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Abstract
Vesicular secretion of macromolecules has recently been described in the basidiomycete
Cryptococcus neoformans raising the question as to whether ascomycetes similarly utilize vesicles
for transport. In the present study, we examine whether the clinically important ascomycete
Histoplasma capsulatum produce vesicles and utilized these structures to secrete macromolecules.
Transmission electron microscopy (TEM) show transcellular secretion of vesicles by yeast cells.
Proteomic and lipidomic analyses of vesicles isolated from culture supernatants reveals a rich
collection of macromolecules involved in diverse processes including metabolism, cell recycling,
signaling, and virulence. The results demonstrate that H. capsulatum can utilize a trans-cell wall
vesicular transport secretory mechanism to promote virulence. Additionally, TEM of supernatants
collected from Candida albicans, Candida parapsilosis, Sporothrix schenckii, and Saccharomyces
cerevisiae document that vesicles are similarly produced by additional ascomycetes. The vesicles
from H. capsulatum react with immune serum from patients with histoplasmosis providing an
association of the vesicular products with pathogenesis. The findings support the proposal that
vesicular secretion is a general mechanism in fungi for the transport of macromolecules related to
virulence and that this process could be a target for novel therapeutics.
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Introduction
Histoplasma capsulatum, a dimorphic fungus of the phylum Ascomycota, is a major human
pathogen with a worldwide distribution (Kauffman, 2007). The fungus usually causes a
mild, often asymptomatic respiratory illness, but infection may progress to life-threatening
systemic disease, particularly in immunocompromised individuals, infants, or the elderly. H.
capsulatum grows as a saprophytic mould in the environment but undergoes phase transition
to a yeast form at mammalian physiological temperatures. Within macrophages, H.
capsulatum modifies its microenvironment over a broad pH range, survives nutrient-
starvation, resists reactive oxygen and nitrogen species, and survives exposure to
degradative enzymes (Woods, 2002). In the yeast form, several important exoantigens have
been described, including the H and M antigens, pluripotent glycoproteins that elicit both
humoral and T-cell-mediated immune responses (Deepe and Gibbons, 2001b; Fisher and
Woods, 2000; Zancope-Oliveira et al., 1999), and a virulence-related, phase specific protein
(YPS3p), that is found at the cell wall (Bohse and Woods, 2007; Bohse and Woods, 2005).
Yeast cells secrete a calcium-binding protein (CBP) that enables the fungus to grow in
calcium-limiting conditions (Sebghati et al., 2000). Heat shock proteins are also produced at
a high level, which is consistent with the thermally dimorphic nature of the organism
(Burnie et al., 2006).

In contrast to prokaryotic organisms, secretory pathways in eukaryotic cells involve
vesicular traffic of molecules to the plasma membrane (van Meer and Sprong, 2004;
Ponnambalam and Baldwin, 2003). Fungal cells have complex cell walls and are therefore
expected to require additional mechanisms to transfer periplasmic components from the
plasma membrane to the extracellular space. The mechanisms by which macromolecules
reach the extracellular environment and how they are transported through the cell wall,
however, have not been rigorously explored in fungi. It has been recently described that the
yeast-like pathogen Cryptococcus neoformans produces secretory vesicles that transport its
major capsular polysaccharide to the extracellular space (Rodrigues et al., 2008; Rodrigues
et al., 2007; Yoneda and Doering, 2006). The polysaccharide is synthesized intracellularly
(Garcia-Rivera et al., 2004; Feldmesser et al., 2001) and packaged into lipid vesicles, which
cross the cell wall and the capsule network by still unknown mechanisms to reach the
extracellular environment. At the extracellular space, the polysaccharide is released and
presumably used for capsule assembly (Rodrigues et al., 2007). Furthermore, bioactive
fungal lipids, including glucosylceramides and sterols, are secreted by C. neoformans
vesicles (Rodrigues et al., 2007). It remains unknown whether other pathogenic fungal
species use the same mechanism to secrete extracellular molecules.

