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SUMMARY
There is considerable debate regarding whether and how covariate adjusted analyses should be used
in the comparison of treatments in randomized clinical trials. Substantial baseline covariate
information is routinely collected in such trials, and one goal of adjustment is to exploit covariates
associated with outcome to increase precision of estimation of the treatment effect. However,
concerns are routinely raised over the potential for bias when the covariates used are selected post
hoc; and the potential for adjustment based on a model of the relationship between outcome,
covariates, and treatment to invite a “fishing expedition” for that leading to the most dramatic effect
estimate. By appealing to the theory of semiparametrics, we are led naturally to a characterization
of all treatment effect estimators and to principled, practically-feasible methods for covariate
adjustment that yield the desired gains in efficiency and that allow covariate relationships to be
identified and exploited while circumventing the usual concerns. The methods and strategies for their
implementation in practice are presented. Simulation studies and an application to data from an HIV
clinical trial demonstrate the performance of the techniques relative to existing methods.
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1. INTRODUCTION
The primary objective of many randomized clinical trials is to evaluate the difference in mean
outcome between two treatments. In typical moderate-to-large-scale trials, the setting
addressed herein, in addition to the primary outcome, extensive baseline data are collected on
each participant prior to treatment administration, such as baseline observations on the outcome
and qualitative and quantitative variables reflecting demographics, prior medical and treatment
history, and physiological status. Some of these baseline covariates may be related to the
primary outcome and may exhibit chance imbalances between the two treatment groups.

A vast literature exists on whether or not and how to “adjust” the analysis of treatment
difference for the effects of covariates in order to increase the precision of the estimator for
this treatment effect, thereby increasing statistical power, and to take imbalances into account
[1,2,3,4,5,6]. Indeed, that many studies fail to meet their accrual goals and the desire to use the
data from patient volunteers most efficiently are strong rationales for this practice. However,
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covariate adjustment has inspired considerable controversy among numerous authors [1,7,8,
9] and regulatory authorities [10,11] because of the potential for biased estimation due to post
hoc selection of covariates and, more ominously, the temptation for analysts to engage in a
“fishing expedition” to find “the covariate model that best accentuates the estimate and/or
statistical significance of the treatment difference” [1]. Thus, trialists and regulatory agencies
have been reluctant to endorse adjusted analyses, and current guidelines assert strongly that,
if adjustment is undertaken, only a few such covariates should be used, chosen based on prior
knowledge of their prognostic value; and these should be prespecified in the protocol or
analysis plan, as should be the form of the model relating covariates to outcome to be used for
adjustment (e.g., [11,12]). However, associations between covariates and outcome may not be
appreciated at the design stage [1], particularly if such information was not collected
systematically in previous studies, but may be evident only at the analysis stage, subsequent
to unblinding. An unfortunate consequence of these recommendations may be that a critical
opportunity to enhance efficiency and reveal important, real effects may be lost.

Clearly, approaches that seek to resolve the tension between the need to make the best use of
the data and concerns over the properties of adjusted estimators and possible lack of objectivity
are needed. Pocock et al. [1] strongly encourage research along these lines, arguing that
covariate adjustment should be carried out whenever appropriate while simultaneously making
“one’s statistical policy for covariate adjustment completely objective.” Some approaches in
this spirit, such as that of Koch et al. [2], which does not require regression modeling of
covariate effects, have been proposed. Nonetheless, to our knowledge, a general, practically-
feasible strategy that achieves this goal has not been elucidated.

In this article, we consider covariate adjustment in estimation of treatment differences in
randomized clinical trials from the formal point of view of semiparametric theory (e.g., [13]).
This leads to characterization of all treatment effect estimators, facilitating comparisons among
competing methods. Moreover, emerging elegantly from this perspective is principled
adjustment methodology that supports objective incorporation of covariate effects while
simultaneously exploiting covariate-outcome relationships to increase precision. Because the
approach automatically separates modeling of these relationships from evaluation of the
treatment effect, it obviates concerns over suspicious “data dredging” exercises.

In Section 2, we introduce a formal model framework and identify the parameter representing
the treatment effect of interest. We present the semiparametric theory results in Section 3. In
Section 4, based on the theory, we propose a practical strategy for adjusted analysis. The
methods are applied to data from an HIV clinical trial in Section 5, and simulation studies
demonstrating performance are summarized in Section 6.

2. FRAMEWORK AND SCOPE OF INFERENCE
Consider a clinical trial with n subjects sampled from a population of interest. Let Y denote the
outcome on which the primary analysis will be based (continuous or discrete), and let Z = 1 or
0 with probabilities δ or 1 − δ indicating randomization to, e.g., experimental treatment or
control. Let X (p×1) be a vector of baseline covariates; X may include a baseline measurement
on Y and additional quantitative and qualitative characteristics recorded prior to treatment
initiation. Randomization guarantees statistical independence of Z and X, written as Z ⫫ X,
which is critical to our further developments. The observed data from the trial are (Yi, Zi, Xi),
i = 1, …, n, independent and identically distributed (iid) across i.

Within this framework, we may identify unambiguously the “treatment effect” that is ordinarily
targeted by the primary analysis, given by

(1)
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i.e., the difference in mean outcome between the two treatments. This may be
representedequivalently by E(Y|Z) = μ0 + βZ, where μ0 = E(Y | Z = 0); note that this is a model
only for the mean outcome for each treatment, with no additional assumptions, such as
normality or equal variances in the two groups, implied.

