
Functional Dorsoventral Symmetry in Relation to Lift-
Based Swimming in the Ocean Sunfish Mola mola
Yuuki Watanabe1,2*, Katsufumi Sato1

1 International Coastal Research Center, Ocean Research Institute, The University of Tokyo, Otsuchi, Iwate, Japan, 2 National Institute of Polar Research, Itabashi, Tokyo,

Japan

Abstract

The largest (up to 2 tons) and a globally distributed teleost—the ocean sunfish Mola mola—is commonly regarded as a
planktonic fish because of its unusual shape including absence of caudal fin. This common view was recently questioned
because the horizontal movements of the ocean sunfish tracked by acoustic telemetry were independent of ocean currents.
However, direct information regarding their locomotor performance under natural conditions is still lacking. By using multi-
sensor tags, we show that sunfish indeed swam continuously with frequent vertical movements at speeds of 0.4–0.7 m s–1,
which is similar to the records of other large fishes such as salmons, marlins, and pelagic sharks. The acceleration data
revealed that they stroked their dorsal and anal fins synchronously (dominant frequency, 0.3–0.6 Hz) to generate a lift-based
thrust, as penguins do using two symmetrical flippers. Morphological studies of sunfish (mass, 2–959 kg) showed that the
dorsal and anal fins had similar external (symmetrical shape and identical area) and internal (identical locomotory muscle
mass) features; however, the muscle shape differed markedly. We conclude that ocean sunfish have functional dorsoventral
symmetry with regards to the non-homologous dorsal and anal fins that act as a pair of vertical hydrofoils. Although sunfish
lack a swimbladder, we found that they are neutrally buoyant independent of depth because of their subcutaneous
gelatinous tissue that has low density and is incompressible. Efficient lift-based swimming in conjunction with neutral
buoyancy enables sunfish to travel long distances both horizontally and vertically.
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Introduction

The largest (up to 2 tons) and a globally distributed teleost—the

ocean sunfish Mola mola—has a laterally compressed deep body

and lacks a caudal fin [1], and appears as if it were ‘‘half fish’’ with

the posterior portion cut off [2]. This peculiar appearance gives

the impression of a planktonic weak swimmer, compared to

pelagic continuous swimmers such as tunas, lamnid sharks, and

dolphins. These swimmers have a streamlined body, circular body

cross section, narrow caudal peduncle, and caudal fin with a high

aspect ratio, which enable them to swim fast and efficiently [3–5].

Furthermore, ocean sunfish are often seen lying on their sides and

drifting at the sea surface, although they swim slowly in

aquariums, apparently by moving their dorsal and anal fins. The

common view that ocean sunfish are weak swimmers was recently

challenged. Using acoustic telemetry, researchers showed that the

ocean sunfish move regardless of the direction of the dominant

ocean current, suggesting that they are active swimmers [6].

However, direct information on the locomotor performance of the

species is still lacking.

Animal-borne accelerometers have proved to be powerful tools

for studying the locomotor behavior of marine animals with

limited access. They provide us with important information such

as stroking activities and body inclination, and have been

extensively applied to free-ranging marine mammals and seabirds

[7]. However, studies on fishes with accelerometers are still

limited. One practical reason for this may be the fact that

accelerometers must be recovered to obtain the data, but the

recapture of instrumented fishes is often very difficult. Satellite-

linked telemetry is not currently available for acceleration data,

which need to be sampled at a high frequency (.10 Hz) and are

therefore too large to be sent via satellite. Recently, we solved this

problem by developing a time-scheduled release system that allows

us to recover the logger without recapture of the instrumented fish

[8,9]. It is now possible to study the swimming performance of

ocean sunfish under natural conditions.

Ocean sunfish and their relatives (family, Molidae) have several

peculiar features with regard to external and internal morphology

that are expected to be related to their swimming behavior. For

example, with regard to external features, they lack a caudal fin

and have enlarged dorsal and anal fins. Do these non-homologous

fins work as a pair of propulsors? With regard to internal features,

unlike other fishes in the order Tetraodontiform, Molidae lack a

swimbladder [10]. Do they have negative buoyancy and swim

continuously to avoid sinking, as is the case in tunas [11]?