In the present study, we demonstrate that the parasitic yeast stage of H. capsulatum produces
heterogeneous vesicles that are secreted extracellularly. A considerable variety of molecules,
including phospholipids and proteins associated to stress responses, pathogenesis, cell wall
architecture and virulence comprise the H. capsulatum vesicles. Furthermore, we analyzed
whether additional ascomycetes, including Candida albicans, Candida parapsilosis,
Sporothrix schenckii and Saccharomyces cerevisiae, produced vesicles. Finally, proteins
extracted from H. capsulatum vesicles reacted with immune sera from patients with
histoplasmosis suggesting that the vesicles are involved in host-pathogen interactions. These
results show that vesicular secretion is a common mechanism of extracellular delivery in
fungi.
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Results
H. capsulatum produces extracellular vesicles

Extracellular vesicles were obtained from H. capsulatum yeast. Using our growth
conditions, H. capsulatum is in exponential phase growth for the first 72–76 hours. At the
time of collection, the yeast cells were >99% viable by propidium iodine staining, which
makes the possibility of the vesicles arising from dead or dying cells exceedingly unlikely.
TEM of the material recovered by ultracentrifugation of supernatants from H. capsulatum
revealed the presence of bilayered, spherical vesicles (Fig. 1). Five hundred and eight
vesicles were analyzed and were found to range in size from 10 to 350 nm (Fig. 2). The
electron density of the vesicles varied considerably, suggesting distinct contents (Fig. 1).
The protocol used for the isolation of H. capsulatum extracellular vesicles was based on that
used for C. neoformans (Rodrigues et al., 2007), in which organelles from dead cells were
not found. Similarly, organelles were not found in culture supernatants of heat-killed H.
capsulatum yeast cells examined by TEM (data not shown). Notably, we identified vesicular
structures in internal and outer regions of the cell wall, as well as in the extracellular
environment (Fig. 3), which is in accordance with the proposal that vesicle secretion is an
active mechanism in living H. capsulatum cells. Vesicles were identified in and adjacent to
the cell walls of all yeast cells analyzed (n = 200) indicating that this is a pervasive process.

Membrane phospholipids are present in vesicular lipid extracts
Lipids were fractioned and analyzed by ESI-MS, in negative or positive-ion mode. The
regions of the spectra in which molecular masses corresponding to phospholipids were
expected are presented in Figure 4. The major peaks observed in both spectra were subjected
to MS/MS analysis (Supplemental Figure 1), resulting in the identification of 17 different
phospholipids (Table 1). In the negative-ion mode analysis, only phosphatidylethanolamine
(PE) species were detected as major phospholipid species (Fig 4, Table 1). As shown in the
Supplemental Figure 1A–E, diagnostic ions for PE were found at m/z 140.1 and 196.1,
corresponding to ethanolamine phosphate (EtNP) and dehydrated
glyceroethanolaminephosphate (GroEtNP/H2O), respectively. Fragment ions corresponding
to the carboxylate ions of the acyl chains were also detected. On the other hand, the positive-
ion mode analysis revealed mainly PE, phosphatidylserine (PS), and phosphatidylcholine
(PC) as the major phospholipid species (Table 1, Supplemental Figure 1F-P). MS/MS
spectra of PE species revealed diagnostic ions corresponding to the presence of cyclic
ethanolaminephosphate (EtNPc) plus 2 Li+ adducts (m/z 152.0), and the neutral losses of
ethanolamine (EtN) and ethanolaminephosphate (EtNP). MS/MS spectra of PC species were
characterized by the presence of the diagnostic ion choline (Cho) at m/z 86.0, and neutral
losses of trimethylamine (Me3N) and phosphocholine (ChoP). Finally, MS/MS spectra of PS
species were characterized by the presence of dehydrated serinephosphate (SerP - H2O) and
serinephosphate (SerP) ion species at m/z 168.0 and 186.0, respectively. The neutral loss of
carboxyl group from Ser was also detected in most PS species (Supplemental Figure 1). For
all phospholipid species analyzed in the positive-ion mode, the composition of acyl chains
was determined by the neutral loss of these structures. In sum, PE and PC, followed by PS,
were the most abundant phospholipids found in the MS analyses, consistent with the typical
lipid distribution in pathogenic yeasts (Rattray et al., 1975).