The usual treatment effect β in (1) is defined unconditionally; i.e., as the effect of treatment
relative to control averaged across the population. An alternative measure of treatment effect
is defined conditional on a subset of the population having the particular covariate values X,

(2)

For continuous Y, a standard approach to estimate βx is to postulate a linear regression model

(3)

often referred to as the “analysis of covariance” (ANCOVA) model. Model (3) is a popular
basisfor “covariate-adjustment,” where βZ is interpreted as the “treatment effect after adjusting
for the covariates X.” In (3), no interactions(s) are specified between elements of X and Z, so
that (3) assumes that this “adjusted” treatment effect is constant across values of X. Models
may also include such interactions; see Section 3. For other outcomes, alternative models and
effect measures may be specified; for example, for binary Y, one may consider the logistic
regression model

(4)

where γZ denotes the log-odds ratio conditional on X, assuming that this conditional log-odds
ratio is constant for all values x.

The unconditional treatment effect (1) is overwhelmingly the focus of the primary analysis in
most randomized trials, with inference on conditional treatment effects as in (2) often specified
as secondary analyses. However, this is a matter of some debate; some researchers advocate
that the conditional treatment effect (2) is a more appropriate basis for primary inferences; e.g.,
Hauck et al. [12] “recommend that the primary analysis adjust for important prognostic
covariates in order to come as close as possible to the clinically most relevant subject-specific
measure of treatment effect.” Clearly, both unconditional and conditional treatment effects are
of considerable and complementary importance in developing a comprehensive understanding
of how treatments compare. The former provides a measure of overall effect useful for broad
policy recommendations, which explains its role as the primary focus of regulatory authorities.
Inference on the latter can reveal interactions between treatment and patient characteristics;
qualitative such interactions (i.e, the direction of the effect changes depending on x) may have
critical implications for use of the treatment in certain subpopulations.

With continuous outcome, this debate rarely receives explicit mention because, if (3) is an
exactly correct representation of the relationship E(Y |Z, X), then β and βx coincide. In fact, it
is well-appreciated that, with Z ⫫ X, the least squares estimator for βZ in (3) is consistent for
β in (1) regardless of whether or not (3) is the correct representation and is generally more
precise than competing estimators, e.g., the difference in sample means, which do not take
covariates into account. In Section 3, we show that these results follow immediately from
semiparametric theory. For binary and other outcomes where nonlinear regression models are
natural, the distinction between the unconditional and conditional perspectives is pronounced
[12]. E.g., γZ in (4) is generally different from the unconditional log-odds ratio in a logistic
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regression model not including X. Accordingly, in general, it is critical to state unambiguously
the inference (unconditional or conditional) desired.

In this article, we do not enter into this debate. Rather, given the long-standing status of the
unconditional treatment effect as the primary parameter of interest in most clinical trials, we
focus henceforth on covariate adjustment in the context of inference on β in (1), with the goal
of making this inference as precise as possible under very general conditions.

3. SEMIPARAMETRIC INFERENCE
We consider estimation of β based on the iid data (Yi, Zi, Xi), i = 1, …, n, under as unrestrictive
conditions as possible. We make no assumptions on aspects of the joint distribution of (Y, Z,
X), such as parametric assumptions on the distributions of Y given Z or Y given (Z, X) (e.g.,
normality and/or common variance) except that Z ⫫ X by randomization. We now show that
semiparametric theory leads under these conditions to the class of all consistent and
asymptotically normal estimators (“large n”) for β, including the “most precise.” As noted at
the outset, we focus on moderate-to-large-sized trials, and we demonstrate in Section 6 that
the implications of the asymptotic theory are relevant in this setting.

Under these conditions, when one of the elements of X is a baseline observation on Y, Leon et
al. [14] and Davidian et al. [15] derive the class of all consistent estimators for β by appealing
directly to semiparametric theory [13] or by making an analogy to missing data problems and
using the semiparametric missing-data theory of Robins et al. [16]. We comment on this
“missing data” analogy below. Because a baseline outcome is just another baseline covariate,
these results are immediately applicable here and lead to the following.

Let the numbers of subjects randomized to experimental treatment and control be

 and , n = n0 + n1. Write the sample means of outcome in each

group as  and , with  the sample
proportion randomized to treatment. Then it follows from References [14,15] that all
reasonable consistent and asymptotically normal estimators for β either can be written exactly
as or are asymptotically equivalent to an expression of the form

(5)

where h(k)(X), k = 0, 1, are arbitrary scalar functions of X.

When h(0)(Xi) = h(1)(Xi) ≡ 0, (5) reduces to the sample mean difference Ȳ(1) −Ȳ(0), the standard
“unadjusted” estimator, which is unbiased and trivially consistent for β and asymptotically
normal under our general conditions. From (5), all consistent and asymptotically normal
estimators for β may be viewed as “augmenting” [17] this estimator by the second term, which
incorporates covariates and thereby implements the “adjustment,” in a spirit similar to
estimators proposed in the survey sampling literature [18,19,20]. Because Z ⫫ X by
randomization, the “augmentation” term converges in probability to zero, so that (5) is
consistent for β for any h(k), k = 0, 1 (see the Appendix). The h(k) thus reflect the nature of the
adjustment, and distinctions among estimators and insight into their relative precision may be
deduced from these functions, as we now describe.

As noted above, a popular adjusted estimator for β is the least squares estimator for βZ in the
ANCOVA model (3), which we denote as β ̂ANCOV A1, and it is widely accepted that
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β ̂ANCOV A1 is consistent for β. It is straightforward to demonstrate (see the Appendix) that this
estimator is asymptotically equivalent to an expression of the form (5) with

(6)

(7)

the covariance between X and Y and the covariance matrix of X in the overall population,
respectively. Because β ̂ANCOV A1 is asymptotically equivalent to an estimator of form (5), we
may conclude immediately that it is consistent for β and asymptotically normal under entirely
unrestrictive conditions; normality of the outcome conditional on (Z, X), continuous outcome,
or constancy of var(Y |Z, X) are not required. Indeed, the model (3) from which it is derived
need not even be a correct representation of E(Y |Z, X) for these results to hold.

