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SUMMARY
Studies pertaining to childhood psychopathology often incorporate information from multiple
sources (or informants). For example, measurement of some factor of particular interest might be
collected from parents, teachers as well as the children being studied. We propose a latent variable
modeling framework to incorporate multiple informant predictor data. Several related models are
presented, and likelihood ratio tests (LRT) are introduced to formally compare fit. The incorporation
of partially observed subjects is addressed under a variety of missing data mechanisms. The methods
are motivated by and applied to a study of the association of chronic exposure to violence on asthma
in children.
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1 Introduction
Use of surveys and questionnaires are a staple of many epidemiologic studies. Often these
instruments may provide overlapping or parallel information regarding factors of particular
interest. It is necessary to consolidate this information, particularly if it is collected on a
construct that is difficult to measure accurately, precisely or directly. A variety of different
consolidation approaches may be used, such as calculation of a weighted or unweighted score
based on questionnaire items.1,2 Studies involving children are often faced with the additional
challenge of combining information obtained from multiple informants.3–8 Because
information obtained from young children may be unreliable, parents and/or teachers are
frequently used as proxies. The use of additional informants varies according to the child’s age
and the nature of the exposure and/or outcome under study. A common approach involves
deriving separate analyses for each informant. Since there is often little agreement between the
informants, results obtained from different models may yield dissimilar results and may be
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difficult to interpret. In addition, if there is a common association between the informants’
reports and the outcome then such approaches will be inefficient.

In this article, we consider maximum likelihood estimation of logistic regression models when
there are multiple informants characterising a latent covariate and substantive interest focuses
on the association of that latent variable with a univariate outcome. These methods are
motivated by an epidemiologic study investigating the relationship between children’s
exposure to violence (ETV) in the community, and the onset of asthma (as indicated by
bronchodilator use). The study was based in a low income, racially diverse inner-city Boston
neighborhood where community violence is prevalent.9 Mothers were administered a survey
asking whether or not their child had witnessed any of several different violent events. Children
over age 8 filled out the same survey themselves, while younger children were administered
an age-appropriate survey based on cartoons and drawings. We assume that the questionnaire
responses reflect an underlying, unobserved level of exposure to violence (ETV). We develop
a likelihood-based latent variable model that uses data from multiple informants to estimate a
child’s exposure to violence and then links this exposure with a health outcome. The proposed
model differs from that of Horton and Laird,6 who assume that one informant (the mother)
was used to provide auxiliary information, but was otherwise not of substantive interest. Our
model provides a framework for utilizing the health outcome data even for children whose
mothers did not allow them to complete the survey.

In the next section we define notation and develop a series of different multiple informant latent
variable models. Section 3 addresses the behavior of these models in the presence of missing
data under certain missing data assumptions. In section 4 we present an application based on
the Boston Study. Section 5 presents some simulations and Section 6 concludes with a
discussion of these methods.

2 Maximum likelihood (Rasch) regression models
Suppose that data collected on the vth of n children can be represented as Xv, an I × 1 vector
consisting of responses to I survey items; Yv, an outcome of interest and Zv, a vector of potential
confounders. We assume that all the survey responses Xv1,; …XvI reflect a common, but
unobservable true exposure variable, denoted θv, which in turn is related to the dichotomous
outcome Yv, after appropriate adjustment for confounders. Specifically, we assume:

(1)

where α is a vector of parameters characterizing the relationship of θv and Zv to Yv. Because
θv is not observed, the analysis must rely on data from the observed questionnaire responses
which provide indirect information about θ.

The relationship between θv and the responses Xv to the survey can be naturally described using
a Rasch model. Originally developed by Georg Rasch,10,11 these models are commonly used
in education and psychiatry to test constructs such as depression and intelligence, as well as to
examine the reliability of test instruments. A special class of Item Response Theory (IRT)
models, Rasch models characterize the probability of response for person v to a set of test or
questionnaire items, denoted by X as a function of the person’s latent trait, θ, and a set of item
parameters β1…βI that characterize the prevalence of each item via logistic regression:

(2)

Note the assumption here that the distribution of Xvi does not depend on Zv. The Rasch model
assumes that given θv all items are independent. That is, given θv, the probability of a positive
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response to survey items i and j is the product of the individual probabilities. An important
consequence of the conditional independence assumption is that conditional on the latent trait,
θv, the joint distribution of the survey items and outcome can be factored as a product of
univariate probabilities:

(3)

where f(Xvi|θv; βi) is defined in (2), and f (Yv|θv; Zv; α) is the regression model of interest
defined at (1).

