bootstrap experiment �see Fig. 14�.
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rificing the detection of the polyp shown in Fig. 15. Figure
16 shows the three true polyp images having the next lowest
scores in the same experiment.

V.F. Computation time and optimal viewpoint

The computation time for a single CTC data set �a supine
or prone scan� on a PC with AMD Athlon MP 2800+
�2.13 GHz clock rate�, 2 GB RAM, using Microsoft VC��
6.0, was less than 1 min on average for the chosen operating
point. There are about six polyp detections per data case,
where the average computation time for locating the view-
point for each detection is 0.1 s, and for the wavelet analysis
of the endoluminal image of one detection is 8 s.

We randomly selected 533 polyp detections to test how
many of them chose the optimal viewpoint along the colon
centerline vs. along the average normal of the detection. In
54.4% �290 /533� detections, the optimal viewpoint was
along the colon centerline. In the remaining 45.6%
�243 /533� of detections, the optimal viewpoint was along the
average normal of the detection.

VI. DISCUSSION

In this article, we found that the application of a wavelet-
based postprocessor markedly reduced false positives by
56.61% for detecting clinically significant polyps in the
medium-size category at the expense of losing only one true
polyp detection. The resulting 5.38 false positives per patient

FIG. 15. A 6 mm polyp with the lowest score �0.09� given by the committee
classifier in the wavelet-based postprocessing experiment for the chosen
point A in Fig. 13. There was a hole in the colon surface due to poor colon
surface segmentation. A score close to “0” indicates a detection that is un-
likely to be a polyp while a score close to “1” denotes a detection that is
very likely to be a true polyp.

(a). 8 mm, score = 0.37 (b) 6 mm, score = 0.43 (c) 6 mm, score = 0.46

FIG. 16. Three polyps having relatively low scores in the wavelet-based
postprocessing experiment for the chosen point A in Fig. 13. Polyps touched

�a� a fold, �b� an air-fluid boundary, or �c� shadows.
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are in the clinically acceptable range. In addition, the sensi-
tivity of the CAD system is similar to that of the expert
radiologists who made the original interpretations without
CAD.54,55 Detecting these medium-sized polyps at a low
false positive rate could substantially enhance the utility of
CTC. Our approach, inspired by the way radiologists inter-
pret CTC images using an endoluminal fly through, is a new
idea for false positive reduction in CTC CAD systems.8

The ultimate goal is to attain a clinically acceptably low
false positive rate. It would be reasonable to assume that a
CTC CAD system should have less than 10 false positives
per patient for detecting 6–9 mm polyps, although there is
no consensus yet for an acceptable number. Following appli-
cation of the wavelet-based postprocessor, the CAD system
indeed had a false positive rate below the threshold of 10 per
patient.

In a related method, Zhao et al., characterized polyp sur-
face shape by tracing and visualizing streamlines of
curvature.22 For polyps, they found that streamlines of maxi-
mum curvature directions exhibited a circular pattern. Their
CAD algorithm searched for such circular patterns to iden-
tify polyp candidates. In our method, it is difficult to identify
with certainty which specific information was extracted from
the surface images by the wavelet coefficients, but most
likely it was shape information, including surface curvature.

Recently, Hong et al. proposed a CAD method that bears
some similarities to ours in that it also converted the 3D
polyp detection problem to a 2D pattern recognition
problem.17 They first flattened the segmented colon by con-
formal mapping. They next identified polyp candidates by
analyzing volumetric shape and texture features of the flat-
tened surface.

It is usually not possible to provide performance compari-
son among different CTC CAD systems on the same data set
because software developed by other research groups is often
not available publicly. Table I lists false positive reduction
results reported in literature on different data sets. False posi-
tive reductions in the first four algorithms are the overall
false positive reductions in the corresponding systems. False
positive reductions in the last three algorithms, including the
one developed in this article, are obtained by designing an-
other discriminating system attached to the original CAD
systems, adding an additional stage of false positive reduc-
tion. The last two algorithms have comparable results and are
better than the one developed by Suzuki et al.19 Note that
comparing the final sensitivities and false positive rates,
which are listed for reference, for different systems is not
possible because of the differences in data sets, lack of data
selection criterion information, different polyp size ranges,
and if contrast fluid is present, etc. The data sets we utilized
contain contrast fluid and the polyp size range we aimed to
identify is 6–9 mm, both of which make detecting polyps
more difficult.