One could in fact use formulation (5) to estimate β directly by replacing ΣXY and ΣXX in (7) by
estimators in (6); e.g., by the corresponding sample covariance matrices. Semiparametric
theory [13,14,15] ensures that the asymptotic normal distribution of the resulting estimator
will have variance identical to that achieved if ΣXX and ΣXY were known, reflecting a general
result for estimators of form (5): substitution of consistent estimators for quantities appearing
in the functions h(k) does not alter the large sample properties, a feature we discuss further
below. Thus, this strategy would yield an estimator asymptotically equivalent to β ̂ANCOV A1.

From (6), the h(k)(Xi), k = 0, 1, associated with β ̂ANCOV A1 are the same for each treatment and
are linear functions of Xi, which, defining

(8)

and noting that , may be written equivalently as

(9)

Other familiar estimators may be shown to be asymptotically equivalent to estimators of form
(5), with corresponding h(0) = h(1) that, while still linear in Xi, is possibly different from (6)
and (9). Consider an ANCOVA model like (3) but also including an interaction term between
Z and X, which may be written in terms of centered versions of Y, Z, and X as

(10)

and fitted by least squares regression of Yi − Ȳ on Xi − X̄, Zi − Z ̄, and (Xi − X̄)(Zi − Z ̄), where

 and  [21]. Model (10) may seem an inappropriate framework for
estimating the unconditional treatment effect β, as the interaction term implies that the
conditional treatment effect depends on the covariate and hence cannot equal the unconditional
effect. However, Yang and Tsiatis [21] show for scalar X that the least squaresestimator for
βZ under (10) is a consistent and asymptotically normal estimator for β in (1); see also Reference
[22]. This generalizes to vector X; we show in the Appendix that this estimator, denoted
β ̂ANCOV A2, is asymptotically equivalent to an expression of the form (5) with
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(11)

Thus, that β ̂ANCOV A2 is consistent for β and asymptotically normal under very general
conditions is immediate and holds even if (10) is an incorrect representation of E(Y |Z, X).

Expressions (9) and (11) are identical if either δ = 0.5 or . Accordingly, under these
conditions, β ̂ANCOV A1 and β ̂ANCOV A2 are asymptotically equivalent and hence equally precise
(asymptotically). Otherwise, β ̂ANCOV A2 has smaller asymptotic variance than β ̂ANCOV A1; in
fact, this variance is the smallest among all estimators for which h(k)(Xi), k = 0, 1, are linear
in Xi [14,21,22] (see the Appendix). Thus, any other linear h(k), k = 0, 1, including those where
h(0) ≠ h(1), correspond to estimators that can be no more precise than those involving the
common h(k) given in (11).

Koch et al. [2] propose an estimator for β given by

(12)

where 

(13)

(14)

and I(·) is the indicator function. Noting that

(15)

it is easy to appreciate that β ̂KOCH is asymptotically equivalent to an expression of form (5),
where  is replaced by its limit in probability, so that β ̂KOCH is immediately seen to be
consistent and asymptotically normal under our unrestrictive conditions. It is shown in the
Appendix that this in fact leads to the h(k), k = 0, 1, in (11). Thus, via semiparametric theory,
we are led directly to the result that β ̂KOCH and β ̂ANCOV A2 are asymptotically equivalent;
moreover, as observed by Lesaffre and Senn [4], when n0 = n1 (approximately δ = 0.5),
β ̂KOCH is approximately equivalent to the usual ANCOVA estimator β ̂ANCOV A1. Otherwise,
in a large sample sense, Koch’s estimator is more precise.

Yang and Tsiatis [21] discuss an estimator that involves considering “response” vectors

, i = 1, . . . , n, and fitting the model  via solution of
corresponding generalized estimating equations (GEEs), with separate unstructured working
covariance matrices for each treatment group. Generalizing their results, it is possible to show
that the resulting estimator for β is also asymptotically equivalent to β ̂ANCOV A2.

We have verified that several common estimators are members of the class of all consistent
estimators for β and correspond to h(k) in (5) that are linear in Xi. It is natural to wonder whether
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there are estimators with different h(k), k = 0, 1, that outperform the linear candidates.
Semiparametric theory provides guidance: as shown in Section 3.3 of Reference [14] and
Section A.2 of Reference [15], among all estimators exactly equal to or asymptotically
equivalent to an expression of form (5), that with the smallest variance asymptotically has

(16)

an alternative, direct argument is given in the Appendix. That is, the “optimal” h(k), k = 0, 1,
are the true regression relationships of Y on X for each treatment separately, which may neither
be linear in X nor the same function of X for each treatment. Given (16), then, one way to view
the estimators discussed above is that they are equivalent to postulating for these true
regressions the same linear function for each k and will achieve the smallest possible variance
in the event that the true regressions are both exactly equal to this linear function.

Result (16) suggests that better estimators for β may be constructed by positing separate models
for the E(Y |Z = k, X), k = 0, 1, that come as close as possible to the true relationships and
substituting resulting treatment-specific predicted values for each i into (5). Here, any
parametric functional forms may be considered. As noted above, substitution of estimators for
parameters in these models will lead to an estimator for β having the same asymptotic variance
as if the functions of X represented by them were fully specified; see the Appendix. Thus, if
the models do correspond to the true mean relationships for each treatment, then the resulting
estimator for β will achieve the smallest asymptotic variance, and, as shown explicitly in the
Appendix, improve over that of the unadjusted estimator Ȳ (1)−Ȳ (0). However, failure to specify
these models correctly will not affect consistency; the estimator will have larger variance than
the “optimal,” but will still be consistent and asymptotically normal by virtue of being in class
(5). Indeed, estimators in class (5) are “semiparametric” because they are consistent and
asymptotically normal under no assumptions about any aspect of the distribution of Y given
(Z, X), including the form of E(Y |Z = k, X), k = 0, 1. Elegantly, if h(k), k = 0, 1, in (5) coincide
with the true treatment-specific relationships, then the estimator will be “optimal.” In fact, if
one restricts the h(k), k = 0, 1, to be linear models in X with an intercept, even if the true E(Y |
Z = k, X) are not linear, it may be shown (see the Appendix) that the asymptotic variance of
the resulting estimator for β will improve over that of the unadjusted.