In our motivating example, the outcome is a dichotomous indicator of bronchodilator use.
Treating θv as random turns (3) into a type of random-intercept generalized linear (logistic
regression) model for Y. To obtain estimates for α1 (i.e., the effect of θv on Yv), one can assume
a distribution for θv, say G, then maximize the likelihood corresponding to the following
marginal model:

(4)

where ξ is a set of parameters characterizing the distribution G. If θv is assumed to follow a
normal distribution, then the model can be easily fit using SAS/NLMIXED. More generally,
quadrature or other numerical approaches can be applied to maximize the marginal likelihood
(4).

We consider the setting where there are multiple informants providing information that can be
used to infer the latent exposure variable, θv and its relationship with Y. Specifically, suppose
that the following random variables are observed for the vth subject: Yv, the binary outcome
(bronchodilator use); , the report of informant a on item i: , the report of informant
b on item i; and Zv, an arbitrary covariate vector (e.g., age, sex of child). Given a latent predictor
θv and the conditional independence assumption, the joint distribution of the observed data can
be factored as:

(5)

where f(Yv|θv; α, Zv) is the outcome model defined at (1) and  is the model relating
both a’s and b’s survey responses to the latent trait. The model is identifiable, even with only
two informants, since there are I = 5 dichotomous indicators reported by each source.

Different factorizations of , reflecting various assumptions and simplifications of
the association governing the joint distribution specified in equation (5) can be considered. Our
proposed modeling framework is attractive because it allows the relaxation of assumptions that
may be untenable in certain settings.

These models can be characterized in terms of estimating a single or multiple latent trait. The
single latent trait models we describe include: Exchangeable (Model A), General (Model B)
and Direct Dependence (Model C). We also consider two bivariate latent trait models: Direct
dependence (Model D) and Correlated (Model E).

The first two models make strong assumptions (which may not be justified in terms of subject
matter knowledge) regarding the independence of the informants, conditional on θv. The first
model assumes that both informants respond to the same items at the same rate, while the
second model assumes that both informants respond to the same items at different rates. The
latter three models assume that data from source b contribute in some fashion to information
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in source a. Figure 1 describes the relationship of the five models. We assume that the
informants are fully observed; we will relax this assumption in section 3.

Once the conditional joint distribution of  and  has been appropriately specified, one can
obtain the marginal distribution of  conditional on Zv, by assuming that the latent trait
θv follows a distribution characterized by parameter ξ. It follows that

While other distributional assumptions could be considered for θv, a normal assumption is
computationally convenient since the resulting model is straightforward to fit using SAS/
NLMIXED. Extensions to accommodate certain other distributions (e.g. lognormal) are
straightforward.

2.1 Exchangeable single latent trait (Model A)
Model A assumes that Xa and Xb are independent conditional on θ and that informants a and
b report the same events at the same rate. Heuristically, it assumes perfect agreement between
informants at the macro level, though not necessarily perfect agreement within pairs, due
simply to chance. This model essentially pools all of the information from both informants and
considers the two informants to be independent replicates of each other:

(6)

Another way to think of this model is that informants a and b provide commensurate
information. Their information could therefore be thought of as “exchangeable”: where one
informant’s response has the same association with latent covariate and the outcome as the
other informant. While model (6) is overly simplistic and unlikely to apply in practice, it
provides a helpful basis for comparison with other models.

2.2 General single latent trait (Model B)
As in (6), Model B assumes that the two informants respond independently, conditional on the
latent trait, but they report the various events at different frequencies. Defining βa and βb to be
the item parameters for informants a and b, it follows that

(7)

2.3 Direct dependence single latent trait (Model C)
Model C relaxes the assumption that Xa and Xb are independent, by allowing the responses of
respondent a to depend on those of respondent b and θv:

For example, we might assume

(8)
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While the expression in (8) is mathematically convenient, results may be hard to interpret. An
appropriate model for the relationship between informants may require that each informant
have their own latent trait, an approach that we now consider.