Alternatively, is their weight in water supported by a low-density

liver, as is the case in some sharks [12]? Little is known about the

functional morphology in terms of the swimming behavior in

ocean sunfish. Generally, literature on ocean sunfish is surprisingly

sparse in any area of biology although this species is very popular
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worldwide. This may be because of their little commercial value

and large size, which makes sampling difficult. However, this is not

the case in our study area, namely, Otsuchi, Japan. Here, ocean

sunfish are commercially caught and consumed, and it is possible

to collect samples of ocean sunfish ranging in size from a few

kilograms to a ton from fish markets.

In this study, we attached accelerometers to ocean sunfish with a

time-scheduled release system to examine their swimming

performance under natural conditions. Additionally, we studied

the external and internal morphology of sunfish to identify any

adaptations for their swimming behavior. Our goal was to

understand how ocean sunfish swim on the basis of both

behavioral and morphological studies.

Results

Behavioral study
We recorded behavior of three ocean sunfish (mass, 48, 59, and

153 kg) for 14 h in total (Table 1). According to the recovery

points of the loggers, all fish appeared to swim offshore from

Otsuchi Bay, which opens to the east, in similar directions (80–89u)
at horizontal speeds of 1.5–2.2 km h21. All fish changed their

swimming speeds widely during the first few minutes of the

records, possibly due to handling. Then, the fish cruised with

frequent vertical movements (Fig. 1). Fin movements were

continuous throughout the records, and the frequency was

constant within individuals regardless of swimming depth and

whether the fish was ascending or descending. Pitch of the fish was

close to horizontal when swimming horizontally, head-up

(maximum, 65u) when ascending, and head-down (minimum,

255u) when descending. Absolute value of roll remained ,30u
over 80% of the tag records, and exceeded 30u most commonly

during horizontal swimming. In one instance, a fish (mass, 59 kg)

accelerated for 15 s up to 2.4 m s21 horizontally near the surface

with a right-rotated position (roll, 48u) and a high stroke cycle

frequency (2.0 Hz). During the recordings, no fish drifted on its

side at the surface.

Lateral acceleration oscillated regularly, showing that the fish

stroked their dorsal and anal fins from side-to-side (Fig. 2A).

Longitudinal acceleration also oscillated regularly and peaked

twice during one stroke cycle (i.e., the period taken by a fin to

move from one extreme lateral position and back to the original

position), indicating that each fin stroke (left-to-right or right-to-

left) produced thrust. The same results were shown when the

power spectral density (PSD) was calculated from the entire data

set of each individual. The PSD of lateral acceleration had one

peak, while that of longitudinal acceleration had two peaks

(Fig. 2B). The peak in lateral acceleration and the lower-frequency

peak in longitudinal acceleration are the dominant stroke cycle

frequency for each individual (Table 1). The higher-frequency

peak in longitudinal acceleration represents the frequency at which

thrust is produced (twice the dominant stroke cycle frequency).

Morphological study
The two-dimensional shape of dorsal and anal fins of ocean

sunfish changed with an increase in body mass from 2 kg to

959 kg, but symmetry in the shape between the two fins was

maintained (Fig. 3A,B). Small fish (2 kg) had narrow fins with a

shape similar to a tall isosceles triangle. As body mass increased,

the fins became wider and the posterior edge of the fins became

curved. Accordingly, aspect ratio (i.e., the ratio of length to

average width) of both fins decreased significantly (P,0.0001 for

both fins, n = 49) from an average of 3.660.2 for 2-kg individuals

(n = 6) to 1.8 for a 959-kg individual (Fig. 3A). Dorsal and anal fins
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had the same projected area, with a concordance correlation

coefficient [13] of 0.999 (n = 49) (Fig. 3B). Musculature of ocean

sunfish is unusual for fishes. Axial musculature is entirely lost, and

most muscles attached to the vertebral column are those for

operating the dorsal and anal fins [14]. The dorsal-fin muscle

occupies most of the space dorsal to the vertebral column under

the subcutaneous gelatinous layer and skin, extending from the

head to the anterior edge of the caudal-fin-like structure (Fig. 3C).