There is a further, key feature of this approach that makes it especially compelling in light of
the concerns reviewed in Section 1. Covariate adjustment in practice is typically based on a
model for the regression of Y on both Z and X, e.g., (3), where the effect of treatment is
inextricably linked to that of the covariates, fueling suspicions regarding subjectivity due to
ability to inspect the effect estimator during the modeling exercise. In contrast, the proposed
estimator decouples evaluation of the treatment effect from regression modeling, as E(Y |Z =
k, X), k = 0, 1, are postulated and fitted separately by treatment. This suggests an objective
approach to covariate adjustment, as modeling may be carried out independently of reference
to treatment effect, circumventing such bias. Simultaneously, the flexibility afforded by the
opportunity to exploit freely modeling methods and expertise allows the covariate information
to be best used to obtain as efficient an estimator for β as possible. On these grounds, we propose
this approach for routine use in trial analysis, and in Section 4, we suggest a practical strategy
for implementation.

An approximate sampling variance for the proposed semiparametric estimator β ̂ obtained via
separate model-building exercises as above may be specified by noting that β ̂ may be re-cast
as an M-estimator [13, Section 3.2], [23], from whence the standard “sandwich” technique may
be used to derive a variance estimator. We present a practical expression for an approximate
sampling variance in Section 4, and in Section 6 we show that, for sample sizes under which
we envision use of the proposed approach, it leads to reliable assessments of precision.
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Like the method of Koch et al. [2], the proposed estimators provide a straightforward basis for
covariate adjustment when the outcome is binary and interest focuses on the unconditional
difference in proportions experiencing the event (e.g., [3]) rather than the log-odds ratio.

We close this section by touching on the “missing data” analogy. As we have indicated, one
way to motivate the class of estimators (5) is to conceptualize inference on β as a “missing data
problem;” see Reference [14] for fuller discussion. Ideally, if we could observe Y on each
subject under both treatments, we would have complete sample information on treatment effect.
Of course, this is usually impossible, but randomization still facilitates a valid treatment
comparison, albeit using less information than the “ideal:” for subjects randomized to
experimental treatment, we observe only their outcome under that treatment; the outcome they
would have experienced under control is hence “missing,” and vice versa. Covariate adjustment
may be viewed as an attempt to use covariates that are correlated with outcome to recover some
of the “lost” information (relative to the “ideal”) due to this “missingness.” Notably, the form
of estimators in the class (5) is exactly that encountered when semiparametric theory is used
in “actual” missing data problems [13,16].

4. PRACTICAL IMPLEMENTATION
We now outline a practical strategy for exploiting the foregoing developments in the analysis
of randomized clinical trials. We envision the following series of steps:

i. Partition the data into the two sets determined by the randomized treatment groups;
denote the data for treatment k by , i such that Zi = k}, k = 0, 1.

ii. Based on each of  separately, develop parametric models for E(Y |Z = k, X), k =
0, 1. Because for each k this only uses , advantage may be taken of available any
techniques to achieve a model as close to the true E(Y |Z = k, X) as possible yielding
as good predictions as possible without concerns over bias. One may inspect graphical
evidence and entertain different functional forms and covariate transformations; in
general, any sensible modeling strategies [27] may be used. One may also consider
“automated” methods. E.g., for continuous outcome, one may focus on linear models
involving an intercept; all elements Xℓ, ℓ = 1, …, p, of X; all squared terms , ℓ = 1,
…, p, and all two-way interactions XℓXm, ℓ ≠ m. Model selection procedures may also
be used. Forward, backward, or stepwise selection methods are a natural choice owing
to their availability in standard software. Penalized methods, such as LASSO [24] or
SCAD [25], which seek to minimize prediction error through selection of the penalty
via some form of cross-validation, are also possibilities, as are other techniques
[26].

The separate model development may be implemented several ways in a cooperative
group or pharmaceutical company setting. Modeling for each k may be carried out
sequentially by the same analysts, who may or may not be members of the study team.
Alternatively, two teams of analysts may be designated, with each provided only the
data for its assigned treatment. For total transparency, the two analysis teams may be
completely independent of the analysts who will prepare the final analysis; e.g.,
contracted from outside the group or sponsor solely for this purpose. The teams may
be given flexibility to exploit resident expertise in their model development efforts.
A more conservative approach would dictate the specific modeling techniques to be
employed and guidelines on their use in the trial protocol.

iii. Denote the models so developed by fk(X, αk), k = 0, 1, and let α̂k, k = 0, 1, be the
estimators for the parameters αk (pk × 1) in these models, obtained, for example, by
least squares for linear models (including an intercept to ensure efficiency gain over
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Ȳ (1) − Ȳ (0)) or by logistic regression. For each i = 1, …, n, form predicted values
f̂0,i = f0(Xi, α̂0) and f̂1,i = f1(Xi, α̂1) for i under each treatment. The analysis team(s)
responsible for developing each model may provide the form of the fitted model to
the analysts responsible for inference on the treatment effect, who may then calculate
the predicted values directly.

iv. The estimator may then be calculated by the analysts responsible for the final analysis
as

(17)

Using the “sandwich” technique, an estimator for the sampling variance of (17) may
be obtained. Although semiparametric theory dictates that, asymptotically, there
should be no effect of estimating the parameters in the postulated models fk, k = 0, 1,
the sandwich estimator can understate the true sampling variation for small n, likely
due in part to second-order effects of this estimation. This phenomenon was noted for
the variance estimator for given by Koch et al. [2] by Lesaffre and Senn [4], who
proposed a small-sample β ̂KOCH correction when n0 = n1. Accordingly, we propose
the variance estimator

(18)

(19)

where , k = 0, 1, and C is a small-sample “correction
factor” (see the Appendix). When the models fk are linear with intercept and fitted by
treatment-specific least squares, the final term in braces in (19) is equal to zero.