2.4 Direct dependence bivariate latent trait (Model D)

The direct dependence Model D introduces two latent traits,  and , for informants a and
b, respectively. In the case of the Boston study, for example,  might represent the child’s
exposure to violence, while  represents the mother’s perception, which might be different.
Of interest in this study is how θa (i.e., the child’s ETV) relates to Yv. The model specification
entails the following factorization:

so that the value of respondent b’s latent trait, , influences how person a responds through
the parameter τ. The model for , can be written as:

(9)

where

Expression (9) differs from the direct dependence single latent trait model with respect to how
informants a and b are related. The single trait model postulates that the response of informant
a to item i is a function of the latent trait, the frequency of the item and the response of informant
b to the same item. In contrast, model (9) implies that informant a’s response depends on their
own latent trait, as well as that of informant b. While in abstract model (9) may sound
complicated, it will often have an appealing practical interpretation. In the context of the Boston
study, for example,  is the mother’s perception of her child’s true ETV . The parameter
τ describes the degree to which a child’s response  is influenced by their mother’s
perception. The SAS code used to fit Model D can be found in Appendix 1.

2.5 Correlated bivariate latent trait (Model E)
Model E also assumes that informants a and b each have their own latent traits, but characterizes
the association between these latent traits through a covariance parameter σab. This allows the
distribution of Xa and Xb to follow separate Rasch models depending on θa and θb respectively.
Consequently,  can be written as:

(10)

where

For both correlated trait and direct dependence models the primary regression involves the
relationship of  and Zv to Yv; i.e.,
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In the context of the Boston study this may be plausible, for the main hypothesis in this study
is whether children’s exposure to violence  has an association with the outcome. The SAS
code used to fit Model E can be found in Appendix 1. These final two models (i.e., direct
dependence and correlated trait) account for possible correlation between the latent traits.

2.6 Model comparison
Figure 1 displays the relationships between the various models. For example, the exchangeable
model is obtained as a special case of the independence model by setting βa = βb. These models
can thus be compared using a Likelihood Ratio Test (LRT) that follows a  random variable
with degrees of freedom equal to the number of survey items (I). Similarly, setting τ = 0 changes
the non-independence model to the independence model, so these models can be compared
using a LRT which is distributed as . The exchangeable and general models are also nested
within both bivariate trait models. However, because of boundary issues in the parameter space,
special consideration for testing is required (see Appendix 2).

3 Missing Data
Data involving multiple informant reports are often incomplete, since by definition, more than
one source needs to be contacted and interviewed. For example, in the Connecticut Child
Surveys,12,13 43% of teacher reports were missing, while only a small number of parents
reports were unobserved. In the Boston Study, 54% of the children’s reports were missing,
while all of the maternal reports were observed. The use of complete data methods (those which
drop observations with any missing data) will lead to estimates that are ineffcient and, possibly,
biased.

In the Boston Study, missingness can be described as monotone since questionnaire responses
will always be available from mothers, but not always from children. Monotone missingness
is common and an important special case. For example, missingness may be partly be design
(e.g., a two stage study where complete data are only collected on a subset of subjects). When
missingness is partly by design, assumptions about ignorable missingness (in the sense of Little
and Rubin14), and conditional independence may be more plausible. If the assumption of
ignorable missingness is not justifiable, then use of non-ignorable nonresponse models14,15
will need to be explored. For the purposes of this paper, we assume that informant b has
complete data across the I items and that n − m persons from informant a has complete data
across the I items.

We define a missing data indicator, R:

Analysis with incomplete data requires the consideration (implicitly or explicitly) of R into the
joint distribution of the data.14 The joint model can be specified as

(11)

where ψ is a parameter characterizing the missingness distribution.
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If  and  are both observed, then the likelihood is based directly on expression (11), after
integrating over the distribution of θv. If  is missing, then the appropriate likelihood
contribution needs to additionally integrate over :

Note that as long as the missingness mechanism is independent of  and θv, it follows that

and this term will factor out of the likelihood, and its contribution can be ignored.