Proteomic analysis of the H. capsulatum extracellular vesicles
After vesicle purification, proteins were enzymatically digested and resulting peptides were
fractionated by cation exchange chromatography and analyzed by liquid chromatography-
tandem mass spectrometry (LC-MS/MS). All generated MS/MS spectra were searched
against a database assembled with H. capsulatum predicted sequences and randomly
generated sequences. After estimating the false-positive rate (FPR), 283 proteins were
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validated and 206 identified by sequence analysis. Table 2 summarizes the identified
proteins with associated biological function(s). A comprehensive list of all identified
proteins and detailed parameters of the LC-MS/MS analysis are provided in Supplemental
Table 1. Some of these proteins, such as chaperones (Hsp70, Hsp30, and Hsp60 precursors),
superoxide dismutase, and catalase B, are involved in H. capsulatum pathogenesis and host
immune responses. Others (e.g., Rab GDP-dissociation inhibitor, Rab1a, GTP-binding
nuclear protein GSP1/Ran) are involved in signal transduction pathways and vesicle
formation. We also identified several proteins implicated in cell wall architecture, cell
growth, sugar, lipid, and amino acid metabolism, as well as cytoskeleton-related proteins.
Several peroxisomal, nuclear, proteasomal, and ribosomal proteins and proteins with
additional localization/function were also identified. Many of these proteins were recently
described in the proteome of vesicles from C. neoformans (Rodrigues et al., 2008) as well as
in mammalian vesicles (Aoki et al., 2007;Potolicchio et al., 2005). Table 3 shows the
distribution of the identified H. capsulatum vesicle proteins according to their functions.

TEM of C. albicans, C. parapsilosis, S. schenckii, and S. cerevisiae vesicles
TEM of the material recovered by ultracentrifugation from culture supernatants of C.
albicans, C. parapsilosis, S. schenckii and S. cerevisiae revealed that other ascomycetes
similarly produce extracellular vesicles (Fig. 5). The structures identified were similar to
vesicles produced by C. neoformans (Rodrigues et al., 2008;Rodrigues et al., 2007) and H.
capsulatum, consisting of bilayered membranes and largely spherical morphologies.
Although significant differences in size were found for the ascomycetes studied, they all
predominantly produced vesicles ≤ 50 nm in diameter. Only 4% of S. cerevisiae vesicles
were larger than 50 nm though none were more than 100 nm in diameter. For S. schenckii,
11% were between 51–100 nm, but none were larger. For C. albicans and C. parapsilosis,
13% and 36% of vesicles were 50–100 nm, respectively. Vesicles larger than 100 nm
comprised 1% and 18% of total vesicles for C. albicans and C. parapsilosis, respectively.

Sera of patients recognized proteins from the vesicles
Pooled sera from patients with histoplasmosis were used in immunoblots against protein
extracts of H. capsulatum (Fig. 6). Extracts of H. capsulatum vesicles reacted with serum
from patients with histoplasmosis. Immunogenic proteins with diverse molecular masses
were observed (Figure 6 B). To confirm the identification of certain proteins identified in the
proteomic analysis for which reagents for H. capsulatum are available, immunoblots were
performed with mAbs to histone 2B and heat shock protein 60 (Figure 6 D and E,
respectively). The identified bands corresponded to bands recognized by the pooled
histoplasmosis sera. These proteins were identified in the proteomic analysis described
above. Non-immune sera did not react with proteins from the vesicles (Figure 6 C).

Discussion
We recently showed that secretory vesicles are involved in the extracellular release of
virulence determinants in the fungal pathogen C. neoformans (Rodrigues et al., 2008;
Rodrigues et al., 2007). We now describe that H. capsulatum, C. albicans, C. parapsilosis,
S. schenckii and S. cerevisiae also produce extracellular vesicles. Furthermore, we show that
H. capsulatum produces vesicles containing key molecules related to virulence, stress
response and fungal physiology. By microscopic and mass spectrometric approaches, H.
capsulatum vesicles were identified as lipid bodies with bilayered membrane containing
proteins of diverse functions and a number of phospholipids. The findings of this study,
combined with the recent reports on C. neoformans (Rodrigues et al., 2008; Rodrigues et al.,
2007; Yoneda and Doering, 2006; Garcia-Rivera et al., 2004; Feldmesser et al., 2001),
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indicate that vesicular secretion is an important mechanism for fungi to deliver intracellular
molecules to the extracellular space.