Appealing to the asymptotic normality of β ̂, one may construct Wald 100(1−α)% confidence

intervals for the true treatment effect in the usual way as , where zα/2 is the
obvious normal critical value. Tests of the null hypothesis H0: β = 0 versus one- or two-sided

alternatives may likewise be based on the Wald test statistic .

5. APPLICATION TO AIDS CLINICAL TRIALS GROUP 175
We demonstrate the proposed methods and contrast them to competing techniques by
application to data from 2139 HIV-infected subjects enrolled in AIDS Clinical Trials Group
Protocol 175 (ACTG 175), which randomized subjects to four different antiretroviral regimens
in equal proportions: zidovudine (ZDV) monotherapy, ZDV+didanosine (ddI), ZDV
+zalcitabine, and ddI monotherapy [28]. We follow References [14,15] and consider two
groups: ZDV monotherapy, with n0 = 532 subjects, and the other three groups combined, with
n1 = 1607 subjects, so that δ = 0.75. We focus on analysis of the differences in mean CD4 count
(cells/mm3, Y) at 20 ± 5 weeks post-baseline between these two treatment groups. For potential
use in covariate adjustment, we consider the following baseline variables: CD4 count (cells/
mm3), CD8 count (cells/mm3), age (years), weight (kg), Karnofsky score (scale of 0-100), all
of which are continuous measures; and indicator variables for hemophilia, homosexual activity,
history of intravenous drug use, race (0=white, 1=non-white), gender (0=female), antiretroviral
history (0=naive, 1=experienced), and symptomatic status (0=asymptomatic).
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Because they often exhibit skewed distributions, CD4 count outcomes are routinely analyzed
on a transformed scale (e.g., cube-root, fourth-root, or logarithmic). However, as long as the
skewness is not severe, comparison of mean responses on their original scale is reasonable,
more readily interpretable, and consistent with the way in which clinicians think about these
measures in practice. Figure 1 shows histograms of CD4 at 20 ± 5 weeks for each treatment
and suggests that this view is appropriate. Of course, because all of the usual estimators are
semiparametric as members of class (5), they are consistent and asymptotically normal
regardless of the true distributions of the data. We thus consider inference on β in (1).

Table I shows results for estimation of β using several methods, including the unadjusted
estimator Ȳ(1) − Ȳ(0) and; because one of the baseline covariates is CD4 count, the usual

estimator based on “change scores,” , where  is mean baseline
CD4 count in group k = 0, 1, which, using (15), may be written in the form (5). Also presented
are β ̂ANCOV A, β ̂KOCH, and two versions of the proposed estimator β ̂. For the latter, to develop
the models for E(Y |Z = k, X), k = 0, 1, we used forward selection as a representative model
selection approach available in standard software. For “Forward-1,” the models were
developed separately by forward selection with entry criterion 0.05 allowing linear additive
terms in elements of X. For “Forward-2”, the models were developed separately by forward
selection allowing linear, quadratic, and two-way interaction terms in elements of X. We also
used backward selection or different selection methods for each group, with similar results (not
reported). Standard errors for the unadjusted and change score estimators were calculated via
the usual formulæ; for β ̂ANCOV A1 using both (18) and the least squares formula based on the
fit of (3), as would ordinarily be the case in practice (indicated by *); and for β ̂KOCH and
Forward-1 and -2 using (18).

All methods indicate strong evidence of a treatment difference. All estimates are very similar
with the exception of the unadjusted estimate, which is slightly lower due to a mild imbalance
for baseline CD4 between groups. Baseline CD4 exhibits moderate association with CD4 at
20 ± 5 weeks, with correlation coefficients of roughly 0.6 in each treatment and a hint of
curvature in the relationships; see Figure 1 of Reference [14]. Failure of the unadjusted
estimator to take this relationship into account results in a much larger standard error than those
of the other estimators; moreover, although the change score estimator offers substantial
improvement, inclusion of additional covariate information yields further gains in precision.
The proposed estimator with forward selection on linear terms and β ̂KOCH are virtually
identical; allowing second-order effects to enter in the forward selection for the treatment-
specific regression models for β ̂ leads to very little additional reduction in estimated sampling
variation; the resulting models include the square of baseline CD4, but because this effect is
so mild, little gain is realized. Interestingly, the usual least squares standard error for
β ̂ANCOV A1 is noticeably larger than that based on (18); we discuss this in the next section.

The fitted treatment-specific models selected by “Forward-2” are, in obvious notation,

(20)

(21)
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with treatment-specific variance estimates var(Y |Z = 0, X) ≈ (95.82)2 and var(Y |Z = 1, X) ≈
(115.63)2, and coefficients of determination R2 = 0.50 and 0.38.

It is important to recognize that we are uninterested in the interpretation of models (20) and
(21). What is important is that they represent functions of X yielding predictions that come as
close as possible to the values of the true treatment-specific regressions at the Xi. Thus, that
these models do not, for example, include all main effect terms involving variables in the
interaction terms is of no consequence for the purpose of estimating β.

6. SIMULATION STUDIES
We report on several simulation studies to demonstrate the performance of the proposed
methods, each involving 5000 Monte Carlo data sets.