The contribution to the likelihood for person v, under the correlated trait model defined in (10)
under ignorable missingness becomes:

(12)

4 Application: Asthma and exposure to violence
The Boston Study aimed to investigate associations between children’s exposure to violence
(ETV) in their communities and the onset of childhood respiratory disease.16,17 The items
from the ETV questionnaire included I = 5 binary indicators of whether the child had witnessed
someone being hit, shoved, or punched; whether he/she had witnessed a stabbing; whether he/
she had heard gunshots; whether he/she had witnessed someone being shot; and whether he/
she had witnessed emotional abuse.18 There are two sets of informants, mothers and children,
both of whom were asked to complete a survey designed to indirectly characterize ETV.
Children could only complete the survey if two conditions were met: the child was age 8 or
older, and mothers gave permission for their children to answer the questionnaire. There were
188 mothers who answered the questionnaire, but refused permission for their children to take
part in the survey (n = 15) or their children were too young to self-report ETV (n = 173). A
total of 151 additional mother-child pairs completed the ETV survey.

Maternal report of child wheeze based on the child being prescribed a bronchodilator by a
physician for wheezing or respiratory illness is also considered to be a covariate. The outcome
is an indicator that takes the value 1 if the child has used a bronchodilator and 0 otherwise, as
reported by the mother.

Table 1 describes demographics and summary statistics for children who completed the survey
(2nd column) and those who did not (3rd column). There were about equal numbers of boys
and girls, regardless of survey participation (p = 0.86, Fisher’s exact test). Hispanic mothers
withheld permission for their children to participate in the ETV survey more than their White
counterparts (p = 0.0002). Those women with some college experience were less likely to
withhold permission than those with a high school degree or less (p = 0.05). Children who
answered the survey were somewhat more likely to have a report of wheeze than children who
did not (p = 0.10) though there were no significant differences in proportion of bronchodilator
use (p = 0.64).

Table 2 displays results from regression models for the probability of using a bronchodilator
using the multiple informant models A{E discussed previously. The column labeled “Model”
indicates the model used for the analysis, along with the corresponding number of parameters.
The next three columns display estimated regression model parameters and their standard errors
(intercept, the wheeze covariate and the latent ETV). The column labelled “−2LL” is −2 times
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the log-likelihood function of the model being fit. The first row of the table corresponds to the
results of fitting the simple Model A (6), the second row corresponds to Model B (7) while the
last three rows represent Models C (8), D (9) and E (10) that incorporate dependence between
the informants. The “Δ” column contains the difference in −2LL column between any two
nested models. The SAS code to fit models D and E can be found in Appendix 1.

Application of an LRT test comparing the various models in Table 3 suggests clear evidence
that the correlated bivariate latent trait model E provides the best fit to the data. Self and
Liang19 showed that in cases such as these, in which interest focuses on testing whether a
parameter is on the boundary of the parameter space, these statistics do not follow the standard
chi-squared distribution, but rather a mixture of chi-squared distributions. In this case, because
the test statistics are so large, even the least powerful approach that uses the usual chi-squared
reference distribution would lead to the rejection of Model B in preference to Model E.

5 Missing Data Simulation
Table 3 reports the results of simulations based on 1500 subjects, where each subject is assumed
to have two informants responses to a 5-item questionnaire, with a correlation of 0.4 between
parent and child information. Missingness generated under MCAR was done through straight
random number generation; under MAR, R was created using a logistic model in which the
sum of the ETV survey items answered by adults  and use of bronchodilators (Y ) were
used as covariates:

(13)

The parameters in (13) were chosen so that as γ1 and γ2 increase, the probability that Ri = 1
increases. A practical application, for example, is if the mother reports many witnessed events
of violence against her child then her child may be less likely to complete the survey. The first
column for Table 3 displays the percentage of children who were simulated as not answering
the questionnaire.

For each row we generated 1000 datasets and fit the correlated bivariate latent trait complete
case (CC) and available case (AC) models, where the true α1 = 2. The second and third columns
contains sample means and standard errors from the CC model. The fourth and fifth columns
are the same information as the previous two columns using the correlated trait AC model.
Maternal report of wheeze was not considered for this part of the analysis.

Overall, the correlated trait available case model performs well, recovering considerable
information even as the numbers of non-participating children increases. There was little
evidence for bias, which is not surprising given that all mechanisms were ignorable in the sense
of Little and Rubin.14 An expected finding is that when there is complete data for child
informants , there is little difference in variability in estimates between the methods and
models shown.