For H. capsulatum, vesicular bodies were observed in association with the cell wall and in
the extracellular environment, suggesting the active use of vesicular transport for secretory
processes. Microscopic analysis of the samples obtained after differential centrifugation of
culture supernatants revealed intact vesicles ranging in size from approximately 10 to 350
nm (Fig 2). Despite this heterogeneity, the vesicles all had an ovoid appearance and
displayed lipid bilayered membranes. Differences in electron density were observed,
suggesting heterogeneity in vesicular contents (Fig. 1). Vesicles were not released from dead
cells and the yeast were studied in log phase growth during which there is negligible cell
death.

C. albicans continues to be the leading opportunistic pathogen involved in oral, vaginal, and
systemic infections resulting in high mortality, and Candida spp. are the fourth most
common cause of bloodstream infection in the United States (Wisplinghoff et al., 2004). C.
parapsilosis is currently the second most common cause of invasive candidiasis worldwide
(Fridkin et al., 2006) and is particularly associated with disease in premature infants,
immunocompromised adults, and patients in intensive care units (Clerihew et al., 2007). The
dimorphic fungus S. schenckii has a worldwide distribution and causes disease primarily
after traumatic inoculation of colonized materials and less commonly by inhalation of spores
through the respiratory tract (Almeida-Paes et al., 2007a). Rarely pathogenic, S. cerevisiae is
a well-established model organism for understanding fundamental cellular processes
relevant to higher eukaryotic organisms (Botstein and Fink, 1988). Microscopic analysis of
the additional fungal species studied revealed intact vesicles of varied morphology, yet the
vesicles shared a common ovoid appearance and all displayed lipid bilayered membranes.
Interestingly, vesicular transport has been proposed previously in C. albicans in an opaque
variant of strain WO-1 in which electron microscopy analysis of intact cells revealed
“pimples” in the cell wall with vesicles within channels or emerging from the “pimples”
(Anderson et al., 1990). Future studies are required to assess the contents of the vesicles
produced by these ascomycetes, and it will be imperative to assess whether vesicles of
different sizes transport specific compounds. For instance, it will be important to determine
whether virulence associated products (ie. heat shock proteins, catalases, superoxide
dismutases, etc) are transported in the larger vesicles previously described in C. neoformans
(Rodrigues et al., 2008) and herein identified for Candida spp. and H. capsulatum but are
lacking in the smaller vesicles of less pathogenic fungi such as S. cerevisiae.

In our analyses of H. capsulatum vesicles, phospholipids were characterized as lipid
components of vesicle membranes. The major phospholipids found were PC, PE and PS,
which are building blocks for cellular membranes (lipid bilayers). These lipids also perform
a diverse number of other functions, from compartmentalization of cytoplasm to the housing
of proteins involved in cell signaling, intercellular adhesion, and cytoskeletal support (16).
Previous studies have shown that cell communication might not be limited to soluble
agonists, but that various types of vesicles also participate in the process (Denzer et al.,
2000). It is notable that mammalian exosome membranes display a similar content of
phospholipids and are also formed as lipid bilayers with a random distribution analogous to
H. capsulatum vesicle phospholipids (Laulagnier et al., 2004). Hence, this similarity to
mammalian exosomes supports the supposition that the vesicles from H. capsulatum are
exosome-like structures. Exosomes are part of the family of bioactive vesicles and appear to
be involved in distal communications between cells. They transport bioactive lipids and
lipolytic enzymes and their biogenesis requires specific lipids and membrane reorganization
(Subra et al., 2007). Bioactive vesicles are receiving increasing interest since they are
important in enhancing biodiversity and are the only type of bioactive vesicles originating
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from intracellular compartments, namely multi-vesicular bodies (MVBs, or late endosomes)
(Fevrier and Raposo, 2004). MVBs participate in the eradication of obsolete proteins, but
they can also be released into extracellular space where they can potentially affect
intercellular communication (van Niel et al., 2006).