We consider first estimation of β under two scenarios. The initial scenario is based on the fit
of the ACTG 175 data in Section 5. For each simulated data set, we generated for each of n
subjects the continuous baseline covariates CD4 count, CD8 count, age, weight, and Karnofsky
score from a multivariate normal distribution with the empirical mean and covariance matrix
of these variables in the data. Independently, baseline binary indicators for hemophilia,
homosexual activity, history of drug use, race, gender, antiretroviral history, and symptomatic
status were generated for each subject from independent Bernoulli distributions using the
observed data proportions for each. Treatment indicator Z was generated from Bernoulli(δ) for
each subject, independently of all other variables. Finally, CD4 count at 20±5 weeks for each
subject was generated from a normal distribution with conditional mean (20) or (21) and
conditional variance given after (21) depending on his/her treatment assignment and covariates.
The true value of β = 54.203, with R2 = 0.50 and 0.39 for the treatment-specific regressions
for k = 0, 1, consistent with the data. For each data set, β and standard errors were estimated
using all methods in Table I. We also estimated β using (17), but with f̂k,i for each i equal to
the predicted values obtained from fitting the true forms of E(Y |Z = k, X), k = 0, 1, to the data,
with standard errors obtained from (18). This serves as a “benchmark” achieving the smallest
possible asymptotic variance in class (5).

Table II shows results for two instances of this scenario: n = 2139 and δ = 0.75, as in ACTG
175; and n = 400 and δ = 0.5, representing a moderate-sized trial with the 1:1 randomization
common in practice. As all estimators showed negligible bias, bias is not reported. For both
cases, any form of adjustment yields considerable efficiency gain over the unadjusted
estimator. Improvement over simple adjustment based on change scores is achieved by
incorporating additional covariates. The proposed method, β ̂ANCOV A1, and β ̂KOCH show similar
precision, likely because baseline CD4 has a strong linear but only mild quadratic relationship
with outcome, and other, weaker covariate relationships are captured adequately by main effect
terms in all estimators, a view supported by the results for the “Benchmark” estimator, which
shows little additional gain in efficiency. All methods except ANCOVA using least squares
standard errors, shown for n = 2139, δ = 0.75, yield confidence intervals attaining the nominal
coverage; see below. A key message is that the proposed method, represented here by
“Forward-1” and “Forward-2,” allows analysts latitude to explore and exploit relationships in
the data to come as close as possible to the “benchmark” gain in efficiency independently of
reference to the treatment effect while attaining nominal operating characteristics.

To emphasize this, we considered a second scenario identical to the first except that a stronger
quadratic effect in baseline CD4 was introduced in the true E(Y |Z = k, X), k = 0, 1, while
maintaining R2 for these relationships at 0.50 and 0.39, and β = 54.203. This was accomplished
by replacing the first three terms in (20) by −247.074+2.850(CD4)−0.0026(CD4)2 and those
in (21) by −82.931+2.400(CD4)−0.0025(CD4)2. Table III shows results for n = 400, δ = 0.5.
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“Forward-1,” which considers only linear terms in elements of X; β̂ANCOV A1; and β ̂KOCH all
lead to similar gains over the unadjusted and change score estimators and, except for
ANCOVA, admit confidence intervals achieving nominal coverage. “Forward-2,” which can
incorporate the quadratic effect of baseline CD4, yields a noteworthy efficiency further gain.

As noted above, confidence intervals based on β ̂ANCOV A1 and the usual standard errors obtained
from the output of the least squares fit of (3) achieve Monte Carlo coverage exceeding the
nominal level in Table II. Comparison of the average of these estimated least squares standard
errors to the Monte Carlo standard deviation shows that this is because the former tends to
overstate the true sampling variation. If the ANCOVA model (3) is a correct representation of
E(Y |Z, X), and if in truth var(Y |Z, X) is constant, then the least squares standard errors will be
consistent for the true sampling standard deviation of β ̂ANCOV A1. However, if these
assumptions are violated, then this need not be the case; indeed, these assumptions do not hold
in our simulation scenarios. Valid standard errors and nominal coverage may be obtained using
the “sandwich” formula (18), as shown in Tables II and III, because (18) is not predicated on
these assumptions. Thus, if ANCOVA is the basis for adjustment, as is widely proposed, least
squares standard errors should not be used in general.

For each of the two scenarios with n = 400, δ = 0.5, we modified the intercept term in the true
relationships E(Y |Z = k, X), k = 0, 1, so that the true value of β = 0, 15, and 30, and for each
value of β we report in Table IV the proportion of 5000 Monte Carlo data sets for which a Wald
test based on each estimator in Tables II and III rejected the null hypothesis β = 0 in favor of
the one-sided alternative β > 0, where all tests were carried out at significance level 0.025. All
tests exhibit the nominal level under the null hypothesis; under alternatives, the proposed
methods achieve the highest power in both scenarios, notably in scenario 2.

As in any regression modeling context, there may be uncertainty associated with model
development tasks for the fk, including use of variable selection techniques such as forward
selection, that is not taken into account by usual standard error formulæ [29]. We advocate the
proposed methods when n is moderate-to-large, where our simulations, including those here,
show that, for inference on β ̂, these effects are negligible. For smaller n, a “correction” to (18)
for model selection may be warranted [29]. It is natural to consider a nonparametric bootstrap
[30] to obtain standard errors; however, whether this is theoretically justified is not established
to our knowledge. With this caveat, we describe in the Appendix how use of the bootstrap
would be possible in the principled framework in Section 4. We are studying methods for
“correcting” standard errors for model selection and will report on this elsewhere.

7. DISCUSSION
We have demonstrated that systematic consideration of the covariate adjustment problem from
the perspective of semiparametric theory leads to characterization of all consistent and
asymptotically normal estimators for the treatment mean difference. Properties of familiar
estimators and correspondences among them may be established and the most precise estimator
identified. The results suggest methods for principled analysis, where adjustment for covariate
effects is carried out separately from estimation of the treatment effect.