In contrast, the anal-fin muscle occupies only the posterior part of

the space ventral to the vertebral column because of the

abdominal cavity. Despite the difference in shape, the mass of

the two muscles was the same, with a concordance correlation

coefficient of 0.999 (n = 24) in sunfish ranging in size from 2 kg to

247 kg (Fig. 3D).

Contrary to the hypothesis that ocean sunfish are negatively

buoyant and swim continuously to avoid sinking, they were

neutrally buoyant with a mean body density of 1,02764 kg m23

(n = 20), which is similar to that of seawater (c.a., 1,026 kg m23).

How do they attain neutral buoyancy without a swimbladder?

Liver density significantly decreased with body mass (P,0.0005,

n = 17), from an average of 1,04169 kg m23 for 2-kg individuals

(n = 4) to 992 kg m23 for a 247-kg individual, indicating an

accumulation of lipid in the liver with growth. This means that the

liver can act as a float in larger individuals. However, this effect

should be minor because liver mass was only 2.660.9% (n = 22) of

body mass on average, which is much less than 17–30% reported

in some sharks [12]. Besides liver, most components of the body

(e.g., skin, muscle, bone, and intestine) were denser than seawater

as is the case in fishes generally [15]. However, we found that a

subcutaneous gelatinous tissue plays a major role in making ocean

sunfish neutrally buoyant. The subcutaneous gelatinous layer,

which is an unusual feature of ocean sunfish, surrounded the

whole body and became significantly thicker with body size

(P,0.0001, n = 19), from an average of 3.960.8 cm for 2-kg

individuals (n = 4) to 21.0 cm for a 959-kg individual at the belly

just anterior to the cloaca. Furthermore, the caudal-fin-like

structure was mostly made of the gelatinous tissue. The tissue

was less dense (mean, 1,01563 kg m23, n = 22) than seawater

regardless of body size (P = 0.17). The proportion of the mass of

the gelatinous tissue to body mass significantly increased with body

size (P,0.0001, n = 21), from an average of 2666% for 2-kg

individuals (n = 4) to 44% for a 247-kg individual. From the density

and mass of gelatinous tissue and liver, we calculated that 69–

100% of the weight in water was supported by the gelatinous

tissue, whereas the rest was supported by the liver depending on

body size.

Figure 1. Depth, swimming speed, spectrogram of lateral acceleration (indicative of fin movements) where magnitude was
expressed by color, pitch (red line), and roll (blue line) of an ocean sunfish (mass, 48 kg). Open circles on the spectrogram represent
dominant stroke cycle frequencies calculated for each five-minute time bin. Positive pitch represents head-up attitude of the fish, while negative
pitch indicates head-down attitude. Positive roll represents right-rotated position of the fish, while negative roll indicates left-rotated position.
doi:10.1371/journal.pone.0003446.g001
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Discussion

Contrary to the common view that ocean sunfish are planktonic

fish at the mercy of oceanic currents, the sunfish tagged in this study

swam actively with continuous strokes of their fins while making

substantial vertical movements in the water column (Table 1, Fig. 1).

The cruising speeds of migrating fishes that were measured

previously by indirect methods, including conventional tagging

and tracking with acoustic devices, are highly variable (refer to

Table 1 in [16]). However, recent studies that directly measured the

swimming speed of fishes with animal-borne speedometers revealed

that sturgeons [9], salmons [17,18], marlins [19], and blue sharks

[20] cruise at a relatively narrow range of speed (0.1–1.0 m s21).