We used a proteomics approach to analyze the protein contents of vesicles. H. capsulatum
survives and replicates within host macrophages (Allendoerfer and Deepe, 1997), denoting
the necessity of fungal mechanisms to escape the antimicrobial armory of phagocytes. The
secretion of virulence factors is a mechanism used by different pathogens to cause damage
to host cells. In this context, the presence of anti-oxidant proteins in secreted vesicles, such
as catalase B (M antigen) (Zancope-Oliveira et al., 1999), superoxide dismutase precursors
(Brummer and Stevens, 1995), and a thiol-specific antioxidant protein (Demasi et al., 2006),
could represent an effective mechanism of fungal defense. The proteomic analysis of the H.
capsulatum vesicles identified proteins involved in vesicular transport and fusion, especially
proteins from the Rab family. In mammals, Rabs define a family of almost 70 proteins that
play critical roles in the trafficking of vesicles that mediate transport between compartments
of the exocytic and endocytic pathways (Pfeffer, 2005; Pfeffer, 2001). Several of the
identified H. capsulatum Rab proteins have been characterized to have similar functions,
such as H. capsulatum Rab GDP-dissociation inhibitor that plays a key role in the recycling
of Rabs (Ma et al., 2006)and H. capsulatum Rab1a that regulates antegrade transport
between the ER and the Golgi apparatus (Sannerud et al., 2006). The presence of H.
capsulatum endochitinase and glucanases in the vesicles is also consistent, since these
molecules are membrane proteins and the vesicles may originate from membrane
invagination, similar to exosome formation (Sannerud et al., 2006). The mechanisms by
which fungal vesicles traverse the cell wall are still unknown. In this context, the existence
of vesicular enzymes with the ability to hydrolyze cell wall components is particularly
interesting, since these molecules have the potential to promote cell wall reassembly for
vesicle passage.

The extracellular H. capsulatum vesicles also contained chaperone and nucleus-associated
proteins. Several heat-shock proteins were present in the vesicles. H. capsulatum Hsp60 is
particularly noteworthy since this immunodominant molecule is key to the engagement of
the yeast with CD18 receptors on host macrophage (Long et al., 2003) and vaccination with
this protein is protective (Gomez et al., 1995). H. capsulatum Hsp70 is also immunogenic,
though it induces non-protective cellular responses (Allendoerfer et al., 1996). H.
capsulatum nuclear proteins, such as H2B, can be displayed on the fungal cell surface where
they can be targeted by antifungal antibodies (Nosanchuk et al., 2003). An H. capsulatum
glyceraldehyde-3-phosphate dehydrogenase was also identified and a homologous protein is
present in the cell wall of the fungal pathogen Paracoccidioides brasiliensis, where it
mediates the adhesion of yeast cells to host cells and extracellular matrixes (Barbosa et al.,
2006). These examples of single proteins with multiple activities are consistent with the
emerging understanding that many proteins have ‘moonlighting’ functions enabling cells to
efficiently perform diverse tasks despite limited genomes (Jeffery, 2003b; Jeffery, 2003a;
Jeffery, 1999). Moonlighting proteins described from S. cerevisiae to humans have included
enzymes, chaperones, ribosomal protein, receptors, and transmembrane channels.

In order to assess whether vesicles have a biological effect on the host, we tested the
immunoreactivity of extracted vesicular proteins with patients’ sera. The recognition of
diverse proteins by pooled hyperimmune patient sera indicates that these vesicularly
transported proteins could be important in the pathogenesis of these mycoses. For example
heat shock protein 60 from H. capsulatum has been associated with virulence (Deepe and
Gibbons, 2002; Scheckelhoff and Deepe, 2002; Deepe and Gibbons, 2001a; Allendoerfer et
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al., 1996; Gomez et al., 1995). The findings are consistent with vesicular transport playing a
role in host-pathogen interactions.

In summary, we report the trans-cell wall vesicular transport of several important
components of virulence, signaling and recycling in H. capsulatum. The vesicles appear to
be similar to mammalian exosomes. We also show that other ascomycetes produce vesicles
that can function in the transport of macromolecules. The products of the vesicles are
immunoreactive with serum from patients, which supports our hypothesis that the vesicles
are involved in fungal pathogenesis. Hence, we propose that fungal extracellular vesicle
secretion is an important mechanism in fungal biology.