The decision on whether to propose a covariate-adjusted analysis during trial planning must
weigh possible benefits relative to the increased effort involved [3]. Our proposed strategy
involves logistical and cost considerations, and whether these are worthwhile must be
determined in the particular context. Associations among covariates must be sufficiently strong
for adjustment to pay off, and such covariates may not always be available. When adjustment
is deemed potentially fruitful, our proposed approach may offer practical resolution to the
conflict over whether and how to exploit covariate information to enhance efficiency.
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We have focused on parametric modeling of the treatment-specific regressions. One may
wonder if it is possible to use nonparametric approaches such as generalized additive models
[31] or other multivariate smoothing methods to estimate these regressions; these may be
prohibitive with more than a few covariates. As discussed by Leon et al. [14, sec. 4], because
nonparametric estimators typically have large sample properties different from those of
parametric estimators, such smoothing methods may be viable only in very large studies.

The methods presented in this article may be modified to accommodate outcome missing at
random as shown in Davidian et al. [15]. As in the full data case considered here, models
associated with both covariate adjustment and accounting for missing outcomes may be
postulated and fitted independently of reference to the treatment effect, again supporting a
principled analysis. Via application of semiparametric theory, the techniques for comparing
two treatment means presented in this article may be extended to general measures of treatment
effect, such as an odds ratio associated with a binary outcome, a hazards ratio associated with
a censored time-to-event outcome, and so on, including accommodation of missing outcome
and covariate information. We report on these developments elsewhere.

APPENDIX
In this appendix, we sketch arguments supporting assertions made in the main text. Consistency
of estimators in (5). Ȳ(1)−Ȳ(0) is consistent for β; by Slutsky’s theorem, (5) itself is consistent
for β if its second term  0. Because , the second term is approximately equal to

because Z ⫫ X.

Asymptotic equivalence of β ̂ANCOV A1 to (5) with h(k), k = 0, 1, as in (6). Straightforward algebra
shows that the least squares estimator for βZ in (3) is

(A.1)

where , and

. Because Σ̂XY and Σ̂XX  to their counterparts in (7),
, and , the first term in (A.1) is asymptotically equivalent

to 1, while the second term is equivalent to (5) with h(k), k = 0, 1 as in (6), yielding the result.

Asymptotic equivalence of β ̂ANCOV A2 to (5) with h(k), k = 0, 1, as in (11), and to β ̂KOCH. The
least squares estimator for βZ in (10), obtained as described after (10), is

(A.2)

where , and

Tsiatis et al. Page 13

Stat Med. Author manuscript; available in PMC 2009 October 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



so . Clearly, D  block diag{ΣXX, δ(1 − δ) ΣXX}, and  (using
randomization), so that, with , the first term in (A.2) is asymptotically
equivalent to 1. Because

,

and , we have after algebra for large n that

(A.3)

as required. To show the equivalence of β ̂KOCH to β ̂ANCOV A2, we show that the second term

in (12), , can be written as n/(n0n1)×(A.3), where VXY and VXX are defined
in (13). Because of (15), it suffices to find the limit in probability of . It is
straightforward to show that, for large n,

, and . Because by
randomization , k = 0, 1, we may replace X̄(k), k = 0, 1, by X̄ in these expressions,

from whence  and , and the
result follows.

Variance of β ̂ANCOV A2

We show that β ̂ANCOV A2 has smallest asymptotic variance among all estimators of form (5)
with h(k), k = 0, 1, linear in Xi; i.e., , say. It is straightforward to show that
all such estimators satisfy

(A.4)

where η0 = δE(Y |Z = 0) + (1 − δ)E(Y |Z = 1), and η = δα0 + (1 − δ)α1. That with smallest
variance takes η to minimize the variance of the summand in (A.4). The summand is A − ηT

B, say. This is least squares problem [14, p. 1050], which yields

. Comparing to (11), the result follows.

Demonstration of (16)
Similar to (A.4), for arbitrary h(k), k = 0, 1, it is straightforward to show that

, where
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where , k = 0, 1. As f(Y, Z, X; h0, h(1)) has mean zero because
Z ⫫ X, the choices of h(k), k = 0, 1, leading to the smallest variance asymptotically are those

minimizing E{f2(Y, Z, X; h(0), h(1))}. Letting , k = 0, 1, for brevity and

writing , for
any h(k), k = 0, 1, we have

(A.5)

where (A.5) follows because Z ⫫ X implies that the crossproduct

, demonstrating (16). In fact, it is immediate
from (A.5) that, by taking h(k) = 0, k = 0, 1,

, where “Avar” denotes “asymptotic
variance,” showing that using the optimal choices in (16) is guaranteed to lead to a reduction
in variance over the unadjusted estimator.

By a similar argument, one may in fact show that, if one restricts attention to representations
for h(k)(X) that are linear in X; i.e., , k = 0, 1, and fits this model by treatment-
specific least squares, then the resulting estimator for β has asymptotic variance

. This holds
regardless of whether the true E(Y |Z = k, X) are linear. Thus, representing h(k), k = 0, 1 by
linear functions leads to a reduction in variance over Ȳ(1) − Ȳ(0).