The cruising speeds recorded in this study (0.4–0.7 m s21) lie in the

middle of the range, indicating that ocean sunfish are not slow

swimmers. Although our sample size is small, an interesting

observation is that larger fish swam slower, resulting in relatively

constant Reynolds number (66105) among individuals (Table 1).

Around this Reynolds number, drag on a streamlined body drops

due to a transition of flow pattern [21]. Therefore, the speed

recorded in this study might be their optimal speed that minimizes

the cost required to travel a unit distance [22].

The acceleration data revealed that thrust was produced twice

during one stroke cycle (Fig. 2), demonstrating that the thrust was

lift-based rather than drag-based. This pattern of acceleration was

previously reported in penguins [7], which flap both flippers

synchronously, indicating that ocean sunfish oscillate the dorsal

and anal fins synchronously. While the flippers of penguins are

located in the coronal plane and oscillated dorsoventrally, the fins

of ocean sunfish are located in the sagittal plane and oscillated

laterally. In most animals, symmetrical wings for lift generation are

located on both sides of the body, such as those found in flying

insects, flying birds, and bats in air, and sea butterflies, eagle rays,

sea turtles, penguins, and sea lions in water. The ocean sunfish is,

to our knowledge, the only animal that uses two fins (i.e., the

dorsal and anal fin) that are not originally bilaterally symmetrical

as a pair of wings.

The dorsal and anal fins in each individual fish had symmetrical

shape and identical area, although the shape of the fins changed

with body size (Fig. 3A,B). This suggests that thrust generated by

the two fins during a stroke cycle are equal, because lift produced

by a wing is proportional to the area of the wing [5]. Although

shape of muscles that drive the dorsal and anal fin differed

markedly, the mass of the muscles were identical (Fig. 3C,D). This

suggests that the dorsal and anal fins are driven with equal power.

Dorsoventral symmetry in the external morphology of locomotor

fins is echoed in the internal musculature that drive the fins. We

suggest that this unusual symmetry represents a morphological

adaptation for their unique swimming style.

A remarkable decrease in the aspect ratio of the dorsal and anal

fins with growth (Fig. 3A) seems peculiar, because it indicates a

decrease in the swimming efficiency with growth. Generally, wings

with lower aspect ratio produce less lift and suffer more drag due

to tip vortices, resulting in lower efficiency in producing thrust [5].

We hypothesize that the requirement of mechanical strength

rather than efficiency shapes the fins in larger sunfish. Because the

bending moment at the fin bases is proportional to the length of

the fins, larger sunfish may need relatively shorter and wider fins to

resist the moment while maintaining the area to generate sufficient

lift. The theories of aeronautical engineering might be helpful in

testing this hypothesis in future analyses.

We found that ocean sunfish are neutrally buoyant without a

swimbladder because of their low-density subcutaneous gelatinous

tissue. A similar strategy for attaining neutral buoyancy using

gelatinous tissue was previously reported in some deep-sea fishes

[23]. The advantage of gelatinous tissue over a swimbladder as a

buoyancy aid would be that the former is not compressed by

hydrostatic pressure and gives stable buoyancy regardless of

depths. Indeed, fish with a neutral buoyancy due to a swimbladder

experience changes in buoyancy at different depths, which affect

Figure 2. Lateral (red line) and longitudinal (blue line) accelerations recorded from an ocean sunfish (mass, 48 kg). (A) Typical
examples. The vertical broken lines delineate the separation of the stroke cycle. (B) Power spectral density (PSD) calculated from the entire data set of
this individual. Arrows indicate peaks.
doi:10.1371/journal.pone.0003446.g002
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their stroke patterns and body inclination [9]. The advantage of

incompressible gelatinous tissue was clearly shown by our

behavioral data. Our sunfish frequently descended and ascended

in the water column while maintaining their own stroke cycle

frequencies (Fig. 1), which are presumably optimal for their muscle

characteristics. Furthermore, our observation that the sunfish

occasionally swam in rotated positions is probably associated with

their neutral buoyancy.