Materials and Methods
Fungal strains and growth conditions

H. capsulatum strain G217B (ATCC 26032) was obtained from the American Type Culture
Collection (ATCC, Rockville, Maryland, USA). G217B yeast cells were grown in 500 mL
Ham’s F-12 medium with rotary shaking (150 rpm) at 37 °C for 48 h in Erlenmeyer flasks as
described previously (Nosanchuk et al., 2003). Thimerosal- and heat-killed H. capsulatum
yeast cells were used as a negative control. Candida albicans SC5314 (ATCC MYA-2876
(Gillum et al., 1984)), Candida parapsilosis strain GA1 (a clinical isolate (Gacser et al.,
2005)) and S. schenckii strain 23508 (a clinical isolate (Almeida-Paes et al., 2007b)) were
grown in Sabouraud dextrose broth (Difco Laboratories, Detroit, MI) with rotary shaking
(150 rpm) at 30°C for 48 hours for Candida spp. or at 37°C for 3 days in the case of S.
schenckii. S. cerevisiae strain KFY 471 (BY4741; ATTC 201388 (Winzeler et al., 1999))
was provided by Dr. Michael Keogh (Albert Einstein, New York), and was grown in YPD
broth (Difco Laboratories, Detroit, MI) in the same conditions used for Candida strains.

Isolation of vesicles
Vesicle isolation was performed according to our previously described protocol (Rodrigues
et al., 2007). Briefly, the fungal cells were separated from culture supernatants by
centrifugation at 4,000 g for 15 min at 4°C. Supernatants were collected and again
centrifuged at 15,000 g (4°C) for 30 min to remove smaller debris. The pellets were
discarded, and the resulting supernatant was concentrated approximately 20-fold using an
Amicon ultrafiltration system (cutoff, 100 kDa). To ensure the removal of cells and cellular
debris, the concentrated culture fluid was again centrifuged as described above and the
resulting supernatant was then centrifuged at 100,000 g for 1 h at 4°C. The supernatants
were discarded and the pellets suspended in 3 mL of 0.1 M Phosphate-buffered saline (PBS)
and centrifuged at 100,000 g for 1 h at 4°C. The supernatant was again removed from the
pellets and a fixative solution (as described below), was added for electron microscopy
analysis. Additionally, pellets from H. capsulatum were used for proteomic analysis or
extracted with a chloroform-methanol mixture for lipidomic analysis as described below.

Transmission electron microscopy (TEM)
TEM was used to visualize vesicles in intact H. capsulatum yeast cells and vesicles isolated
from culture supernatants of H. capsulatum and the other fungi by ultracentrifugation.
Samples were fixed in 2.5% glutaraldehyde in 0.1 M cacodylate buffer at room temperature
for 2 h and then incubated overnight in 4% paraformaldehyde, 1% glutaraldehyde, and 0.1%
phosphate-buffered saline (PBS). The samples were incubated for 90 min in 2% osmium
tetroxide, serially dehydrated in ethanol, and embedded in Spurr’s epoxy resin. Thin sections
were obtained on a Reichert Ultracut and stained with 0.5% uranyl acetate and 0.5% lead
citrate. Samples were observed in a JEOL 1200EX transmission electron microscope
operating at 80 kV.
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Mass spectrometry analysis of phospholipids
The H. capsulatum vesicle fraction was suspended in 100 μL of ultrapure water and
extracted 3x by addition of 1.5 ml chloroform:methanol (2:1, v/v) solution followed by
vigorous vortexing and then centrifugation for 10 min at 1000 g. After drying under nitrogen
stream, the sample was dissolved in 500 μL chloroform and loaded onto a silica gel 60
column, equilibrated with pure chloroform. The silica column was manufactured in a
Pasteur pipette, using a very fine glass wool and about 500 mg of silica gel 60 resin (pore
size 60 Å, 200–400 μm mesh) (Sigma-Aldrich, St. Louis. MO). After washing the column
with chloroform, followed by acetone, the phospholipids were eluted with methanol and
dried under nitrogen stream. The phospholipid fraction was dissolved in
chloroform:methanol (1:1, v/v) and diluted either in chloroform:methanol (1:1, v/v)
containing 10 mM LiOH (for positive-ion mode analysis) or chloroform:methanol (1:1, v/v)
containing 0.1% formic acid (FA) and 0.1% NH4OH (for negative-ion mode analysis), and
analyzed in an electrospray ionization time-of-flight mass spectrometer (ESI-Q-TOF-MS)
(Qtof-1, Waters). The spectra were collected in a range from 400 to 1500 m/z and each ion
with intensity higher than 10 counts was automatically submitted to collision-induced
dissociation (CID) (22–60 eV, 50–1500 m/z range). MS/MS spectra were analyzed manually
for the identification of phospholipid species.