Effect of parameter estimation in postulated models for E(Y |Z = k, X), k = 0, 1. As in Section
4, suppose we specify regression models fk(Xi, αk) for E(Y | Z = k, X), k = 0, 1, and we fit the
models by solving appropriate regression estimating equations to obtain estimators α̂k. As an
example, for continuous Y we may solve the least squares equations

, fk,α(Xi, αk) = ∂/∂αkfk(Xi, αk). Under regularity conditions,

, where  satisfies  [32, sec. A.6.5], and
similarly for other estimating equations. If fk(Xi, αk) is a correct model for E(Y |Z = k, X), then

 is the value satisfying ; if not,  is still some constant value. Either
way, β ̂ satisfies

(A.6)

(A.7)

where , k = 0, 1. The term in (A.7) converges in probability
to zero because Z ⫫ X. Thus, n1/2(β ̂ − β) has the same limit in distribution as (A.6), which
depends on the , which are fully specified as functions of X given . The smallest
achievable large sample variance is that of the limit in distribution of (A.6) when
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, k = 0, 1; i.e., fk coincide with the true regression relationships. Estimator
for sampling variance of β ̂. The summand in (A.6) is the form of the influence function [13]
for the proposed estimator β ̂. Applying the sandwich technique and replacing this summand
by an empirical version yields the sum in (18). We take C = (n −1)/(n −p −1) for β ̂ANCOV A1;
C = {(n0 − pn1/n − 1) − 1 + (n1 − pn0/n − 1) − 1}/{(n0 − 1) − 1 + (n1 − 1) − 1} for β ̂KOCH,
which generalizes the correction proposed by Lesaffre and Koch when n0 = n1 [3]; and C =
{(n0 −p0 −1) − 1 +(n1 −p1 −1) − 1}/{(n0 −1) − 1 +(n1 −1) − 1} for β ̂, where pk, k = 0, 1, are
the number of parameters fitted in each model fk, k = 0, 1, exclusive of intercepts.

To obtain an alternative estimator for the sampling variance using the bootstrap, at step (i) of
Section 4, B bootstrap data sets could be obtained, each by resampling n subjects with

replacement from the original data. Each could be partitioned into two sets, i.e., , k = 0, 1
for b = 1, …, B. In step (ii) of Section 4, the modeling strategy used on the actual data  for

each k would also be replicated by the analysts responsible for each , b = 1, …, B. The
fitted model so obtained for each B = 1, …, B, fk,b(X, α̂k,b), say, could be reported along with
the model developed for the actual data. In step (iii), predicted values for each k and bootstrap

data set could then be constructed and used with , k = 0, 1, B = 1, …, B, to construct B
bootstrap estimates β ̂b, B = 1, …, B, using (17). The estimated standard error for β ̂ would then
be obtained as the square root of the sample variance of the β ̂b, B = 1, …, B.
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Figure 1.
Histograms of CD4 counts at 20 ± 5 weeks: (a) ZDV monotherapy group. (b) Combined
treatment group.
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Table I
Estimates of β for the ACTG 175 data. Unadjusted is Ȳ(1)−Ȳ(0); Change scores is Ȳ(1)−Ȳ(0) − the difference in sample
mean baseline CD4; Forward-1 is β ̂ in (17) with treatment-specific regression models developed using forward selection
allowing linear terms only in elements of X; Forward-2 is the same but allowing linear, quadratic, and two-way
interaction terms; ANCOVA is β ̂ANCOV A1 using all elements of X; and Koch is β ̂KOCH using all elements of X. SE is
estimated standard error calculated as described in the text. Test Stat. is the Wald test statistic; and Rel. Eff. is (SE for
the Unadjusted estimator)2 divided by (SE for the indicated estimator)2.

Estimator Estimate SE Test Stat. Rel. Eff.

Unadjusted 46.811 6.760 6.924 1.00
Change scores 50.409 5.509 9.150 1.51
Forward-1 49.896 5.135 9.716 1.73
Forward-2 51.139 5.103 10.021 1.75
ANCOVA 49.694 5.154 9.643 1.72

– 5.647 8.799 1.43*
Koch 49.758 5.139 9.682 1.73

*
Row calculated using usual least squares SE
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Table II
Results for the simulation scenario based on the ACTG 175 data using 5000 Monte
Carlo data sets. Estimators are as in Table I; Benchmark is the proposed estimator
found by fitting the true treatment-specific regressions to obtain predicted values.
MC SD is Monte Carlo standard deviation, Ave SE is the average of standard error
estimates, Cov. Prob. is coverage probability of a 95% Wald confidence interval,
and Rel. Eff. is the Monte Carlo mean square error for the Unadjusted estimator
divided by that for the indicated estimator.

Estimator MC SE Ave SE Cov. Prob. Rel. Eff.

n = 2139, δ = 0.75
Unadjusted 6.949 6.905 0.950 1.00
Change scores 5.570 5.529 0.947 1.55
Forward-1 5.229 5.156 0.943 1.77
Forward-2 5.177 5.075 0.943 1.80
ANCOVA 5.227 5.183 0.946 1.77

– 5.657 0.965* –
Koch 5.220 5.154 0.946 1.77
Benchmark 5.122 5.089 0.949 1.84

n = 400, δ = 0.5
Unadjusted 14.027 14.138 0.952 1.00
Change scores 11.485 11.560 0.952 1.49
Forward-1 10.927 10.850 0.951 1.65
Forward-2 10.975 10.680 0.945 1.64
ANCOVA 10.942 10.984 0.954 1.64
Koch 10.948 10.818 0.950 1.64
Benchmark 10.886 10.855 0.951 1.66

*
Row calculated using usual least squares SE
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Table III
Results for the second simulation scenario data using 5000 Monte Carlo data sets.
All entries are as in Table II.

Estimator MC SE Ave SE Cov. Prob. Rel. Eff.

n = 400, δ = 0.5
Unadjusted 14.084 14.148 0.951 1.00
Change scores 12.993 13.043 0.952 1.17
Forward-1 12.064 11.921 0.950 1.36
Forward-2 11.005 10.685 0.943 1.64
ANCOVA 12.076 12.068 0.952 1.36
Koch 12.081 11.892 0.949 1.36
Benchmark 10.885 10.853 0.951 1.67
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