Other Tetraodontiform fishes are categorized as drag-based

swimmers [24], which use a complex combination of the pectoral,

dorsal, anal, and caudal fins (puffers [25], boxfish [26], and

burrfish [27]) or undulations of the dorsal, anal, and caudal fins

(triggerfish [28]). We suggest that ocean sunfish acquired a lift-

based swimming mode by evolving a symmetrical pair of narrow

dorsal and anal fins, and identical muscle mass for each fin. This

style of locomotion is advantageous for cruising because it is

mechanically more efficient [29] and gives more thrust per stroke

at high speed [5] compared to drag-based swimming. This,

together with neutral buoyancy due to incompressible gelatinous

tissue, likely enables ocean sunfish to travel efficiently over long

distances both horizontally and vertically despite their unusual

shape.

Materials and Methods

Behavioral study
Three ocean sunfish were caught alive by set nets in Otsuchi

Bay, Japan (39.4uN, 142.0uE). On the fishermen’s boat, we pierced

a tiny hole on the back of the fish, anterior to the dorsal fin,

through the skin and the subcutaneous gelatinous layer. We

attached a 128 Mbit W380L-PD2GT data logger (21 mm in

diameter, 117 mm in length, 60 g in air; Little Leonardo Co.,

Tokyo, Japan) with devices for data recovery (time-scheduled

releasing mechanism, float, and VHF transmitter) [8,9] to the fish

using the hole, and released the fish within five minutes. During

the attachment procedure, we flushed the gills with fresh sea water.

Figure 3. Morphology of locomotory fins and muscles of ocean sunfish. (A) Relationship between body mass and aspect ratio of dorsal fins
(red circles) and anal fins (blue circles). The best-fit regression lines for dorsal (red line) and anal fin (blue line) are described as follows.

dorsal finð Þ AR~3:75{0:51|log10 BMð Þ n~49, r2~0:61
� �

anal finð Þ AR~3:88{0:51|log10 BMð Þ n~49, r2~0:54
� �

where AR is aspect ratio (dimensionless) and BM is body mass (kg). Examples of the shape of the fins (outlined from photos) from four mass groups
are also shown. (B) Relationship between the projected area of dorsal and anal fins. The diagonal line represents identical area of both fins. (C) Photo
of an individual (mass, 34 kg) showing how muscles that drive the dorsal fin (red line) and anal fin (blue line) are located. Yellow line indicates the
vertebral column. (D) Relationship between the mass of dorsal-fin muscle and anal-fin muscle. The diagonal line represents identical mass of both
muscles.
doi:10.1371/journal.pone.0003446.g003
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The total weight of the instruments was 144 g in air (0.1–0.3% of

the body mass of the fish), and its buoyancy was offset 37 g in

water. After the logger was detached from the fish, it was located

with VHF radio signals and recovered by R/V ‘Yayoi’ from the

International Coastal Research Center. Body mass of the fish was

estimated from total length using the equation described below.

Spectrogram [30] and power spectral density [7] of acceleration

data were calculated as described previously. Before calculating

spectrogram, we filtered lateral acceleration records to remove

low-frequency signals that were assumed to be the result of various

turning and rolling movements by the fish [31]. Dominant stroke

cycle frequencies at each five-minute time bin (Fig. 1) were

calculated from the spectrogram using a custom-written program

in Igor Pro (WaveMetrics Inc., Lake Oswego, OR, USA). Because

the fish’s body yaws while swimming, thrusts of fish affect lateral

acceleration records as well as longitudinal ones. Consequently,

thrust frequency (twice stroke cycle frequency) rather than stroke

cycle frequency was sometimes calculated as the dominant

frequency from the spectrogram of lateral acceleration. We

excluded the calculated values in this case, and therefore,

dominant stroke cycle frequency in Fig. 1 has blanks. Pitch and

roll was calculated from low-frequency signals of acceleration

records [32]. Reynolds number was calculated as LU/n, where L is

total length of the fish (m), U is swimming speed (m s21), and n is

kinematic viscosity of seawater at 17uC (1.1361026 m2 s21). This

research was conducted with a permit from the University of

Tokyo (UT: 005).