Protein identification by liquid chromatography tandem mass spectrometry
Protein digestion was performed as described previously (Stone and Williams, 1996).
Purified vesicles were suspended in 40 μl 400 mM NH4HCO3 containing 8 M urea and the
protein disulfide bounds were reduced by the addition of 10 μl 50 mM dithiotreitol for 15
min at 50°C. Cysteine residues were alkylated by the addition of 10 μl 100 mM
iodoacetamide and incubation for an additional 15 min at room temperature protected from
light. The reaction was diluted with HPLC-grade water (Sigma-Aldrich) to obtain a final
concentration of 1 M urea, and the digestion was performed overnight at 37°C with 4 μg
sequencing-grade trypsin (Promega). Each sample was desalted in a reverse phase ziptip
(POROS R2 50, Applied Biosystems) as described by Jurado et al. (Jurado et al., 2007), and
peptides were fractionated in a strong cation-exchange (SCX) ziptip, manufactured in a 200-
μl micropipette tip with glass fiber filter and POROS HS 50 resin (Applied Biosystems).
After equilibrating the SCX ziptip with 25% acetonitrile (ACN)/0.5% FA, peptides were
loaded and eluted with increasing NaCl concentration (0, 10, 20, 40, 60, 80, 100, 150, 200,
and 500 mM NaCl in 25% ACN/0.5% FA). Each SCX fraction was dried in a vacuum
centrifuge (Eppendorf), purified in POROS R2 50 ziptip and redissolved in 30 μl 0.05%
trifluoroacetic acid (TFA). Eight μl of fractionated peptides were loaded onto a C18 trap
column (1 yL C18, OPTI-PAK) and washed for 10 min with 2% ACN/0.1% FA. The
separation was performed in a capillary reverse-phase column (Acclaim, 3 μm C18, 75 μm x
25 cm, LC Packings) connected to a nanoHPLC system (nanoLC 1D plus, Eksigent).
Peptides were eluted in a 0–40% gradient of solvent B (solvent A: 2%ACN/0.1%FA, solvent
B: 80%ACN/0.1% FA) during 100 min and directly analyzed in an electrospray ionization-
linear ion trap-mass spectrometer (ESI-LIT-MS) equipped with a nanospray source (LTQ
XL, Thermo Fisher Scientific, San Jose CA). MS spectra were collected in centroid mode in
a range from 400 to 1700 m/z and the five most abundant ions were submitted twice to CID
(35% normalized collision energy), before they were dynamically excluded for 120 sec.

All MS/MS spectra were obtained from peptides with 600–3500 Da and at least 15
fragments were converted into DTA files using Bioworks v.3.3.1 (Thermo Fisher Scientific).
The DTA files were subjected to a database search using TurboSequest (Eng et al., 1994)
(available in Bioworks software) against a database assembled with H. capsulatum (protein
database, version of 05/11/2006, available at
http://www.broad.mit.edu/annotation/genome/histoplasma_capsulatum/
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Downloads.html;jsessionid=A347F284A23BE3CC423191220E09A48D), common
contaminant sequences (retrieved from GenBank -http://www.ncbi.nlm.nih.gov/ and
International Protein Index -http://www.ebi.ac.uk/IPI) and 100,000 randomly generated
sequences. The database search parameters were: trypsin cleavage in both peptide termini
with allowance for one missed cleavage site, carbamidomethylation of cysteine residues as a
fixed modification, oxidation of methionine residues as a variable modification, and 2.0 Da
and 1.0 Da for peptide and fragment mass tolerance, respectively. To ensure the quality of
our identifications, we estimated the false-positive rate (FPR) from the TurboSequest output.
This estimation was done using the following formula:

A FPR was obtained after applying the following filters in Bioworks: distinct peptides,
consensus score ≥ 10.1, DCn ≥ 0.1, protein probability ≤ 1×10−3, and Xcorr ≥ 1.5, 2.2, and
2.7 for singly-, doubly-, and triply-charged peptides, respectively. Using these parameters,
the FPR was estimated as 3.7%.

Western Blot Analysis
H. capsulatum vesicles pellets were subjected to acetone precipitation. The precipitate was
separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) using
10% gels. Separated proteins were transferred to nitrocellulose membranes and blocked (1%
BSA in 0.1M PBS) for 1 h at 37°C. The membranes were then incubated in the presence of
pooled sera from patients with culture proven histoplasmosis (Fiocruz- IPEC). Positive
reactions were observed after incubation of blotted proteins with alkaline phosphatase-
conjugated goat anti-human antibodies in blocking buffer for 1 h at 37°C followed by
development with NBT-BCIP. Alternatively, the membranes were blocked and then
incubated with monoclonal antibody to H2B (Nosanchuk et al., 2003) or heat shock protein
60 (Guimarães et al., 2006), washed in TBST, and incubated with goat anti-mouse Ig
conjugated to horse raddish peroxidase. The samples were developed with ECL substrate
(SuperSignal; Pierce Chemical Co.) and exposed on X-Omat AR film (Eastman Kodak Co.,
Rochester, New York, USA).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig.1.
TEM of extracellular vesicles obtained by ultracentrifugation of culture supernatants from
Histoplasma capsulatum showing bilayered membranes and different profiles of electron
density. Bars, 100 nm (B, C and E) and 200 nm (A, D and F).
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Fig.2.
Size analysis of vesicles from H. capsulatum. Five hundred and eight vesicles were analyzed
and the size ranged from 10 to 350 nm.
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Fig.3.
Vesiclular structures were observed in association with the cell wall (A, C and D) and the
extracellular environment (B).
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Fig.4.
Lipid analysis by mass spectrometry of H. capsulatum vesicular components. Total
phospholipids were fractionated by silica gel 60 chromatography and analyzed by ESI-MS,
in negative- (A) or positive-ion (B) mode. The ion species corresponding to major
phospholipids are indicated. These ions were subjected to MS-MS analysis, allowing the
identification of 18 phospholipids (Table 1; Supplemental Figure 1). m/z, mass to charge
ratio.
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Fig. 5.
TEM of extracellular vesicles from S. cerevisiae (A, B), C. parapsilosis (C, D), S. schenckii
(E, F) and C. albicans (G, H). The structures identified were similar to vesicles produced by
C. neoformans and H. capsulatum. Bars 100 nm.
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Fig. 6.
H. capsulatum vesicles contain immunoreactive proteins. Pooled serum from patients with
histoplasmosis reacts with proteins from extracellular H. capsulatum vesicles. Lane A shows
the molecular weight marker. Lane B shows H. capsulatum pooled hyperimmune sera
reacting with extracts from H. capsulatum vesicles, whereas the non-immune serum in lane
C does not interact with the extracted proteins. Lanes D and E demonstrate the binding of
monoclonal antibodies to histone 2B (17 kDa; corresponding to *, lane B) and heat shock
protein 60 (62 kDa; corresponding to ♦, lane B), respectively, in the vesicular protein
preparations.
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Table 3

Distribution of the identified H. capsulatum vesicle proteins according to their functions.

Protein association Percent total (%)

Amino acid/protein metabolism 37

Sugar metabolism 36

Ribosomal 31

Proteasome component 13

Nuclear 11

Cell wall architecture 11

Lipid metabolism 9

Cell signaling 8

Chaperone-like 8

Anti-oxidant 6

Cytoskeletal 4

Cell growth/division 4

Plasma membrane 3

Miscellaneous 25
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