The texture information in the generated 2D snapshot in
our method is highly dependent upon many parameters, in-
cluding surface generation techniques, surface smoothing

methods, viewpoint location of the virtual camera, lighting
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direction, and surface rendering methods. Preliminary ex-
periments suggested appropriate choices for these
parameters.56

The wavelet-based postprocessor worked as a second
classifier to further reduce CAD polyp detections. Ideally, all
polyp images should score high while all false positives
should score low. Some possible explanations for the low
scoring polyps include poor colon surface segmentation �Fig.
15�, polyps touching a fold or the air-fluid boundary and
shadows �Figs. 16�a�–16�c�, respectively�.

The Haar wavelet transformation is not scale and rotation
invariant. Different scales and rotations for one image will
lead to different wavelet coefficients and thus different wave-
let features. We believe that rotation will have a smaller ef-
fect on true polyps than false positives because most of the
polyps appear round. Different viewpoints result in different
2D images, however, a round polyp should look similar even
with different camera angles. We utilized the Haar wavelet
transformation because it is simple and it was found to
achieve good performance. There are some techniques for
rotation invariant wavelet transformation.57 Further research
is needed to find out if the scale and rotation invariant wave-
let transformation can better distinguish true polyps from
false detections.

The proposed method has a potential advantage in that it
is relatively insensitive to whether a polyp is or is not on a
fold. The camera viewed polyp detections either from the
centerline or from polyp candidate average normal direction,
and the camera distance was adjusted to view a
7.5–9.1-mm-square area on the colon surface. This left only
a small area in the resulting image for the background if the
detection was a true polyp. We can see this from Fig. 10,

TABLE I. Comparison of different false positive reduction schemes.

Publication Data set size Polyp information

Gokturk et al.a 48 patients with the supine or
prone scans

40 polyps sized f
2–15 mm

Acar et al.b 48 patients with the supine or
prone scans

40 polyps sized f
2–15 mm

Hong et al.c 98 patients with both supine and
prone scans

123 polyps with n
size information

Yoshida et al.d 43 patients with both supine and
prone scans

12 polyps sized f
5–30 mm

Suzuki et al.e 73 patients with both supine and
prone scans

28 polyps sized f
5–25 mm

Suzuki et al.f 73 patients with both supine and
prone scans

28 polyps sized f
5–25 mm

This paper 44 patients with both supine and
prone scans

45 polyps sized f
6–9 mm

aReference 4.
bReference 17.
cReference 18.
dReference 19.
eReference 20.
fReference 21.
where the first and the fourth images in the first row are true
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polyps on folds, but the percentage of fold in the image is
small. Only one polyp on a fold �Fig. 16�a�� obtained a lower
score.

Our proposed wavelet-based postprocessor will be incor-
porated into a CAD system that also identified polyps 10 mm
and larger. Detections of possible medium-sized polyps
would be subjected to the additional wavelet-based postpro-
cessing to further reduce false positives. In practical usage of
CTC CAD systems, the optical colonoscopy polyp size is not
available; size classification would be done instead by auto-
mated size measurement which has been shown to be an
accurate substitute.58

VII. CONCLUSION

In summary, we have designed a postprocessing method
for reducing false positives for our CTC CAD system by
transforming the 3D polyp classification problem to a 2D
texture analysis task. This work was inspired by the way
radiologists interpret CTC data in endoluminal flythrough
reading. We first took a snapshot of each CTC CAD detec-
tion by rendering the colon surface using a set of optimized
parameters. We then used an enhanced wavelet analysis
method to extract a set of features for each resulting snap-
shot. Finally, we utilized a feature and committee selection
algorithm to identify a set of good features, and used the
selected committee classifier to discriminate false positives
from true polyps. The proposed methods reduced false posi-
tives by 56.61% from 12.4 to 5.38 false positives per patient
at a sensitivity of 71.11% for 6–9 mm colonic polyps. This
postprocessing method may lead to improvements for CAD
performance and enhance the ability of CAD to assist radi-

Contrast
fluid

Sensitivity
level�s� % FP reduction %

FP per patient after
reduction

No 100 �95� 62 �60� Unknown

No 100 �95� 35 �32� Unknown

Unknown 100 97 5.8–6.2

No 100 97 2

No 96 33 2.1

No 96 63 1.1

Yes 71 56.6 5.38
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