Fish used in morphological study
A total of 49 ocean sunfish caught in Otsuchi and Funakoshi

Bay were collected at local fish markets. To weigh the fish, we used

an electric platform scale for small individuals (less than 20 kg), a

spring balance for middle-sized individuals (between 20 and

40 kg), and the electric gauge instrumented with the forklift at the

markets for large individuals (more than 40 kg). Two fish including

the largest individual were obtained after their muscles had been

removed for selling. To estimate the mass of these fish, we added

the published data of a very large individual [33] to our data sets to

obtain the relationship between total length (TL, in m) and body

mass (BM, in kg) for fish ranging in mass from 2 to 1,150 kg.

BM~52:96|TL2:96 n~50, r2~0:998
� �

Fin morphology and muscle mass
We took digital photos of fins of the all 49 fish (mass, 2–959 kg)

with a reference square of known area, and counted pixels of the

fins and the square with Igor Pro to calculate projected fin area.

Because the base of the fins was not obvious in the photos, we

marked the bending points of fins on the anterior and posterior

edges before taking photos, and assumed that the base is the

straight line segment between the two points. The relationships

between the projected fin area (FA, in m2) and total length (TL, in

m) for fish ranging in mass from 2 to 959 kg were as follows.

dorsal finð Þ FA~5:46|10{2|TL2:12 n~49, r2~0:996
� �

anal finð Þ FA~5:12|10{2|TL2:13 n~49, r2~0:995
� �

Fin length was measured as the minimum length between the

base line and the tip of the fins. Aspect ratio was calculated as

length squared divided by projected area. Locomotory muscles

located on one side of the bodies (right or left) of 24 fish (mass, 2–

247 kg) were dissected and weighed.

Buoyancy
We used 22 fish (mass, 2–247 kg) to study the buoyancy of

ocean sunfish. Because we did not measure some parameters (e.g.,

liver density) at the beginning of the study, the sample size ranged

from 17 to 22 depending on the parameters. Density of whole

body, gelatinous tissue, and liver was measured. When the

materials floated in seawater and sank in freshwater, we mixed

seawater and freshwater until they became neutrally buoyant,

before measuring the water density (equivalent to the density of the

materials) with a gravimeter. When they sank in seawater, we

added salt to seawater until the materials became neutrally

buoyant, before measuring the water density. Among our

materials, only some livers floated in freshwater. In this case, we

put small metal nails into the liver one by one until the liver

became neutrally buoyant in freshwater (density, 1,000 kg m23).

The density of the liver was calculated from the mass of liver, mass

of nails, and density of nails (7,780 kg m23). The gelatinous tissue

is strongly attached to the skin. To estimate the mass of gelatinous

tissue, we cut it out and weighed it with the skin, and subtracted

the skin mass from the compound mass. To estimate the skin mass,

we first measured the surface area of the fish. This was done by

covering the fish with a polyester sheet, tracing the midline of the

fish with ink, and taking digital photos of the midline with a

reference square of a known area, just as we did for fins. The area

inside of the midline was doubled to obtain the total surface area.

The relationship between the total length (TL, in m) and total

surface area (SA, in m2) for fish ranging in mass from 2 to 247 kg

was as follows.

SA~1:27|TL1:93 n~18, r2~0:999
� �

The surface areas of the dorsal and anal fins (i.e., twice the

projected area of the fins measured from the photos) were

subtracted from the total surface area, and the remaining area was

multiplied by the skin mass of a unit area, which was measured

directly, to obtain the skin mass.

Statistical analysis
Spearman’s rank correlation was used to test the correlation

between body mass and parameters (e.g., liver density). Values for

statistical significance were set at P,0.05. Means (6S.D.) are

reported.
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