6 Discussion
In this paper, we developed methods to incorporate information from two raters providing
information on a latent trait of interest. These models characterize the relationship between
informants and an outcome using a latent variable predictor model. This framework is
likelihood-based and a variety of potential models are described (Figure 1). Because they are
partially nested, the analyst may formally compare the fit of models describing the observed
relationship between informants under a variety of conditional independence and latent
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variable assumptions. This methodology is particularly attractive because it is quite flexible
and can be fit using existing statistical software.

Another advantage of these likelihood-based models relates to the incorporation of partially
observed subjects with fully observed auxiliary (parent) information.6 For the correlated trait
model under ignorable missingness assumptions, this model performed well as compared to
the single informant model. When one set of raters are missing that covariance parameter can
provide some information about the missing rater. This “borrowing” of mother’s survey data
may mitigate the impact of the missing child’s response and therefore lead to more precise
estimates compared to models that contain only child survey responses.
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Appendix 1: SAS code to fit Models D and E

Appendix 2
To arrive at the general single latent trait model (B) from the direct dependence bivariate latent
trait model (D), it is helpful to consider a reparameterization of the latent trait for informant
a, specifically, . Therefore, the model specified in equation (9) can be rewritten as

 where  and , where

The joint distribution of  and , is
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Under this parameterization, when τ = 1 and , the covariance matrix for  and  is given
by

so that  and  have become, in actuality, the same latent trait. This is equivalent to the general
independence model. However, since this scenario places  on the boundary of its parameter
space, the LRT statistic does not have the usual asymptotic properties.19 A similar situation
occurs when using the LRT to test general independence versus correlated trait models.
Arriving at the independence model from the correlated trait model requires two steps: first,

, which yields the following covariance matrix

and then setting ρ = 1, with ρ on the boundary of its parameter space. Self and Liang19 describe
the asymptotic distribution of a test situation similar to both correlated trait and direct
dependence LRT as having 50: 50 mixture of a  and . While the resulting distribution is
analytically more complicated, inference can proceed using numerical methods to describe the
empirical sampling distribution of these likelihood ratio test statistics.
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Figure 1.
Nesting of models
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Table 1
Demographic data on child survey participants and non-participants

Variable Child survey complete (N = 151) Child survey incomplete (N = 188)

Child’s Gender:
Female 77 (51%) 94 (50%)

Child’s Race/Ethnicity:
White 86 (57%) 66 (35%)
Hispanic 61 (40%) 115 (61%)
Other 4 (3%) 7 (4%)

Maternal Education:
< 12 years 53 (35%) 85 (45%)
12 years 61 (40%) 75 (40%)
> 12 years 37 (25%) 28 (15%)

Maternal report of child wheeze:
Yes 45 (30%) 41 (22%)

Bronchodilator:
Yes 52 (34%) 60 (32%)
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Table 3
Simulations based on n = 1500 subjects, two informants based on a 5-item questionnaire with correlation of 0.4. Rows
correspond to different patterns of missingness, with . Table entries show the
mean of the estimates of α1 from 1000 simulated datasets fit using model (E), where the true value of α1 is 2.
Corresponding standard errors are given in parentheses.

γ0, γ1, γ2 Pr(missing) Complete case only All available cases

No missing data 0% 1.996 (0.263) 1.996 (0.263)
MCAR models
−1.735, 0, 0 15% 2.002 (0.287) 1.976 (0.274)
−1.098, 0, 0 25% 2.008 (0.306) 1.961 (0.282)

0, 0, 0 50% 2.024 (0.378) 1.900 (0.309)
MAR X models
−2.781, 0.5, 0 15% 2.003 (0.288) 1.979 (0.276)
−3.247, 1, 0 25% 2.002 (0.311) 1.963 (0.289)
−2.671, 1.5, 0 50% 1.801 (0.401) 1.907 (0.328)

MAR Y models
−1.931, 0, 0.5 15% 2.006 (0.289) 1.979 (0.276)
−1.506, 0, 1, 25% 2.018 (0.317) 1.963 (0.288)
−.509, 0, 1.5 50% 2.058 (0.443) 1.896 (0.326)
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